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Abstract. In this paper, a novel compressed sensing (CS)
acquisition and joint recovery of spatiotemporal correlated
signals algorithm is presented for effective data collection
and precise sensors data streams reconstruction in wireless
sensor networks. The CS-based proposed method utilizes an
iterative re-weighted `1-minimization and a `2 regularization
to increase the reconstruction accuracy with a small number
of required data transmission. Moreover, we develop an al-
ternating direction method of multipliers based algorithm to
efficiently solve the resulting optimization problem. Numeri-
cal experiments are conducted on several test signals with a
variety of sampling ratios. The experimental results verify
the effectiveness of the proposed scheme in terms of recon-
struction accuracy and consumption time compared with the
state of the art algorithms.
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1. Introduction
The advances in the field of telecommunication and

newly developed applications have increased the need for de-
ploying distributed wireless sensor networks (WSNs), which
of multiple sensors for monitoring, sensing, collecting, pro-
cessing and transmitting specific data to a sink for signal
recovery in an area of interest. Due to the main challenges
of the energy constraint WSNs, reducing the overall energy
consumption of the sensor nodes is of great importance. In
this respect, compressive sensing (CS) has drawn much in-
terest, simultaneously providing a sensing and compression
framework [1–9], enabling a potentially significant reduc-
tion in the sampling and computational costs of a sensor
with limited capabilities; while still guaranteeing perfect re-
covery [10–13]. Although CS has established a promising
performance in exploiting the spatial or temporal correlation,
the necessary data transmission can be decreased more.

As the physical phenomenon monitored data from
neighboring sensors encompass spatiotemporal correlation,
the higher cost data transmission can be optimized via
distributed data compression/acquisition techniques [14].
Recently, the theory of distributed compressive sensing
(DCS) [15] have been used to exploit spatiotemporal cor-
relations via joint sparsity models [16]. A spatiotemporal
correlation-based distributed compressive sensing algorithm
which exploits the belief propagation method is presented
in [17] to reconstruct the original signal. In order to obtain a
better reconstruction performance, a PCA based algorithm is
proposed in [18] via exploiting the correlation characteris-
tics among data. Since these methods utilize the correlation
amongst the sensors’ readings, they can not achieve high-level
accuracywith lower sampling ratio. Therefore, an efficient it-
erative re-weighted recovery algorithm [19] employed a slid-
ing data window not only to successively exploit overlapping
signals but also improve the reconstruction accuracy with fast
convergence. Afterward, a CS based algorithmwas proposed
to improve the recovery performance of the spatio-temporal
correlated sensor data streams [20].

In order to improve the recovery performance of the
gathered sensors’ readings for the real-time WSN applica-
tions, a DCS based algorithm is proposed in this paper as an
extension of the iterative re-weighted `1 minimization algo-
rithm (IRW-`1) [21] and joint recovery algorithm in [22].
Inspired from [20], the proposed DCS based algorithm is
formulated in the form of a minimization function under a
regularization-based framework. Based on the alternating
direction method of multipliers (ADMM) algorithm [23], an
efficient, relatively fast and ease of implementation alternat-
ing minimization approach is developed to solve the regular-
ization basedminimization algorithm. The simulation results
verify that the proposed framework substantially outperform
different conventional and state of the art techniques in terms
of recovery accuracy and optimization problem solving time.

The rest of this paper is organized as follows: In Sec. 2,
the whole scenario is presented in detail to adaptively mea-
sure and reconstruct the sparse signal ensemble. In Sec. 3,
the performance of the proposed method is compared with
the state of the art algorithms. Finally, the paper concludes
in Sec. 4. Throughout this paper, vectors are denoted in bold
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lowercase letters, matrices are written in bold uppercase let-
ters, ()T and ()H denote the vector and matrix transpose and
Hermitian operators, respectively. ()−1 stands for the inverse
operation and the inner product is denoted by 〈,〉.

2. System Model
For the simplicity of analysis, consider a single-hop

wireless sensor network with J sensors and one sink in which
sensors are distributed at a number of outdoor locations mea-
suring an event such as temperature, pressure, wind speed,
etc. throughout the day. Let X (τ) ∈ RJ×L consist of L suc-
cessive readings of all J sensor nodes at equal-sized time slot
τ ∈ {τ − L + 1, . . . , τ} as

X (τ) =


x1 (τ − L + 1) · · · x1 (τ)

...
. . .

