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Abstract. Can the Dual-Sequence-Frequency-Hopping
(DSFH) as a military emergency communication mode work
under strong color noise? And is there any detection im-
provement of the DSFH signal via stochastic resonance (SR)
processing under color noise? To deal with this problem, we
analyze the physical feature of the DSFH signal. Firstly, the
signal models of transmission, reception and the intermedi-
ate frequency (IF) are constructed. And the scale transac-
tion is used to adjust the IF signal to fit the SR. Secondly,
the non-markovian Langevin Equation (LE) is transformed
into a markovian one by expand the 1-D LE to a 2-D one.
Thirdly, the non-autonomous Fokker-Plank Equation (FPE)
is transformed into an autonomous one by assuming that
the SR transition of magnetic particles is instantaneous and
introducing the decision time. Therefore, the analytical peri-
odic steady solution of the probability density function (PDF)
with the parameter of the correlation time of the color noise
is obtained. Finally, the detection probability, false alarm
probability and Receiver Operating Characteristics (ROC)
curve are obtained, under the criterion of the maximum a
posterior probability (MAP). Theoretical and simulation re-
sults show as below: 1) whether the DSFH can work under
strong color noise is decided by the correlation time of the
color noise; 2) when the power intensity of the color noise
is constant, the smaller the correlation time with the bigger
local SNR, the greater PDF difference of the SR output under
two hypothesis, leading to better detection performance.

Keywords
Dual-Sequence Frequency Hopping, stochastic reso-
nance, detection performance, color noise

1. Introduction
The Dual Sequence Frequency Hopping (DSFH) com-

munication mode draw lessons from "the medium is the mes-

sage" [1], [2]. The chosen medium is the communication
channel, at the same time the unchosen one is the dual chan-
nel controlled by two PN sequence represented of the symbol
0 or 1. Then the receptive symbol is decided by whether the
channel is occupied or not [3–5]. The DSFH is one of the
covert communication, which brings some anti-interference
ability congenitally. But errors occur to the energy detector
when the dual channel is occupied by strong noise. What is
more, the color noise is the most actual noise. How to raise
the detection performance of the DSFH’s signal under color
noise is the most factual problem. Some researchers apply
the stochastic resonance (SR) to detect signals under color
noise. SR as a nonlinear detector can transact parts of the
noise energy to the signal [6–8], raising the detection per-
formance lower than the threshold [9], which can expand the
DSFH’s application further. Peter Hanggi does researches
on the effects of the color noise on SR, and conclude that
color noise can enhance SR [10]. M.A. Fuentes and Raul
Toral study the effects of non-Gaussian noises bringing to
SR, use the path-integral method and obtain the periodic so-
lution of the Fokker-Planck Equation (FPE) [11], [12]. Jia
et al. investigate the effects of color noise on SR by using
the unified colored noise approximation and the theory of
signal-to-noise ratio (SNR) in the adiabatic limit [13]. Xu et
al. study the relationship between the correlation time and
the coherent bandwidth, then obtain the solution of the SNR
gain and the characteristic time [14]. However the effects of
color noise on DSFH signal processing have not yet explored
sufficiently.

In this paper, we will deal with the DSFH signal pro-
cessing by a bi-stable SR system subjected to the color noise.
Via introducing the decision time, the periodic steady-state
solution of FPE is obtained. What is more, the detection
probability and the Receiver Operating Characteristic (ROC)
are obtained. The paper is organized as follows: In Sec. 2, we
investigate the model of the transmitted and received DSFH
signal, and the SR processing of the received signal. Sec-
tion 3 is devoted to the studies of the detection performance

DOI: 10.13164/re.2019.0618 SIGNALS



RADIOENGINEERING, VOL. 28, NO. 3, SEPTEMBER 2019 619

by the periodic steady-state solution of FPE via introduc-
ing the decision time. In Sec. 4, the numerical simulations
verifies the theory. The last section draws some conclusions.

2. The System Model of the DSFH

2.1 The Transmitted Signal of the DSFH
The communication and dual carriers controlled by PN

sequences are chosen by the transmitted symbol in the DSFH
mode, described as Fig. 1.

The channel 0 and 1 are respectively the carrier f0,n and
f1,n controlled by PN sequences FS0 and FS1. At the time of
t, the sine carrier s0 (t)with frequency of f0,n is transmitted if
the transmitted symbol is 0. Otherwise the sine carrier s1 (t)
represented of symbol 1 is transmitted. The final transmitted
signal s (t) of DSFH is the combination of the s0 (t) and the
f0,n , after the channel switch.

