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Abstract. In order to improve the direction-of-arrival 
(DOA) estimation performance of quasi-stationary signals 
(QSS) using a uniform circular array (UCA), this paper 
addresses novel method in the context of sparse represen-
tation framework. Based on the Khatri-Rao transform, 
UCA can achieve a higher number of degrees of freedom 
to resolve more signals than the number of sensors. Then, 
by exploiting the two-dimensional (2-D) joint grid of UCA, 
the estimations of elevation and azimuth angles can be 
obtained from the sparse representation perspective. Final-
ly, an expectation-maximization iteration method is devel-
oped to estimate DOAs of QSS from a Bayesian perspective. 
Since SBL makes full use of the sparse structure of QSS, 
thus the proposed algorithm possesses higher angular 
resolution and better DOA estimation precision compared 
with existing methods. Numerical simulations demonstrate 
the validity of the proposed method. 
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1. Introduction 
Direction of arrival (DOA) estimation is an important 

problem in array signal processing, which is widely used in 
radar, sonar, wireless communication and seismic sensing. 
Classic subspace-based algorithms, which include multiple 
signal classification (MUSIC) [1] and estimation of signal 
parameters via rotational invariance techniques (ESPRIT) 
[2], have been verified as efficient estimation techniques. 
However, previous studies mainly focused on the Gaussian 
signals. In this paper, we address the DOA estimation prob-
lem in which the signals are assumed to be quasi-station-
ary. Quasi-stationary signals (QSS) are a class of nonsta-
tionary signals in which the statistics are locally static over 
a short period of time, but exhibit differences from one 
local time frame to another. Speech and audio signals are 
often recognized as QSS [3]. DOA estimation of such 

signals plays an important role, for example, in microphone 
array processing of speech signals [4] and birds monitoring 
systems of the airport [5]. However, it is a big challenge in 
some scenarios where the number of signals is more than 
that of sensors, which turns out to be the so-called under-
determined DOA estimation problem.  

As is well known, an array with M sensors only can 
resolve up to M – 1 QSS. In order to achieve underdeter-
mined DOA estimation, a Khatri-Rao (KR) subspace 
method is recently proposed in [6] to tackle the underdeter-
mined DOA estimation of QSS. In particular, by vectoriz-
ing the covariance matrix of array output vector, the physi-
cally underdetermined DOA estimation problem can be 
transformed as virtually overdetermined case. The idea 
behind KR transform lies in achieving the higher number 
of degrees of freedom (DOFs) by exploiting the difference 
co-array, whose virtual sensor positions are determined by 
the lag differences between physical sensors [7], [8]. 

However, previous works seldom address DOA esti-
mation from the two-dimensional (2-D) perspective. To the 
best of our knowledge, [9] proposed a 2-D DOA estimator 
of QSS with the configuration of the L-shape array. Never-
theless, the estimation performance of L-shape array is 
vulnerable to angle pairing error, which may lead to DOA 
estimation failure. Since uniform circular array (UCA) is 
capable of providing 360° azimuthal coverage and identify-
ing both azimuth and elevation angles simultaneously, it is 
widely employed in the 2-D DOA estimation. Though [8] 
has proposed DOA estimation of QSS based on the UCA, 
it assumes that each signal is located at a fixed and known 
elevation angle. Hence, it is the one-dimensional (1-D) 
DOA estimation in essence. In addition, the truncated error 
inherent in the involved manifold separation technique will 
degrade the estimation performance. 

Although subspace-based methods proposed in [6] 
can be directly utilized to estimate the 2-D DOAs of QSS, 
its estimation performance may deteriorate significantly in 
low SNR or small snapshots. In order to circumvent this 
issue, the emerging sparse representation (SR) methods 
[10–12], which exhibit superiority in estimation precision, 
robustness to noise and correlation of signals, are tailored 
to determine the DOAs of QSS. The idea of utilizing SR, 
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which is intrinsically different from subspace-based 
methods, provides a new perspective for DOA estimation. 
Sparse Bayesian learning (SBL) is a kind of efficient 
methods [13–15] for the sparse signal recovery in SR, 
which uses the expectation-maximization (EM) iteration 
method to estimate DOAs of QSS from a Bayesian per-
spective [16]. The work in [17] has demonstrated that 
SBL-based methods can achieve better estimation perfor-
mance over conventional regularized optimization methods. 
In addition, the SBL-based methods do not need estimate 
parameters in performing the algorithms. Therefore, this 
paper mainly studies the 2-D DOA estimation of QSS via 
SBL. 

