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Abstract. Infrared (IR) target detection and tracking are 
commonly used in modern defense systems. Target detec-
tion is the first and very important step for several surveil-
lance applications. Long distance between imager and 
targets or bad weather conditions mostly cause dim target 
appearance with low signal-to-noise ratio (SNR) in IR 
images. In this study, dim targets in IR images are en-
hanced and detected using saliency detection algorithms, 
which have not been used in IR wavelength before. Perfor-
mances of the algorithms are evaluated on common IR 
datasets. Algorithms are compared in terms of SNR, re-
ceiver operating characteristic (ROC) and area under 
curve (AUC) score. Effects of parameter selection are also 
considered for automatic target detection. Furthermore, 
feasibility of the methods for real-time applications are 
discussed. 
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1. Introduction 
Detection of targets in IR images is of great im-

portance in IR search and tracking applications. Especially 
when targets are dim and have low signal-to-noise ratio, 
they are hard to differentiate from background noise, which 
usually causes high false alarm rates for conventional 
methods. IR imagers are widely used in military imple-
mentations since they sense thermal diffusion and reflec-
tion of objects. Besides their benefits, they have some 
drawbacks, such as low contrast between target and back-
ground and deficient spatial resolution that cause incon-
venience for computer vision algorithms. Automatic target 
detection is an essential step for sundry surveillance appli-
cations in computer vision applications. Detection and 
tracking become very laborious in IR images since they 
yield important information about a target. Applying 
a threshold to an image is the most facile way to detect 
a target, but it is not well advised if the target has low con-
trast with background or has both of cold and hot compo-
nents. Applying low threshold triggers high false alarm 

rate, whereas high threshold decreases probability of de-
tection. A general solution to surmount the drawbacks is to 
enhance target signal before applying a threshold directly. 
Thus, undesirable results may be avoided. 

In IR images, even when targets have low contrast ac-
cording to their surroundings or appear in cluttered back-
ground, they are salient regions and have potential of tak-
ing visual attention. In other words, the image structure 
belonging to the target area differs barely or conspicuously 
from its local background. In some cases, it is not visually 
differentiable from its background. For this reason, utiliz-
ing methods that model attention of human visual system 
builds our motivation in order to enhance targets in IR 
images. A wide variety of approaches have been proposed 
to solve saliency detection such as frequency tuned salient 
region detection [1], spectral residual approach in saliency 
detection [2], image signature [3], computational model of 
visual attention called saliency maps [4], rapid scene analy-
sis using saliency-based visual attention model [5], global 
contrast based salient region detection [6], context-aware 
saliency detection [7], graph-based visual saliency [8] and 
salient object detection [9]. Stable multisubspace learning 
method has been used to detect dim and small targets in 
heterogeneous scenes in [10]. Specifically, research pro-
gress of image saliency has been analyzed in [11]. Various 
methods for saliency detection in color images have been 
reviewed in [12]. 

We compare the performance of several saliency de-
tection methods and configure each of them with two dif-
ferent parameter sets to show the effect of parameter for 
detecting targets in IR images having low contrast or situ-
ated in complicated scenes. Following methods designed 
and successfully applied for images in the visible wave-
length are arranged for IR images and considered in this 
comparison: Frequency tuned (FT) [1], spectral residual 
(SR) [2] and image signature (IS) [3]. Algorithms are com-
pared according to the enhancement, detection performance 
and execution time.  

In the next section, saliency detection and aforemen-
tioned algorithms are described. In Sec. 3 and 4, target 
detection and experimental results are discussed, respec-
tively. In the last section, conclusion is given. 
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2. Saliency Methods 
Target regions are acknowledged as the principal 

areas in an image. A saliency map denotes visually domi-
nant locations such that it represents image areas where it 
stimulates visual perception more than the other areas. In 
this work, saliency maps obtained from the mentioned 
three methods are utilized as enhanced target image for 
detection purpose.   