...
xJ (τ − L + 1) · · · xJ (τ)

 (1)

where xj (τ) is the reading of jth sensor at time instant τ.
Let us denote the the rows of X (τ) contain the reading of
all sensors j ∈ J at time instants τ ∈ {τ − L + 1, . . . , τ} and
the columns contain the sensors’ readings at time instant τ.
Therefore, X (τ) can be expressed as

X (τ) = [x1 (τ) · · · xJ (τ)]T = [x (τ − L + 1) · · · x (τ)] . (2)

As the joint sparsity model described in [15], all sen-
sor readings share a common component xc (τ) ∈ RL such
that xj (τ) = xc (τ) + xin j (τ) , ( j ∈ 1,2, . . . , J), where
xin j (τ) ∈ RL is the innovation part of each signal xj (τ).
There is a dictionary D ∈ RL×K that sparsely represents
the signal (xj (τ) = Dαj (τ) = D(αc (τ) + αin j (τ))) where
|αc (τ)|`0 = kc and

��αin j (τ)

��
`0
= k j .

In each sensor a CS encoding procedure is considered,
where at each time instant τ ≥ 1, the measurements are taken
with respect to the current sensors’ reading x (τ). Thus, as
the data gathering algorithm presented in [24], the sink will
be sent J linear CS measurements as


r (τ − L + 1)

...
r (τ)

 =
Φ (τ − L + 1) · · · 0

...
. . .

...

0 · · · Φ (τ)




x (τ − L + 1)
...

x (τ)

 . (3)

Accordingly, by reforming the measurements R (τ) =[
rT
(τ − L + 1) · · · rT

(τ)
]T
∈ R

∑τ
t=τ−L+1 Mx j (t ) , and the mea-

surement matrix Φ (τ) = diag
(
Φ (τ − L + 1) · · ·Φ (τ)

)
∈

R
∑τ

t=τ−L+1 Mx j (t )×JL , the measurement ensemble in (3) can be
compactly rewritten as R (τ) = Φ (τ) x (τ) where x (τ) =
vec (X (τ)). Note that the measurement matrices Φ (τ) ∈
RMx j (t ) × J have varying number of measurements Mx j (t) that
depend on the sparsity order of the signals.

Obviously, R (τ) = [r1 (τ) · · · rJ (τ)]T ∈ R
∑ τ

t=τ−L+1Mx j (t )

where rj (τ) is the jth measured signals in the sink that con-
sists of two parts: the common part rc j (τ) ∈ RMx j (τ) and the
innovation part rin j (τ) ∈ RMx j (τ) , as follows:

rj (τ) = rc j (τ) + rin j (τ) ,

rc j (τ) = Φj (τ) xc (τ) , rin j (τ) = Φj (τ) xin j (τ) . (4)

Inspired from JSMmodels [15], the problem to recover
the signal ensemble of the sensor nodes can be expressed as
solving an `1 minimization problem as follows:

α̂ (τ) := arg min
ά(τ)
|ά (τ)|`1 , s.t.R (τ) = Φ (τ)Ψά (τ) (5)

where α̂ (τ) =
[
α̂T
c (τ) α̂

T
in1
(τ) · · · α̂T

inJ
(τ)

]T and the
dictionary matrices Ψ is as follows:

Ψ =


D D 0 · · · 0

D 0 D · · ·
...

... . . . 0
D 0 · · · 0 D


. (6)

Then, x̂j (τ) is computed by following:

x̂j (τ) = D(α̂c (τ) + α̂in j (τ)) (7)

where α̂c (τ) and α̂in j (τ)s are within the obtained α̂ (τ) vec-
tor.

2.1 Development of the Reconstruction
Algorithm

In this subsection, we are going to improve the re-
construction accuracy and time consumed by the proposed
method. In this sense, assuming that sink knows the com-
mon part αc (τ) of the transmitted signals for each time slot
τ, then αc (τ) is omitted from the reconstruction of (5) by the
following mathematical ways [22]:

R (τ) = [Φ (τ)Ψ]


αc (τ)
αin1 (τ)

...
αinJ (τ)


= [A (τ) ‖H (τ)]



αc (τ)
__
αin1 (τ)

...
αinJ (τ)


.