The remainder of this paper is organized as follows. 
Based on the data model of QSS for UCA, a virtual array 
with larger aperture is derived by vectorizing the covari-
ance matrix of UCA output vector in Sec. 2. Then, Sec-
tion 3 proposes novel 2-D underdetermined DOA estima-
tion method based on the SBL. The simulations are carried 
in Sec. 4. Section 5 concludes the paper. 

Throughout this paper, we use boldface lowercase and 
capital letters to denote vectors and matrices, respectively. 
The operators ()T, ()*, ()H,   and   represent the trans-
pose, conjugate, conjugate transpose, Khatri-Rao product 
and Kronecker product, respectively. The symbol E() and 
vec() stand for the mathematical expectation and vectori-
zation operators, respectively. In addition, IM denotes the 
M  M identity matrix and diag() is a diagonal matrix 
composed of the elements of a column vector. 

2. UCA Data Model from Sparse 
Representation Perspective 

2.1 DOA Estimation Model of UCA 

In this paper, the topological structure of UCA is 
shown in Fig. 1. We consider a UCA with M sensors and N 
far-field narrowband QSS impinge on the UCA. The obser-
vation vector of the kth frame is modeled as 

 ( ) ( ) ( ), 1,2,k k kt t t k K  x As n  ,  (1) 

where n(t)  M  1 is the zero-mean white Gaussian vector 

with covariance 2
kIM. sk(t) = [s1(t), s2(t), …, sN(t)]T and  

sn(t) is assumed to be a quasi-stationary process with K 
non-overlapped frames and the length of each frame is L, 
i.e., E{sn(t)2} = p2

nk for [( 1) , 1]t k L KL    , which means 

the second-order statistics of QSS are static within one 
frame, but exhibit differences from one local time frame to 
another. In addition, 2

nkp  represents the signal power of the 

nth signal in the kth frame. A = [a(1,1), a(2,2),…, a(N,N)] 
 M  N is the steering matrix of UCA and a(n,n)] is the 

M  1 steering vector 

 
Fig. 1. Topological structure of UCA. 
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where j2 r    , 2m m M   for m = 1,…,M. r is 

the radius of UCA and  is the wavelength. In this paper, 
(0 ,360 )n     is the azimuth angle and (0 ,90 )n     is 

the elevation angle. 

The corresponding exact local covariance in the kth 
frame can be written as 

  H H 2( ) ( )k k k k k Mt t    R x x AD A I   (3) 

where 2 2 2
1 2diag(p ,p , p )k k k NkD  . 

2.2 Khatri-Rao Transform 

In this subsection, by applying KR transform to the 
covariance matrix kR , we can obtain 
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The vectorized yk behaves like a new signal model. 
2 2 2 1
1 2[ , , , ]T N

k k k Nkp p p  q    is the new signal vector. 
2
k I  stands for the noise and 

2T T T T 1
1 2[ , , , ] M

M
 I e e e  , 

where ei is a 1M   vector with one at the ith position and 

zero otherwise. 
2

1 1[ ( , ), , ( , )] M N
N N     B b b   is the 

virtual array steering matrix and ( , )n n b  is expressed as 

 

H
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=[ , , , ]
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pq MMb b b
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b a a
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 (5) 

where the subscripts p, q for p, q =1,2,…,M in (5) are the 
corresponding element position in a*(n, n) and a(n, n), 
respectively. The bpq can be obtained through the pth 
element in a*(n, n) multiplying by the qth element in 
a(n, n). Consequently, we can give a general expression 
of bpq(n, n)  

( , ) exp (cos( ) cos( ))cos( )

exp 2 sin(( ) 2)sin(( ) 2 )cos( ) .

pq n n p n q n n

p q p q n n

b        

      

     
     

 (6) 
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According to (6), we know that virtual sensors lo-
cated on positions having different radius from the origin, 
which implies that we synthesize the virtual elements onto 
a non-uniform concentric circular array by using KR trans-
form with a UCA. In addition, the number of virtual ele-
ments is far more than the physical sensors and is less than 
the M2 distinct elements, this is because that there exist 
redundant elements in bpq. It is illustrated in [18] that the 
virtual elements of UCA with odd number of sensors is 
M(M – 1) + 1 while for the UCA with even number of 
sensors is M2/2 + 1. Therefore, the DOFs of UCA is greatly 
increased based on the KR transform, and we can apply (4) 
instead of (1) to achieve underdetermined DOA estimation. 