FT method uses Lab color space and detects salient 
regions with color and luminance features [1]. Some fre-
quency bands in input image are filtered by utilizing differ-
ence of Gaussians (DoG) as a band pass filter. Very low 
frequencies from the original image are passed in order to 
accentuate immense salient regions, whereas high frequen-
cies are considered to define boundaries of the regions. In 
contrast to these preserved frequencies, the highest fre-
quencies are ignored to suppress noise. In our work, since 
IR images are grayscale, input images are converted to Lab 
color space to attain performance of the pristine work, in 
lieu of utilizing the input directly as L luminance and 
ignoring a and b color components. Output saliency map S 
has the same size as the input image I and aims to highlight 
the most sizably voluminous salient regions: 

    
hcμ w, ,S x y I I x y    (1) 

where Iμ is mean intensity vector of the input image, Iwhc  is 
Gaussian smoothed version of the original image, and · 
denotes Euclidean distance. Each pixel location is a vector 
in [L,a,b]T form. Also, x and y are horizontal and vertical 
components, respectively. 

In spectral residual (SR) approach, contrast between 
the original log-spectrum of the Fast Fourier Transform 
(FFT) and its smoothed variant, in particular the spectral 
residual (SR), is figured to acquire curiosity districts of 
an image [2]. At that point combination of phase spectrum 
and the spectral residual is transformed to spatial domain 
by utilizing inverse Fast Fourier Transform to achieve 
saliency map. As indicated by [2], the technique can be 
condensed as 

     , ,i j I x y    R ,       (2) 

     , ,i j I x y    I ,    (3) 

     , log ,i j i j  ,  (4) 

        , , , , ,ni j i j h i j i j          (5) 

        2
1, exp , ,S x y g i j i j         (6) 

where  ,i j ,  ,i j , and  ,i j  signify amplitude, 

phase and log spectrum of input image I, respectively. 
(i ,j) is the spectral residual and S(x,y) indicates saliency 
map.   and 1  represent the Fast Fourier Transform and 
Inverse Fast Fourier Transform, individually. hn(i,j) indi-
cates the mean filter with size n  n. g is a Gaussian filter 

and it smooths the saliency map to show signs of improve-
ment visual impacts. * is the convolution operation. Input 
image size is scaled to 64 pixels height (or width) before 
FFT and the saliency map is rescaled to the input image 
size at the last step. In the original work, color input image 
is converted to grayscale image before applying the first 
process [2]. It is not required to execute this procedure 
here, because input is a grayscale image itself. 

In [3], a simple image descriptor, called the image 
signature (IS), is presented. IS is defined as the sign func-
tion of the Two-Dimensional Discrete Cosine Transform 
(2D-DCT) of an image  and given as below: 

  Î DCT I ,            (7) 

    si n ˆgIS I I                 (8) 

where Î is the 2D-DCT of I. Equation (8) forsakes ampli-
tude information and holds only phase information. For 
each channel of the image Ik, saliency map is obtained as 
below: 

   k kI IDCT IS I ,       (9) 

  ok k
k

S g I I     (10) 

where IDCT is Inverse 2D-DCT, and o represents element-
wise product operator. Note that IR images have only one 
channel. 

3. Target Detection 
Saliency maps obtained using the methods in the pre-

vious section contain enhanced salient targets. After targets 
in IR images are enhanced, a threshold is applied to these 
maps generated by each of the saliency algorithms to detect 
targets. 

Using a fixed threshold is not appropriate to label tar-
get pixels correctly, since the saliency maps have different 
statistical properties. Therefore, the threshold should be 
adaptive to the map. In [1] and [2], adaptive threshold is 
only related to the mean value of the obtained saliency 
map, while [3] gives the detection results in terms of re-
ceiver operating characteristic (ROC) and the area under 
the ROC (or curve), and does not apply a single threshold. 
Conversely, we show that the most suitable threshold value 
for detecting targets in a saliency map depends on both the 
mean and the standard deviation of the map. Thus, we 
introduce a new adaptive thresholding for the normalized 
saliency maps as 

  1

2

m m
Th m

s


    (11) 

where m and s represent the mean and the standard devia-
tion of the saliency map, respectively. This formulation is 
derived from Th = m + c * s, commonly used to binarize 
input images, where c is a constant. Before applying thresh-
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old, each pixel value of the saliency map is normalized to 
[0 1]. (1 – m) reflects the difference between the maximum 
and the mean value accordingly. Using the threshold given 
by (11), binarized map of salient targets is given by 