Assume that the transmitted data is b =

(· · · ,1,0,1,0, · · ·) , then the transmitted signal is the sine car-
rier with frequency of (· · · , f2, f4, f3, f1, · · ·). So the radio
frequency (RF) signal of DSFH can be represented as

s(t) = cos
[
2π fi,n(t − nTs) + ϕ

]
· [ε (t − nTs) − ε (t − (n + 1)Ts)]

(1)

where Ts is the hop duration, ε (t) is the step sig-
nal, fi,n is the radio frequency of the nth hop, and

fi,n =
{

f0,n, transmitted symbol is 0
f1,n, transmitted symbol is 1 f0,n , f1,n.

2.2 The Receptive Signal of the DSFH
The super-heterodyne receiver is adopted in DSFH, as

depicted in Fig. 2.

The signal r (t) is receipted under color noise at the RF
front-end. Then be mixed with the super-heterodyne carriers
controlled by two PN sequences. Subsequently the analog
beat signal as the intermediate frequency (IF) signal be con-
verted to the digital by the A/D convertor. The frequency
and waveform of the IF signal obtained by the two receptive
branches are the same, which can be descripted as

s(t) = cos [2π f0(t − nTs) + ϕ]

· [ε (t − nTs) − ε (t − (n + 1)Ts)]
(2)

where f0 is the pre-set frequency of the IF signal.

With the reason that the f0 and the sample frequency fs
are set as 1 kHz and 200 kHz, the IF signal can be viewed as
low frequency signal, which can be processed by Low-pass
Filter (LF). Then the scale transact unit (ST) adapt the pa-
rameters of IF signal to fit the need of SR. The output of the
SR is the test statistic, and after sampling and decision the
receptive symbol of single branch is obtained. Assuming the
synchronization is completed, the receptive symbols of two
branches are the receptive symbols after combination.

01 0 1 s(t)
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Channel

switch

RF

end



s0(t)
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Fig. 1. The transmitted structure of the DSFH.
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Fig. 2. The received structure of the DSFH.

The noise processed by LF becomes color and non-
Gaussian, whose spectrum can be assumed as a Lorentzian
form. So the background noise of the receptive DSFH signal
via SR processing is color. Next we will analyze the im-
provement of the color noise bringing to the detection of the
DSFH signal detection.

2.3 The SR Processing of the Receptive Signal
The IF signal of the two receptive branches is the sine

wave as depicted in (2). The overdamped bi-stable SR en-
forced by sine wave A cos (ω0t + ϕ) and color noise Q (t) can
be depicted as

dx
dt
= ax − bx3 + A cos (ω0t + ϕ) +Q (t) (3)

where a and b are the SR parameters, A cos (ω0t + ϕ)
is the periodic signal, Q (t) is the color noise, whose
spectrum can be assumed as a Lorentzian form like
S (ω) = 2D

1+τ2ω2 , and the corresponding correlation function

is 〈Q (t)Q (t ′)〉 = D
τ exp

(
−
|t−t′ |
τ

)
, τ is the correlation time

of the color noise.

With the reason that SR unite can only settle the small
signal with small frequency and amplitude, so the IF sig-
nal with large frequency and amplitude must be transacted
to small one, which is done by the ST unite. Therefore
we introduce the variable substitution [15] z = x

√
b
a , τ = at,

equation (3) can be transacted to

dz
dt
= z − z3 +

√
b
a3 A cos

(ω0
a
τ + ϕ

)
+

√
2Db
a2 Q (τ) . (4)

So, the frequency scale transacted equation is
ω0
a = 2π f , where the frequency is transacted to the 1

a times
of the original. The amplitude scale transacted equation is
A0 =

√
b
a3 A. When parameter of a is large enough and b is
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small enough, the large IF signal can be transacted to small
signal after ST. At the same time, the noise intensity be-
comes D0 =

√
2Db
a2 . In order to accord with the habit of

representation of variables, equation (4) is rewritten as

dx
dt
= x − x3 +

√
b
a3 A cos

(ω0
a

t + ϕ
)
+

√
2Db
a2 Q (t) . (5)

Due to the correlation time of Q (t), equation (5) is not
Markov process. But we can extend it into two dimensional
space, which can be described by Markov process as

dx
dt
= C (x) +

√
2Db
a2 y,

dy
dy
= −

1
τ
y +

1
τ
Γ (t)

(6)

where C (x) = x − x3 +
√

b
a3 A cos

(ω0
a t + ϕ

)
, Γ (t) is the

Gaussian white noise with intensity of D.