We stack yk (k = 1,2,…,K) to form a new matrix Y 

 = +Y BQ Ξ   (7) 

where 
2

1[ , , ] M K
K

 Y y y  , 1=[ , , ] N K
K

Q q q  , 
2M KΞ   denotes the noise. 

2.3 2-D Sparse Representation 

Following the convention in the context of SR frame-
work, a fixed sampling grid is selected firstly that serves as 
the set of all candidates of DOA estimates. In this paper, in 
order to achieve 2-D DOA estimation of QSS, the azimuth 
and elevation angles are equally sampled into discretized 
grid sets of  = {θ̅1,

 θ̅2,…, θ̅Hθ
}(0°, 360°) and  = 

{̅1, ̅2,…, ̅H}(0°, 90°), respectively, as is shown in 
Figs. 2(a) and 2(b), where Hθ >> K, H >> K. In addition, it 
is assumed that the true DOAs are exactly on the sampling 
grid sets  and . In order to facilitate the writing in sub-
sequent section, we combine θ̅hθ 

(1  hθ  Hθ) and 

̅h 
(1  h  H) together. Thus, a joint 2-D sampling grid 

is constructed and the number of total grid points is H = 
Hθ  H, as is shown in Figs. 2(c), which satisfies the re-
construction condition H >> K. In Fig. 2(c), {(θn,n)}

N
n=1  

represents incident angles of N signals {sn}
N

n=1 while 
{h}

H
h=1 denotes H grid points after dividing 2-D angular 

space of interest. 

More compactly, {h}
H

h=1 can be expressed as 

 T
1 2[ , , , ]H  Ψ    (8) 

where each grid element h(1 < h < H) of Ψ  corresponds a 
discretized 2-D angle (θ̅hθ 

, ̅h 
)(1  hθ  Hθ, 1  h  H) 

and there exists correspondence relationship 1= ( ̅θ1,̅1), 
2= ( ̅θ2,̅2), …, H–1= ( ̅θHθ,̅H–1), H= ( ̅θHθ,̅H). The ad-
vantage of representing the 2-D discretized grid as a single 
vector is that we can handle the 2-D problem in a 1-D 
angular space. Once h is solved, we can obtain the corre-
sponding DOA estimate (θ̅,̅ ) according to the correspond-
ence relationship in Fig. 2(c). 

As a result, equation (7) can be expressed as the 
following sparse representation model 

 
Fig. 2. 2-D sparse representation. 

 = ( ) Y B Ψ Q Ξ .  (9) 

2

1 1( ) [ ( , ), , ( , )] M H
H H     B Ψ b b  is an over-com-

plete dictionary and it is defined as a collection of the 
steering vector over the entire grid set Ψ . In addition, it 
should be noted that 1 2=[q ,q ,q ] H K

K
Q  ， has K  col-

umns, so equation (9) satisfies the multiple measurement 
vector (MMV) model. 

In order to reduce the computation complexity of the 
signal reconstruction process and the sensitivity to the 
measurement noise, we can apply the singular value de-
composition (SVD) to (9) and Y  can be decomposed as 

 HY USV ,   (10) 

where the columns of U and V are the left-singular and 
right-singular vectors, respectively, while S  M2K is 

a diagonal matrix and can be expressed as 

 
2 2

1 ,

, ,

0

0 0
K K N

M N N M N K N



  

 
  
 

S
S   (11) 

where S1 = diag(1,2,…,N). n denotes the nonzero 
singular value and 1  2 … N. Let V =[V1, V2], where 
V1 and V2 are matrices which consists of the first N and the 
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rest K – N columns of V, respectively. Then, by defining 

1Y YV , 1Q QV  and 1Ξ ΞV , we can obtain 

 = ( ) Y B Ψ Q Ξ    (12) 

where 
2M NY  , H NQ  , 

2M NΞ  . In addition, Y  
contains most signal information of the matrix Y . Based 
on the SVD, the column dimension of Y  is much smaller 
than Y , so the computation complexity is reduced. 

3. 2-D DOA Estimation Based on SBL 
In this section, we use the SBL method to solve equa-

tion (12). The reason why we choose the SBL is that the 
global minimum points of SBL correspond to the most 
sparse solution and the local minimum points of SBL are 
very few. 