(8)
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Equation (8) can be rewritten as follows:

R (τ) = A (τ)αc (τ) + H (τ)αI (τ) (9)

where A (τ) and H (τ) are combination matrix join-
ing of the different involved parameters and αI (τ) =[
αin1 (τ)

Tαin2 (τ)
T · · ·αinJ (τ)

T]T.

Hence, a weighting parameter is assigned to the co-
efficients, which is inversely proportional to the expected
coefficients magnitude. Then, we incorporate the iterative
re-weighted `1 minimization algorithm (IRW-`1) [21] to the
corresponding modified unconstrained problem (5) as fol-
lows:

α̂
(n)
I (τ) := arg min

άI (τ)
η1

���W (n) (τ) άI (τ)���
`1

+
1
2

���RI (τ) − H (τ) α̂(n)I (τ)
���2
`2

(10)

where RI (τ) = R (τ) − A (τ)αc (τ). In addition, we adapt
`2-norm regularization η2

��x̂(n) (τ) − x̂(n−1) (τ)
��2
`2
for the vari-

ations in the estimates x̂(n) (τ) and x̂(n−1) (τ) obtained at the
successive recovery instants as of [20]. Then, the sparsity
constrain and the variations in the estimates are incorporated
by minimizing the IRW-`1 and the `2-norm regularization
in a single formulation as follows:

α̂
(n)
I (τ) := arg min

άI (τ)
η1

���W (n) (τ) άI (τ)���
`1

+
1
2

���RI (τ) − H (τ) α̂(n)I (τ)
���2
`2
+
η2
2

���x̂(n) (τ) − x̂(n−1) (τ)
���2
`2

(11)

where the regularization weight parameters η1 and η2 ≥ 0
control the trade-off between the `2-norm regularization and
sparsity feature `1-norm of the data from current time slot,
and

x̂(n) (τ) = Ψ
[
α̂
(n)T
c (τ) α̂

(n)T
in1
(τ) · · · α̂

(n)T
inJ
(τ)

]T

= Ψ
[
α̂
(n)T
c (τ) α̂

(n)T
I (τ)

]T
.

(12)

Then, in order to update the weights W (n+1), the ob-
tained vector α̂(n)I (τ) is used as [21]:

(wi)
(n+1) (τ) =

(
α̂
(n)
ini (τ) + ε0

)−1
, i = 1, · · · , LJ (13)

where ε0 > 0 is a small parameter and W (n) (τ) =
diag((w1)

(n) (τ) , (w2)
(n) (τ) , · · · , (wLJ )

(n) (τ)). The algo-
rithm is terminatedwhen

��W (n+1) (τ) −W (n) (τ)
��
`2
/
��W (n) (τ)��

`2
is smaller than a pre-defined threshold or n = nmax.

2.2 A Fast and Efficient Analytical Solution for
the IRW-`1 Based Minimization Algorithm

Although the IRW-`1 based minimization algorithm
in (11) is a convex optimization problem and the imposed
constraints are appealing from a modeling standpoint, it is
acknowledged that solving it using methods such as interior
points algorithms raises issue of computational complexity
to running time of O

(
N3) [25]. In this paper, we employ a

developed method based on the alternating direction method
of multipliers (ADMM) algorithm [23] due to its suitabil-
ity in efficiently solving the large-scale convex optimization
problems, ease of implementation and relatively fast. For this
purpose, the optimization problem in (11) is converted into
the following equivalent constrained-form through variable
splitting as follows (for the simplicity the subscript (n) and
(τ) are omitted without confusion):

{
α̂I , =̂

}
= arg min

α̂I ,=̂
η1

���=̂���
`1
+

1
2
|RI − Hα̂I |2`2

+
η2
2

���Ψ [
α̂T
c α̂

T
I

]T
− x̂B

���2
`2

s.t. =̂ = Wα̂I . (14)

Therefore, the augmented Lagrangian function for (14)
is written as follows:

L

(
α̂I , =̂, β

)
=

1
2
|RI − Hα̂I |2`2

+

���=̂���
`1
+

〈
β, =̂ −Wα̂I

〉
+
δ

2

���=̂ −Wα̂I
���2
`2
+
η2
2

���Ψ [
α̂T
c α̂

T
I

]T
− x̂B

���2
`2

(15)

where β is the Lagrangian multiplier, and δ is the penalty
parameter related to convergence speed of the algorithm. In
order to find the minimization of (15), the following alternat-
ing direction method is utilized as:

α̂k+1
I = arg min

α̂I
L

(
α̂I , =̂

k
, βk

)
, (16)

=̂
k+1
= arg min

=̂
L

(
α̂k+1
I , =̂, βk

)
, (17)

βk+1 = βk + δ
(
=̂

k+1
−Wα̂k+1

I

)
. (18)

The sub-problem of (16) can be rewritten as:

α̂k+1
I = arg min

α̂I

1
2
|RI − Hα̂I |2`2

+
〈
βk, =̂

k
−Wα̂I

〉
+
δ

2

���=̂k
−Wα̂I

���2
`2
+
η2
2

���Ψ [
α̂T
c α̂

T
I

]T
− x̂B

���2
`2

= arg min
α̂I

1
2
|RI − Hα̂I |2`2

+
δ

2

����=̂k
−Wα̂I +

βk

δ

����2
`2

+
η2
2

���Ψ [
α̂T
c α̂

T
I

]T
− x̂B

���2
`2
. (19)
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Given =̂
k
and βk , the sub-problem of (19) consists

minimization of a strictly convex quadratic function that can
be solved easily. Note that by setting the gradient of sub-
problem (19) to zero, its optimal solution is achieved as:

(
HTH + δWTW + η2Ψ

TΨ
)
α̂k+1
I =(

HTRI + η2Ψ
T
(
x̂B − Ψα̂c

)
+
δ

2
WT

(
=̂

k
−
βk

δ

))
. (20)

Because of matrix inverse operation in (20), it is costly
to directly minimize the quadratic function. Hence, in or-
der to avoid the high computational complexity in (20), the
steepest descent method with the optimal step is utilized in
our implementation as follows:

α̂k+1
I = α̂kI − µ

kG k, µk > 0.

µ =

����� G TG

G T (
HTH + δWTW + η2Ψ

TΨ
)
G

����� (21)

where µ and G are the optimal step size and the gradient di-
rection of the objective function [26]. In order to efficiently
solve (17), similarly the sub-problem can be rewritten as:

=̂
k+1
= arg min

=̂
η1

���=̂���
`1
+

〈
βk, =̂ −Wα̂k+1

I

〉
+
δ

2

���=̂ −Wα̂k+1
I

���2
`2

= arg min
=̂
η1

���=̂���
`1
+
δ

2

����=̂ −Wα̂k+1
I +

βk

δ

����2
`2

. (22)

Given α̂k+1
I and βk , the soft-thresholding function [27]

can be utilized as:

=̂
k+1
= S η1

δ

(
Wα̂k+1

I −
βk

δ

)
(23)

where S (Γ, ξ) is a soft-thresholding function as

S (Γ, ξ)i =

{
0, if |Γi | < ξ,
Γi
|Γi |
(|Γi | − ξ) , if |Γi | ≥ ξ.

(24)

2.3 Summary of the Proposed Algorithm
The proposed compressed sensing data acquisition

method with joint signal ensemble recovery based on an
iterative re-weighted `1-minimization and a `2 regularization
is summarized in Algorithm 1. At each time slot τ ≥ 1,

the fusion center periodically gathers the compressed sens-
ing measurements in a data window by acquiring the reading
from a set of the sensor nodes. Then, the sparsity con-
straint (i.e., by minimizing the `1 norm) and `2 regulariza-
tion are incorporated in a single optimization formulation
as (14). The optimization problem can be solved via an
alternate direction method of multipliers implementation,
resulting in an estimate of sensors signals. Once the al-
gorithmic termination criteria are satisfied, i.e., difference
of recovered sensors signals for two successive iterations��W (n+1) (τ) −W (n) (τ)

��
`2
/
��W (n) (τ)��

`2
is smaller than a pre-

defined threshold or there is a certain number of iterations
(i.e., n = nmax), then temporal step of the algorithm is moved
one step forward, i.e., the data window moves one step and
the recovery algorithm is processed again.