      1,  if  , min ,    
,

0,  otherwise
NS x y l Th

B x y


 


    (12) 

where l is the upper limit of threshold, which is smaller 
than 1, and SN(x,y) is normalized saliency map. In order to 
have the highest target detection achievement, optimal 
threshold value assigns target pixels to 1, while it makes 
background pixels to 0 in the binarized map B(x,y). In IR 
images, targets are salient regions because of their contrast 
and detailed structure. Specifically, the mean and standard 
deviation of normalized saliency maps obtained from IR 
images are low, besides the target areas are brighter than 
the background. An example of mean value and standard 
deviation of ten different normalized saliency maps are 
given in Tab. 1. In this table, threshold values are obtained 
by increasing from a lower value until the false positive 
rate has lower score, while the true positive rate is at 
higher. After that value, true positive rate starts to decrease. 
The highest threshold value amongst all normalized sali-
ency maps examined in our experiments is 0.8. Therefore, 
setting l to 0.8 will be the safest value for upper bound in 
order to prevent a target area pixel to be classified as 
a background pixel. When comparing l to the threshold 
value Th of the normalized saliency map as in (12), smaller 
one of l and Th will be chosen, so that the pixel classifica-
tion results in high sensitivity. Therefore, choosing the 
lesser value from l and Th increases the target detection 
achievement. Even though classification using the thresh-
old (11) achieves high true positive rate and most of the 
threshold values are less than l, using l as an upper bound 
plays a role as a controller at the top level when obtaining 
binarized map B(x,y). 

4. Experimental Results and 
Discussion 
Experiments are held for two different parameter sets 

for each method. Table 2 contains the parameters that may 
take variable values. 

In FT, size and standard deviation of the Gaussian 
filter that determines higher cut off frequency in DoG may 
take numerous values. In SR, mean filter size may be ad-
justable, but changing the parameter value does not affect 
obtained residual [2]. Thus, it is considered as a fixed pa-
rameter instead of a tunable parameter here. A fixed value 
is also used for scaling factor since 64 pixels width (or 
height) as down-scaling size is recommended in [2] and 
[3]. The Gaussian filter is employed to smooth the output 
saliency map at the final stage in [2] and [3]. Changing its 
standard deviation and size is possible.  

In this work, not only the methods are compared, but 
also the effects of the Gaussian filters in each method are 
examined in enhancement, detection and required computa- 
 

Mean Standard Deviation Threshold 
0.03 0.07 0.35 
0.04 0.07 0.30 
0.29 0.15 0.80 
0.05 0.06 0.39 
0.04 0.04 0.58 
0.07 0.07 0.57 
0.07 0.07 0.48 
0.05 0.07 0.63 
0.08 0.09 0.43 
0.05 0.07 0.42 

Tab. 1.  Mean and standard deviations of some normalized 
saliency maps and corresponding highest threshold 
values. 

 

FT SR IS 
Filter size Filter size Filter size 

Filter std. dev. Filter std. dev. Filter std. dev. 
 Scaling factor Scaling factor 
 Mean filter size  

Tab. 2.  Tunable parameters of the methods. 
 

Scene Resolution Target Size Ratio (%) 
S1 [640 512] [16 8] [2.5 1.6] 
S2 [640 512] [18 5] [2.8 1] 
S3 [112 112] [5 4] [4.5 3.6] 
S4 [112 112] [5 4] [4.5 3.6] 
S5 [640 512] [14 12] [2.2 2.3] 
S6 [640 512] [22 7] [3.4 1.4] 
S7 [640 512] [11 5] [1.7 1] 
S8 [112 112] [5 5] [4.5 4.5] 
S9 [112 112] [4 2] [3.6 1.8] 
S10 [112 112] [3 2] [2.7 1.8] 
L1 [640 512] [58 34] [9.1 6.6] 
L2 [640 512] [78 31] [12.2 6.1] 
L3 [112 112] [47 52] [42 46.4] 
L4 [112 112] [18 16] [16 14.2] 
L5 [640 512] [56 22] [8.8 4.3] 
L6 [640 512] [47 20] [7.3 3.9] 
L7 [640 512] [44 29] [6.9 5.7] 
L8 [112 112] [34 39] [30.4 34.8] 
L9 [112 112] [29 19] [25.9 17] 
L10 [112 112] [36 16] [32.1 14.3] 