3.1 Noise and Sparse Signal Model 

For a complex Gaussian distributed random variable 
( , )u CN    with mean  and covariance , the probabil-

ity density function (PDF) can be expressed as  

      11
( | , ) exp .

H

N
CN u u u  


     


  (13) 

In the SBL, it is usually assumed that the noise 
satisfies complex Gaussian distribution, thus we can obtain 

    1

1

| | 0,
N

n
n

p CN 



Ξ Ξ I   (14) 

where  denotes the noise precision. 

Further, for ease of inference, we assume that  satis-
fies the Gamma distribution since it is a conjugate prior of 
the Gaussian distribution. 

       1 1; , | , ea a bp a b a b a b   
          (15) 

where a and b are scale parameters. 

In addition, the likelihood function of (12) can be 
written as 

    1

1

| , | ( ) ,
N

n n
n

p CN 



Y Q Y B Ψ Q I   .  (16) 

For the sparse signal matrix Q  of interest, we adopt 
the two-stage hierarchical sparse prior model to describe 
Q , which guarantees that most rows of Q  being zeros. 

    
1

| | 0,
N

n
n

p CN


 Q β Q    (17) 

where 1Hβ   and diag( )Δ β . 

Similarly to (15), by defining the scale parameters c 
and d, the hyperparameter  satisfies 

 
   

   

1

1 1

1

; , | ,

= exp .

H

h
h

H
c c

h h
h

p c d c d

c d d



 



 

   





β β

β β

  (18) 

According to the above analysis, the joint PDF can be 
expressed as 

             , , , | , |p p p p p  Y Q β Y Q Q β β    . (19) 

3.2 Bayesian Inference 

Since p(Q̃,,Ỹ) cannot be explicitly calculated, we 
are able to use the EM iteration algorithm to perform the 
Bayesian inference. By treating Q̃ as a hidden variable, 
whose posterior distribution is 

    
1

| , , | ,
N

n n
n

p CN


Q Y β Q μ Σ    (20) 

where nμ  stands for mean and Σ  denotes covariance. 

From Bayes’ rule,  | , ,p Q Y β   can be rewritten as 

      
 

| , |
| , ,

| ,

p p
p

p







Y Q Q β
Q Y β

Y β

 
 


.  (21) 

In (21), p(Ỹ, ) is independent of Q̃ and can be 
calculated according to  and . Therefore, we have 

      | , , | , |p p p QY β Y Q Q β    .  (22) 

By combining (14)–(23), we can obtain 

 ( ) ,h
n nμ ΣB Ψ Y   (23) 

  -1-1( ) ( )+ .HΣ B Ψ B Ψ Δ    (24) 

In order to calculate n and , we need estimate the 
hyperparameter  and . Based on a maximum a posteriori 
(MAP) optimal estimate, they can be estimated by 
maximizing p(, Ỹ). Due to the fact that p(Ỹ, , ) = 

p(, Ỹ) p(Ỹ), so the maximization of p(, Ỹ) is 
equivalent to maximizing p(Ỹ, , ) since p(Ỹ) is independ-
ent of  and . Then, by treating Q̃ as a hidden variable, 
we can adopt an EM algorithm to solve  and  by 
maximizing In p(Ỹ, Q̃, , )p(Q̃Ỹ,, ) where p(Q̃Ỹ,, ) 
denotes the expectation operator with respect to 
p(Q̃Ỹ, , ) and p(Ỹ, Q̃, , ) has been given in (19). 
Therefore,  and  satisfy 

    
( | , , )

, In , , ,
p

L p


 
Q Y β

β Y Q β
 

 .   (25) 
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By maximizing In (p(ỸQ̃, )p())p(Q̃Ỹ,, ), we can 
obtain the update of  

 

2
1

2 1 1

2
1 1

( 1)
.

( ) 1 ( )

i
N N

i
n n n nn

n n

NM a

b N


 



 

 

 


    Y B Ψ β Σ
 (26) 

By maximizing In p(Q̃) p()p(Q̃Ỹ,, ), the update 
of  can be written as 

 

 
1

1

( 1)i
N

H
n n nn

n

N c

d





 


 
β

μ μ Σ

. (27) 

Based on the above analysis, we firstly initialize the 
hyperparameter  and . Then, n and  can be calculated 
according to (23), (24). Finally, we update  and  accord-
ing to (26), (27). This process is repeated until 

1

2 2

i i i   β β β  or the maximum number of iterations is 

reached, where  is a tolerance. We can obtain final n and 
, so the DOAs can be estimated. 