Algorithm 1 A Modified Compressed Sensing-Based
Recovery Algorithm

Parameters: c,L, ε , α and n (τ)

Initializations
a: Set τ = t − L + 1,
b: Obtain [x1 (τ) ,x2 (τ) , . . .,xJ (τ)], and form X (τ)
c: αc = αcopt and compute xc (τ) = Dαc

I. CS Measurements
a: Compute yc j (τ) = Φj (τ) xc (τ) and

yin j
(τ) = Φj (τ)

(
xj (τ) − Dαc

)
.

b: Deliver the CS measurements yc j (τ) and yin j
(τ) in (4)

to Fusion Center utilizing two different CDMA codes.

II. Estimation of the Coefficients
a: Construct R (τ), Φ (τ) and Ψα̂ (τ).
b: Solve (11) to obtain α̂ (τ) =

[
α̂T
c (τ) · · · α̂

T
inJ
(τ)

]T as
follows:

b-1: Set k = 0, β0 = 0, α̂0
I = 0, =̂

0
= 0.

while:
���α̂(k+1)

I (τ) − α̂
(k)
I (τ)

���
`2
/|α̂I (τ)|`2 ε or k = kmax

b-2: k = k + 1
b-3: compute α̂k+1

I via the optimization problem (16)
b-4: compute =̂

k+1
via the optimization problem (17)

b-5: compute β̂k+1 via the optimization problem (18)

III. Recover the Signal Ensemble

a: Reconstruct x̂(n) (τ) = Ψ
[
α̂
(n)T
c (τ) α̂

(n)T
I (τ)

]T
by (12)

b: Update the weights (wi)
(n+1) (τ) =

(
α̂
(n)
ini
(τ) + ε0

)−1
,

i = 1, · · · , LJ .
c: Terminate the algorithm when��W (n+1) (τ) −W (n) (τ)

��
`2
/
��W (n) (τ)��

`2
is very small

or n = nmax.
d: Report X̂ (τ) as the reconstructed signal at time instant τ.
e: step forward the temporal step of the algorithm τ = τ + 1.

And go to Initializations
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3. Experimental Results

In order to evaluate the reconstruction performance
of the proposed method and compare it with the state of
the art methods, experimental results are performed on the
real temperature data collected once every 31 seconds from
54 Mica2Dot sensors deployed in the Intel Berkeley Re-
search lab [28]. The signals xj ∈ R400, j = {1,2, . . . ,54}
from the 54sensors are sparse in a discrete wavelet transform
(DWT) dictionary D ∈ R400×512 with different sparsity lev-
els (Maximum 50-sparse). Specifically, the sensed signals
are measured by Gaussian random matrices Φj ∈ RMx×400

in each time instant τ = 31 s, and the sink received the
measured signals. The simulation results are reported from
the obtained mean results of 100 frames with different xjs.
The performance of the proposed reconstruction algorithm is
comparedwith gradient-CS [11], SFAR-2D [12], reweighted-
laplace [13], sequential-CS [20], modified-CS [29] and regu-
larized modified-BPDN [30]. During the simulation, several
parameters of the algorithms have been carefully tuned to
perform an impartial comparison between the algorithms.
All the experiments were implemented in MATLAM 2013a,
on a Intel core i7 CPU with 16GB RAM and 3.5GHz pro-
cessor. Moreover, in order to measure the performance of
the different algorithms, we define normalized mean squared
(NMS) error as

N MS =
1
J

J∑
j=1

L∑
n=1

(
x̂j(n)��̂xj

��
2
−

xj(n)��xj

��
2

)2

where x̂j , J and L denote the estimate of xj , the number of
sensors and the length of signals’ samples, respectively.

The reconstruction signal to noise ratio (R-SNR); which

is expressed as R-SNR = 10log10(
|x j |

2
`2

|x j−x̂ j |
2
`2

). And compres-

sion ratio (CR) is the number of the original signal bits to the
compressed signal.