Therefore the corresponding FPE of (6) can be de-
scripted as

c
∂ρ (x, y, t)

∂t
= −

∂

∂x

{[
C (x) +

√
2Db
a2 y

]
ρ (x, y, t)

}
+
∂

∂y

[
1
τ
yρ (x, y, t)

]
+ D′

∂2

∂y2 [ρ (x, y, t)]

(7)

where D′ = D
τ2 , a and b are the parameters of SR, ρ (x, y, t)

is the PDF of the particle locating (x, y) at time t.

Owing to the non-autonomous item cos
(ω0
a t + ϕ

)
ρ (x, y, t), equation (7) can’t be solved by steady-state so-
lution, and can’t be solved by any exact solution [16]. So
with the characteristic of the electromagnetic particle, we
assume that the SR processing is completed transiently, ne-
glecting the transacting time from the unsteady state to the
steady. Then we introduce the decision time t0 , and the non-
autonomous item cos

(ω0
a t + ϕ

)
ρ (x, y, t) can be viewed as

time-drift coefficient cos
(ω0
a t0 + ϕ

)
ρ (x, t) depended on t0.

Therefore the non-autonomous equation is transacted to an
autonomous one, which can be solved easier.

We use the Taylor expansion, and derive the approxi-
mate periodic steady solution of (7) as [16]

ρ (x |t0 ) = N

√
4πD2b

a2τ [1 − τc′ (x, t0)]

·

{
1 +

5Dbτ3[c′′ (x, t0)]2

12a2[1 − τc′ (x, t0)]5

}
·

{[√
2Db
a
−
τ
√

2Dbc′ (x, t0)
a

]} 3
2

· exp
[

1
D

∫
c (x, t0) dx −

1
2D

τc2 (x, t0)
]

(8)

where D is the intensity of color noise, τ is the correlation
time of the color noise, a and b are the parameters of SR, ω0
is the frequency of IF signal, t0 is the decision time, N is the
normalization constant,

c (x, t0) =

{
x − x3 ,H0

x − x3 ±
√

b
a3 A cos

(ω0
a t0 + ϕ

)
,H1

is the drift force of the SR varying with the input signal.

As descripted of (8), the sine wave at decision time t0
equals to the linear drift force pulling the particles to the
bilateral well, which increase the pause probability at the
bilateral well. The positive drift force pulls particles to the
positive well, while the negative drift force pulls particles to
the negative well. Therefore owing to the periodic sine wave
and the symmetry of particles of SR, the output probability
of particles has symmetry properties. At the same time, dif-
ferent decision time decides different drift force because of
the periodic properties of sine wave. The drift force reaches
the largest when the decision time is the peak or valley of the
sine wave, leading to that the pause time reaches the longest
and the output probability reaches the largest.

3. The Detection Performance
The case does not exit that there are both signals at

two branches of DSFH. For the single branch, the hypothesis
testing problem is{

H0 : y (t) = n (t)
H1 : y (t) = x (t) + n (t) (9)

where x (t) and n (t) are the signal and the noise output of the
SR. Assuming that t0 is the best decision time, so it comes
down to the hypothesis testing problemwith the parameter t0.
So the conditional probability density under two hypotheses
becomes to (10), where t0 is the best decision time, x1 and
x2 are the value range of x, and the other parameters are the
same as in (8).
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P (x |H0, t0 ) = ρ (x, t0 |H0 ) = N0

√
4πD2b

a2τ
[
1 − τ

(
1 − 3x2) ] ·

{
1 +

15Dbτ3x2

a2
[
1 − τ

(
1 − 3x2) ]5

}

·

{[√
2Db
a
−
τ
√

2Db
(
1 − 3x2)

a

]} 3
2

· exp


1
D

x2∫
x1

(
x − x3

)
dx −

1
2D

τ
(
x − x3

)2


P (x |H1, t0 ) = ρ (x, t0 |H1 ) = N1

√
4πD2b

a2τ
[
1 − τ

(
1 − 3x2) ]