 2= .n n nnP μ Σ    (28) 

For the readers’ convenience, the calculation 
procedure of the proposed method is summarized in Tab. 1. 
 

The proposed algorithm: 2-D DOA estimation based on SBL 

Input: The UCA observation data ( )k tx , 1,2,k K   

Step1: Compute 2
k k k y Bq I  

Step2: Form = +Y BQ Ξ  by stacking ky  

Step3: Construct SR model = ( ) Y B Ψ Q Ξ   

Step4: Iterative Calculation based on SBL method 

Initialize  , β  and   

While stopping criterion is not met  do 

                  

 

2
1

2 1 1

2
1 1

( 1)

( ) 1-( )

i
N N

i
n n n nn

n n
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b N






 

 

 


   Y B Ψ μ β Σ
 

        

 
1

1

( 1)i
N

H
n n nn

n

N c

d





 


 
β

μ μ Σ
 

                    If 1

2 2
-i i i  β β β  

                         break 

end 

1i i   

end 

Final nμ  and Σ  

Output: Determine the DOA estimates from 2=n n nnP μ Σ  

Tab. 1. The calculation procedure of the proposed method. 

4. Simulation and Results 
In order to verify the performance of the proposed 

algorithm, the following simulations are carried. Unless 

otherwise specified, we set general simulation parameters. 
The UCA has M = 5 sensors and the radius of the UCA is 
r = /2. The incident signals are regarded as QSS. Each 
QSS has K = 30 frames and the length of each frame is 
L = 1024. In the proposed method, we select scale parame-
ters a = 10–4, b = 10–4, c = 1, d = 10–2, and initialize 

 1
=100 Var

N

nn
N

 Y , 2

1
=

N H
nn

M N
β B Y , where 

Var(Ỹn) denotes the variance of Ỹn. For the stopping crite-
rion, we set  = 10–4 and the maximum number of itera-
tions are 2000. 

4.1 2-D Spatial Spectra Distribution of the 
Proposed Method 

Firstly, we simulate the spatial spectra distribution of 
both overdetermined and underdetermined 2-D DOA 
estimation of the proposed method. For the overdetermined 
case, we consider that four signals from directions  
(100°, 20°), (150°, 30°), (200°, 40°), (250°, 50°) impinge 
on the UCA. For the underdetermined scenario, we 
consider that six signals from direction (50°, 10°), 
(100°, 20°), (150°, 30°), (200°, 40°), (250°, 50°), 
(300°, 60°) impinge on the UCA. Additionally, in the 2-D 
angle range of   (0°, 360°) and   (0°, 90°) with a step 
size of 5°, we select H = 1387 discrete grids. When SNR is 
5 dB, Figs. 3(a) and 3(b) show the 2-D overdetermined and 
underdetermined spatial spectra of the proposed method, 
respectively, where the dashed lines denote the true  
DOAs. It can be seen from Fig. 3 that the proposed method 
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(a) Overdetermined DOA estimation 

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

(50,10) (100,20) (150,30) (200,40) (250,50) (300,60)

Discrete 2-D grids

N
or

m
al

iz
ed

 s
pa

tia
l s

pe
ct

ru
m

 

True DOAs
The proposed method

 
(b) Underdetermined DOA estimation 

Fig. 3. 2-D DOA estimation of the proposed method. 
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can correctly estimate DOAs even though the number of 
signals is larger than the number of sensors, which means 
the proposed method has the ability to achieve 2-D 
underdetermined DOA estimation. 