Tab. 3.  Specifications of the representative scenes. 

tion time manner. We use two different parameters for the 
Gaussian filters in order to reflect performance of the 
methods in arduous conditions having various target size, 
spatial image resolution, target contrast and background 
complexity. At the first set, Set1, the filter parameters, 
which are standard deviation and size, are arranged to 0.5 
and 3  3, respectively. At the second set, Set2, standard 
deviation and filter size are set to 2.2 and 9  9 in that or-
der. The filter size is determined minimally to demonstrate 
the major characteristic of the Gaussian filter at that stand-
ard deviation. Test scenarios are collected from commonly 
used IR dataset, AMCOM [13] and SENSIAC [14], and 
grouped into two different target size scales, i.e., small and 
large. Each group also consists of two different resolutions. 
These scenarios are given in Tab. 3. The letters S and L in 
the scene column denote scenes containing small and large 
target, respectively. While some of the small and large 
scenes have high resolution, others have low resolution. 
Resolution and target size of each scene are given in terms 
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of pixel in the first and the second column, and their per-
centages (target size/resolution) are shown in the ratio 
column of Tab. 3, respectively. 

In order to evaluate enhancement results, visibility of 
input and output target signals are compared using  

 T B

B

 
I

SNR





    (13) 

where IT represents mean intensity value of the target 
pixels in an image. μB and σB are mean intensity value and 
standard deviation of the image, respectively.  

SNR results for small and large target scenes are 
given in Tab. 4 and Tab. 5, respectively. Average SNR 
value is given at the last row in the tables as SNRµ. For both 
Set1 and Set2 parameters, the best results for small target 
scenes are obtained by IS and SR in Tab. 4. Specifically, 
both methods give higher SNR values than the input. 
Namely, they improve the input for target detection. How-
ever, FT is inappropriate for small target scenes. For three 
of the methods, higher standard deviation and bigger filter 
size of Set2 result in lower SNR than Set1. Analogously, 
methods with Set1 parameters enhance the results better 
than with Set2, since Set1 has low standard deviation and 
filter size that are appropriate for small targets.  

SNR results for large target scenes are shown in 
Tab. 5. In this case, FT enhances the input better for uni-
form targets such as L3 and L4. IS and SR also improve the 
input. Three of the methods with Set2 parameters obtain 
slightly higher SNR values for large targets than with Set1, 
since standard deviation and filter size are high in Set2. In 
addition to SNR, enhancement and target detection results 
for four small and four large scenes are shown in Fig. 1 and 
Fig. 2 to be able to make subjective evaluation. 

Detection results are given in terms of ROC in Fig. 3 
and Fig. 4 for small and large targets, respectively. In these 
figures, best detection results are achieved by SR and IS for 
small target scenes in SNR. High true positive rate against 
low false positive rate in ROC graph indicates a high target 
detection achievement. AUC scores are given in Tab. 6 and 
Tab. 7 for small and large targets, respectively. Average 
AUC is given as AUCµ at the last rows of the tables. AUC 
measures target detection achievement with the highest 
value of 1. The higher the AUC is, the better the detection 
result is. Its relationship with ROC is that if true positive 
rate increases so does AUC, since it is measured by the 
area under the ROC curve. Therefore, high AUC value 
indicates more accurate target detection result. Parallel to 
the SNR results, IS and SR give the best AUC results for 
both small and most of the large target scenes as shown in 
Tab. 6 and Tab. 7.  