{
1 +

15Dbτ3x2

a2
[
1 − τ

(
1 − 3x2) ]5

} {[√
2Db
a
−
τ
√

2Db
(
1 − 3x2)

a

]} 3
2

·


exp

{
1
D

x2∫
x1

[
x − x3 +

√
b
a3 A cos

(ω0
a t0 + ϕ

) ]
dx − 1

2D τ

[
x − x3 +

√
b
a3 A cos

(ω0
a t0 + ϕ

) ]2
}

+ exp

{
1
D

x2∫
x1

[
x − x3 −

√
b
a3 A cos

(ω0
a t0 + ϕ

) ]
dx − 1

2D τ

[
x − x3 −

√
b
a3 A cos

(ω0
a t0 + ϕ

) ]2
}

.
(10)

We use the maximum likelihood ratio detection, and the
likelihood ratio is

Λ (x, t0) =
P (x |H1, t0 )
P (x |H0, t0 )

= exp


1
D

x∫
−∞

[√
b
a3 A cos

(ω0
a t0 + ϕ

) ]
dx

− 1
2D τ

{
2
(
x − x3) √ b

a3 A cos
(ω0
a t0 + ϕ

)}


+ exp


1
D

x∫
−∞

[
−

√
b
a3 A cos

(ω0
a t0 + ϕ

) ]
dx

− 1
2D τ

{
−2

(
x − x3) √ b

a3 A cos
(ω0
a t0 + ϕ

)}

(11)

where the parameters are the same as in (10).

As described in (11), cos
(ω0
a t0 + ϕ

)
is the linear force

of the SR introduced by the DSFH signal at decision time.
But due to the symmetry of the peak and valley of sine wave
and the particles of SR, the effects of the positive and nega-
tive drift force are the same, not being distinguished. What
is more, when the decision time is the peak or valley, the
drift force reaches largest, and the pause PDF reaches largest
which is best to detect.

As for different criteria, the threshold has different
forms. The minimum probability or maximum posterior
probability are adopted in communication systems as

Λ (x, t0)
H1
>
−
<
H0

λ0 (12)

where λ0 is the decision threshold, and λ0 =
P0
P1
= 1 for the

same prior probability in communication systems.

There is no analytical solution in (12), but we can cal-
culate the threshold numerically by (11) and (12). Next we
analyze the probability of detection and false alarm. The
detection probability is the probability of deciding H1 at the
case H1, and the false alarm probability is the probability of
deciding H1 at the case H0, which is depicted as Fig. 3.

Owing to the symmetry of the SR particles, the prob-
ability is also symmetrical, so that the decision area also
presents symmetry. As depicted in Fig. 3, the decision
area of H1 is R1 = {R |R > |r | }, the decision area of H0
is R0 = {R |R ≤ |r | } . So the detection probability is (13),
where θ is the decision threshold, other parameters are the
same as in (10).

Pd =

∫
R1

P (x |H1 ) dx =
∫ x2

θ
ρ (x, t0 |H1 ) dx +

∫ −θ

x1

ρ (x, t0 |H1 ) dx

=

∫ x2

θ


N1

√
4πD2b

a2τ[1−τ(1−3x2)]
·

{
1 + 15Dbτ3x2

a2[1−τ(1−3x2)]
5

}
·

{[
√

2Db
a −

τ
√

2Db(1−3x2)
a

]} 3
2

· exp

{
1
D

x2∫
x1

[
x − x3 +

√
b
a3 A cos

(ω0
a t0 + ϕ

) ]
dx − 1

2D τ

[
x − x3 +

√
b
a3 A cos

(ω0
a t0 + ϕ

) ]2
} 

dx

+

∫ −θ

x1


N1

√
4πD2b

a2τ[1−τ(1−3x2)]
·

{
1 + 15Dbτ3x2

a2[1−τ(1−3x2)]
5

}
·

{[
√

2Db
a −

τ
√

2Db(1−3x2)
a

]} 3
2

· exp

{
1
D

x2∫
x1

[
x − x3 +

√
b
a3 A cos

(ω0
a t0 + ϕ

) ]
dx − 1

2D τ

[
x − x3 +

√
b
a3 A cos

(ω0
a t0 + ϕ

) ]2
} 

dx

(13)
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Fig. 3. The probability and region of decision.

The false alarm probability is:

Pfa =

∫ θ

−θ
P (x, |H0, t0 ) dx =

∫ θ

−θ
ρ (x, t0 |H0 ) dx

=

∫ θ

−θ



N0

√
4πD2b

a2τ[1−τ(1−3x2)]
·

{
1 + 15Dbτ3x2

a2[1−τ(1−3x2)]
5

}
·

{[
√

2Db
a −

τ
√

2Db(1−3x2)
a

]} 3
2

· exp

[
1
D

x2∫
x1

(
x − x3) dx − 1

2D τ
(
x − x3)2

]


dx.