4.2 DOA Estimation Precision of Different 
Methods 

In this subsection, we compare the DOA estimation 
precision between the proposed method and state-of-the-art 
schemes, such as KR-MUSIC [6], KR-CAPON [6] and 
FO-MUSIC [19] through simulation experiment. The root-
mean-square error (RMSE) is introduced as the evaluation 
standard [20], where P denotes the number of Monte Carlo 

trials and N is the number of signals. ˆ
pn  is the estimated 

value of n in the pth trial, 

 2

1 1

1 ˆ( ) .
P N

pn n
p n

RMSE
PN  

 

     (30) 

Meanwhile, the Cramer-Rao Lower Bound (CRB) is 
also plotted as a benchmark in following simulations [21]. 
In order to facilitate the precision analysis, we fix elevation 
angle  at 90°, which means the elevation angle could be 
ignored in following simulations. The azimuth angle set-
ting is the same as in Sec. 4.1. Unless otherwise specified, 
we use the discrete grid in the azimuth angle range of 
  (0°, 360°) with a step size of 1°. By performing 500 
times Monte Carlo trials, the overdetermined DOA estima-
tion RMSE versus SNR and snapshots are plotted in Fig. 4, 
respectively. We record 1024 snapshots and Fig. 4(a) plots 
the RMSE of various algorithms varying with the SNR. 
When SNR is 5 dB, the RMSE versus snapshots of each 
frame is shown in Fig. 4(b). From Fig. 4, we can see that 
the RMSE of four methods decrease rapidly with the in-
crease of SNR or snapshots. In general, the FO-MUSIC 
method has the worst estimation accuracy, because there 
exists error in the estimated four-order cumulants due to 
the finite sampling snapshots, which deteriorates the esti-
mation performance. By using the Khatri-Rao transform, 
the virtual array aperture is extended. Therefore, the KR-
MUSIC and KR-CAPON have improved accuracy in terms 
of RMSE compared with FO-MUSIC, and the estimation 
performance of KR-MUSIC is a little better than KR-
CAPON. The proposed method has the highest DOA esti-
mation precision over all the range of SNR or snapshots 
and the trend of its performance curve is the same as the 
CRB when the SNR is larger than 5 dB and/or when the 
snapshots is larger than 1024. This is because the proposed 
method makes full use of the sparse structure of QSS from 
a Bayesian perspective and the proposed method does not 
require the parameter estimation in the calculation process 
by using the Bayesian inference. 

Similarly, we can also obtain the underdetermined 
DOA estimation RMSE versus SNR and snapshots, as is 
shown in Fig. 5. It is seen from Fig. 5 that the proposed 
method still has the best DOA estimation precision compared 
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Fig. 4. Overdetermined DOA estimation RMSE. 
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Fig. 5. Undermined DOA estimation RMSE. 
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with existing three methods and the trend of its per-
formance curve can still reach the CRB at high SNR and/or 
big snapshots. 

4.3 Angular Resolution Comparison 

In order to verify the angular resolution of the 
proposed method, we consider two closely spaced QSS 
from the azimuth angles 1 = 100°– Δ and 2 = 100°+ Δ, 
respectively, where Δ is varied from 0° to 8° with a 0.5° 
step. 

We define that two signals can be correctly resolved 
when there are two peaks in the spatial spectrum and the 

estimated DOAs satisfy 1 1̂      and 2 2̂     . 

The SNR is 5 dB and the snapshots is 1024. By conducting 
200 times Monte Carlo trials, the resolution probability 
versus Δ is plotted in Fig. 6. It can be seen from Fig. 6 
that the proposed method has the best angular resolution 
and the resolution probability can reach 1 when Δ = 2°. In 
addition, the angular resolution of KR-MUSIC is a little 
better than FO-MUSIC. 

5. Conclusion 
This paper studies the 2-D DOA estimation of QSS in 

the context of SR framework. Firstly, the Khatri-Rao trans-
form is applied to the UCA data model, which makes that 
the virtual array aperture of UCA is extended, so that the 
proposed method has the ability to estimate more signals 
than number of sensors. Then, by 2-D joint grid discretiza-
tion of UCA, the azimuth angle and elevation angle of QSS 
can be estimated simultaneously from SR perspective. 
Finally, an expectation-maximization iteration method is 
developed to estimate DOAs of QSS based on the SBL 
method. Since this paper makes full use of the sparse struc-
ture of QSS from a Bayesian perspective, thus the pro-
posed method has better estimation precision and angular 
resolution compared with existing methods. In addition, the 
proposed method does not require the parameter estimation 
in the calculation process, which facilitates the engineering 
application. However, the assumption that the true DOAs are 
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Fig. 6. Angular resolution analysis. 

located on the predefined spatial grids is not always valid 
in practical implementations. The DOA estimation perfor-
mance of the proposed method in this paper is limited by 
the off-grid effect of signals and mismatch of the SR model. 
Therefore, future research efforts will aim to solve the 
problem of off-grid and model mismatch. 
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