Figure 1 depicts the average recovery performance of
the different CS methods with respect to the different num-
ber of measurements Mx . As the proposed algorithm uti-
lize fast ADMM solution, its reconstruction performance in
the lower number of measurements is noticeably better than
competitive state of the art algorithm. And as the number
of measurements increases, the performance of the methods
gradually approaches that of the proposed algorithm. The re-
construction times versus different measurement numbers for
gradient-CS [11], SFAR-2D [12], reweighted-laplace [13],
sequential-CS [20], modified-CS [29], regularized modified-
BPDN [30] and the proposed algorithm is depicted in Fig. 2.
The consuming time for the algorithms is close to each other
in a few number of the measurement samples, but as the
number of samples increases, the simulation run time of our
proposedmethod gradually changes. Compared to especially
sequential-CS [20] and modified-CS [29], our algorithm re-
quires less reconstruction time at the higher number of mea-
surements.

The reconstruction performance of the algorithms
against the additivewhiteGaussian (AWGN) channels is eval-
uated in different bit error (BER) rates. In this regard, the
normalized mean squared error of the signal recovery for dif-
ferent bit error rates is shown in Fig. 3. Obviously, it can be
inferred that modified-CS and gradient-CS unlike the other
algorithms, result in a higher BERs with a worse recovery
performance. The performance of SFAR-2D, reweighted-
laplace and sequential-CS is closer to each other. More
clearly, higher BERs bring more errors into the methods;
however, the proposed recovery algorithm can significantly
reconstruct signals while producing lower recovery BERs.
The receiver operating characteristic (ROC) curve is an es-
tablished means with which evaluate the sensing system’s
performance. These ROC curves depict the probability of
detection (Pd) versus the probability of having a false alarm
(Pd). Figure 4 shows the achieved ROC curves of the sys-
tem performance for the different methods. It demonstrates
that the proposed algorithm has close reconstruction perfor-
mance to reweighted-laplace, but noticeably comparable to
the other methods.
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larized modified-BPDN and the proposed algorithm for
data window size L = 400 and J = 54 with respect to
the different measurement numbers.
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Fig. 3. The recovery performance of gradient-CS, SFAR-2D,
reweighted-laplace, sequential-CS, modified-CS, regu-
larized modified-BPDN and the proposed algorithm for
data window size L = 400 and J = 54 with respect to
different bit error rates (BERs).
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modified-BPDN and the proposed algorithm.

2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

Compression Ratio (CR)

R
ec

o
n
st

ru
ct

io
n
−

S
N

R

 

 

Modified−CS

Reg−Modified−BPDN

Sequential−CS

SFAR−2D−CS

Proposed

Gradient−CS

Reweighted−Laplace

Fig. 5. Reconstruction-SNR of the recovered signals using the
state of the art CS-based algorithms and the proposed
algorithm with respect to different compression ra-
tios (CR).

In order to evaluate the quality of the reconstructed sig-
nals, the mean value of the reconstruction signal to noise
ratio (R-SNR) versus several different compression ratios is
depicted in Fig. 5. Since the purpose of this evaluation is
to investigate the reconstruction capability of the proposed
algorithm in comparison with other competitive methods, the
signal sampling and recovery process were taken into account
in the encoding-decoding scheme. Furthermore, the opera-
tions such as redundancy removal, quantization, and entropy
coding were not applied. As it is shown in Fig. 5, the pro-
posed method performs better signal reconstruction than the
other methods in terms of several different compression ra-
tios. The performance of the proposed algorithm is improved
by utilizing not only the simultaneous extraction of spatio-
temporal correlations within the signals in the data window,
but also by efficiently solving the reconstruction problem via
the introduced ADMM style implementation. It also shows
that at a certain performance level, the proposed algorithm
required fewer number of signal measurements to stage the
same reconstruction performance as of other methods.

4. Conclusion
In this paper, a compressed sensing (CS) acquisition and

joint recovery of spatiotemporal correlated signals method
is proposed for efficient data gathering and accurate data
streams reconstruction. More specifically, a method based
on the alternating direction method of multipliers (ADMM)
algorithm is developed due to its suitability in efficiently
solving the large-scale convex optimization problems, ease
of implementation and relatively fast.The experiments verify
the effectiveness of the proposed algorithm compared with
the state of the art methods.
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