(14)

4. Experimental Verification
In this section, the theory and simulation are analyzed

to demonstrate the detection improvement by the Simulink
model of the DSFH via SR processing. The simulation pa-
rameters are as follows: the hopping frequency segments are
30 kHz–80 kHz; the sample frequency of RF is 2000 kHz;
the frequency of IF is 1 kHz; the sample frequency of
IF is 200 kHz.

4.1 The Time and Frequency Feature Analysis
of the DSFH Signal via SR Processing

The time-frequency graph of the RF signal of the DSFH
is described as Fig. 4. The time samples, the frequency
samples and the amplitude are abscissa, ordinate and stroke
coordinates respectively. There are bright hopping time-
frequency spots and dark red spots of Gaussian background
noise in Fig. 4(a) when SNR is 10 dB. And there is energy
leakage at the both sides of the central frequency, due to the
hamming window of Short Time Fourier Transform (STFT).
Owing to that the sample frequency is 2000 kHz and that
the Hamming window length is 128, the hopping frequency
spots concentrate on the upside of the positive frequency
band of 1000 kHz. The time-frequency graph is filled with
dark noise spots in Fig. 4(b). This is because the signal is
submerged in the strong noise when input SNR is −20 dB. So
time-frequency graph is fully filled by noise spots. That is
why the traditional FH can not work well in the strong noise.

The time and frequency waveform of the IF signal re-
ceived by the super-heterodyne of the DSFH signal is de-
scribed as Fig. 5(a) and (b). At the same time, the time and
frequency waveform of the output signal via SR processing
is described as Fig. 5(c) and (d). It presents cluttered and
irregular where there is no features of the sine wave of 1 kHz
in Fig. 5(a) and (b) when SNR is −18 dB. However it can
be found periodic characteristics in the time waveform of
Fig. 5(c) processed by SR, and the signal component of 1 kHz
(sample frequency is 200 kHz, and frequency resolution
is 10) can be observed significantly in the frequency wave-
form of Fig. 5(d). What is more, the global SNR of the whole
band raises 8.5521 dB when the output global SNR reaches
−9.4479 dB. This is because the color noise gathers to the
low frequency region leading to add the energy of this region,
which pulls the particles to resonate between two wells to-
gether with the sine wave. This is equivalent to the nonlinear
low pass filter which only allow the low frequency to pass.

(a)Input SNR=10dB(a) Input SNR = 10 dB. (b)Input SNR=-20dB(b) Input SNR = −20 dB.

Fig. 4. The time-frequency waveform of the DSFH at different SNR.



RADIOENGINEERING, VOL. 28, NO. 3, SEPTEMBER 2019 623

t/s

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

A
m

pl
it

u
d

e/
V

-4

-3

-2

-1

0

1

2

3

4

(a) The time waveform of the SR input signal(a) The time waveform of the SR input signal.
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(b) The frequency waveform of the SR input signal(b) The frequency waveform of the SR input signal.
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(c) The time waveform of the SR output signal(c) The time waveform of the SR output signal.
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(d) The frequency waveform of the SR output signal(d) The frequency waveform of the SR output signal.

Fig. 5. The time and frequency waveform of the IF signal of the DSFH via SR processing (SNR = −18 dB, σ2 = 4, A = 0.25, a = 1 × 104,
b = 2.59 × 1012).

So the noise of the high frequency zone will be weaken. And
the signal positing the low frequency zone will be enhanced.
Therefore the signal presents some degrees of periodicity in
time zone, obviously in frequency zone, in which the global
SNR increases in macroscopic view.

4.2 The PDF of the DSFH Signal via
SR Processing

The theoretical and simulation results of the PDF of
the IF signal of DSFH processed by SR are descripted in
Fig. 6(a) and (b). It is the color noise filtered by transition
bands in Fig. 6(a), and filtered by pass bands in Fig. 6(b).
The force of sine wave can pull the particles to center at the
both sides of wells, leading to expand the difference of the
hypotheses of H1 and H0, which is useful to distinguish the
existence of the sine wave of the hypotheses of H1 and H0.
And the difference of the PDF under H1 and H0 is more obvi-
ous in Fig. 6(a) than in Fig. 6(b). this is because the intensity
of the color noise filtered by transition bands is lower than
the color noise filtered by pass bands, leading to that the lo-
cal SNR is larger. What is more, the IF signal force always
exists, leading to the PDF is the periodic result of the force

in simulation; while the theoretical results only vary with the
decision time. This is why the theoretical results differ with
simulation in some degree no matter in the aspects of the
steady position and the PDF.

4.3 The Detection Performance of the DSFH
Signal via SR Processing

The ROC curves of the DSFH signal processed by SR
are descripted as Fig. 7(a) and (b). Figure 7(a) depicts the
case of different τ at the input SNR= −14 dB, and Fig. 7(b)
depicts the case of different SNR at τ = 0.1. We can see that
there are different ROC curves at different SNR and different
τ . But all of them are the convex curves positing the left up-
per side of the line of Pd = Pfa and passing the points of (0,0)
and (1,1) . What is more, the smaller the τ, the bigger the
Pd when noise is color, because that when the power of color
noise is constant, the smaller the τ, the larger the local SNR,
leading better detection in Fig. 7(a). And the larger the SNR,
the higher the curves. The larger the SNR, the bigger the Pd
leading the better detection performance at the same Pfa in
Fig. 7(a). But at the same τ and same SNR, the Pd and Pfa
decrease following the increase of the threshold θ. For the
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detection of the known θ , the tangency point between the
curve and the line of the slope of θ is the Pd and Pfa at the
current SNR and θ . Therefore the ROC curve can describe
the likelihood detection performance of the DSFH signal via
SR processing wholly.

The detection performance of the DSFH signal via SR
processing varies with SNR is described as Fig. 8. The
theoretical and simulation results of Pd increase with the
SNR increase. This is because the increase of SNR can
raise the detection performance. The theoretical detection
performance of τ = 0.0035 is better than that of τ = 0.1,
it is because when the power intensity of the color noise is
constant, it distributes uniformly during the low frequency
band (|ω | � 1/τ) , leading to the larger local SNR than that
of τ = 0.1. What is more, the IF signal locates in the transi-
tion band of the filter corresponding to τ = 0.0035, leading

to higher local SNR than that of the pass band of the filter
corresponding to τ = 0.1 in simulation. So the signal com-
ponent occupies more percent leading to bigger Pd. At the
same time, there is some difference between theoretical and
simulation results at the two cases, which is more obvious at
lower SNR, that is because the value of Pd can not be obtained
in simulation where the value of Pe can be obtained. And
their relationship is Pe =

1
2 (1 − Pd + Pfa) . The Pd = 1 − Pe

can be tenable at high SNR due to that the Pfa = 1 − Pd is
tenable with that the difference of PDF between the hypothe-
ses of H1 and H0 is small. But the difference are big at low
SNR, so the equation of Pd = 1 − Pe is not tenable, caus-
ing the difference between the theory and simulation. And
the Pe is always smaller than 0.5 (random decision without
any receptive process), so the Pd is always bigger than 0.5
in simulation.
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Fig. 6. The PDF of the particles at different position (SNR = −14 dB, σ2 = 4, A = 0.25, a = 1 × 104, b = 5.65 × 1012).
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Fig. 7. The ROC curves of the DSFH via SR processing.
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Fig. 8. The detection performance of the DSFH via SR
processing.

5. Conclusion
By analyzing the physical characteristics of the DSFH

signal, we apply the SR to the DSFH mode. The signal mod-
els of transmission, reception and the IF of the DSFH are
constructed. And the scale transaction is used to adjust the
IF signal to fit the SR. But due to the color noise, the LE is
non-markovian, so we expand the 1-D LE to a 2-D one which
is markovian. Then the non-autonomous FPE is transformed
into an autonomous one by assuming that the SR transition
of magnetic particles is instantaneous and introducing the
decision time. Therefore, the analytical periodic steady solu-
tion of the PDF with the parameter of the correlation time is
obtained. Finally, the detection probability, false alarm prob-
ability and the ROC curve are obtained under the criterion
of MAP. Through the theoretical and simulation results, we
conclude that 1) whether the DSFH can work under strong
color noise is decided by the correlation time of the color
noise; 2) when the power intensity of the color noise is con-
stant, the smaller the correlation time with the bigger local
SNR, the greater PDF difference of the SR output under two
hypothesis, leading to better detection performance. This
conclusion provides theoretical support for the DSFH works
under color noise at extremely low SNR, and the FPE solu-
tion of introducing the decision time can inspire other FPE
solutions.
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