Number of blobs for IR images with four small and 
four large targets located at the target or the background 
region are shown in Tab. 8 and Tab. 9, individually. The 
letters T and B represent “at the target region” and “at the 
background region”, respectively. The symbol - denotes no 
blob detected at this region. Higher blob number at the 
target and lower blob number at the background mean better 

 

Scene Input 
FT IS SR 

Set1 Set2 Set1 Set2 Set1 Set2 
S1 0.41 1.51 0.10 3.78 1.41 7.39 2.90 
S2 0.89 0.07 0.48 5.83 9.06 4.27 6.97 
S3 0.64 0.47 0.84 18.01 12.78 14.42 11.58 
S4 1.53 1.46 0.45 15.74 11.21 15.53 11.63 
S5 0.69 1.70 0.60 23.55 7.79 22.56 8.30 
S6 1.57 2.27 0.86 5.85 3.16 6.11 3.14 
S7 0.65 0.47 0.78 7.94 2.58 5.10 1.94 
S8 0.94 0.27 0.27 8.48 11.45 8.05 11.04 
S9 0.42 0.50 0.63 26.71 13.64 19.66 12.10 
S10 0.60 0.19 1.06 19.17 12.40 19.15 12.68 

SNRµ 0.83 0.89 0.61 13.51 8.55 12.22 8.23 

Tab. 4.  SNR results of the small target scenes. 
 

Scene Input 
FT IS SR 

Set1 Set2 Set1 Set2 Set1 Set2 
L1 0.51 0.99 0.83 4.31 4.18 4.77 4.87 
L2 0.05 1.30 0.98 4.85 4.67 4.77 4.83 
L3 1.17 0.92 0.92 0.42 0.97 0.27 0.76 
L4 2.14 3.25 3.67 2.06 4.03 2.05 4.03 
L5 0.56 1.24 0.86 5.68 4.60 6.04 4.93 
L6 0.20 1.35 0.80 9.96 7.78 9.60 7.50 
L7 0.59 0.92 0.63 4.57 3.99 6.49 5.38 
L8 0.26 1.04 0.95 0.92 1.90 0.85 1.91 
L9 1.84 1.53 1.89 1.51 2.87 1.36 2.77 
L10 0.31 0.80 0.24 1.31 2.51 0.99 2.08 

SNRµ 0.76 1.33 1.18 3.56 3.75 3.72 3.91 

Tab. 5.  SNR results of the large target scenes. 
 

Scene Input 
FT IS SR 

Set1 Set2 Set1 Set2 Set1 Set2 
S1 0.583 0.743 0.461 0.960 0.897 0.986 0.983 
S2 0.744 0.522 0.377 0.994 0.998 0.993 0.995 
S3 0.741 0.402 0.239 1.000 1.000 0.998 1.000 
S4 0.828 0.731 0.405 0.997 1.000 0.994 1.000 
S5 0.652 0.768 0.610 1.000 1.000 1.000 1.000 
S6 0.784 0.705 0.643 0.962 0.995 0.969 0.996 
S7 0.642 0.336 0.200 0.997 0.982 0.991 0.956 
S8 0.831 0.570 0.554 0.958 1.000 0.942 1.000 
S9 0.579 0.310 0.370 1.000 1.000 0.999 1.000 
S10 0.659 0.352 0.033 0.998 1.000 0.997 1.000 

AUCµ 0.704 0.544 0.389 0.987 0.987 0.987 0.993 

Tab. 6.  AUC results of the small target scenes. 
 

Scene Input 
FT IS SR 

Set1 Set2 Set1 Set2 Set1 Set2 
L1 0.592 0.675 0.666 0.924 0.997 0.940 0.997 
L2 0.523 0.768 0.746 0.951 0.999 0.933 0.998 
L3 0.124 0.766 0.776 0.615 0.817 0.572 0.714 
L4 0.807 0.766 0.811 0.887 0.993 0.895 0.992 
L5 0.365 0.745 0.680 0.856 0.996 0.973 0.996 
L6 0.548 0.790 0.700 0.994 0.999 0.992 0.999 
L7 0.611 0.753 0.674 0.942 0.999 0.979 0.999 
L8 0.528 0.676 0.646 0.748 0.958 0.748 0.943 
L9 0.895 0.807 0.886 0.823 0.991 0.807 0.974 

L10 0.562 0.625 0.587 0.827 0.974 0.816 0.957 
AUCµ 0.556 0.737 0.717 0.857 0.972 0.866 0.957 

Tab. 7.  AUC results of the large target scenes. 

detection results. Furthermore, only one blob at the target is 
preferable to the piecewise blobs since the entire blobs at 
the target belong to single target. 

A comparison about feasibility for real-time applica-
tions and required execution time is provided in Tab. 10 for
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Fig. 1.  Detection results of the enhanced small target scenes, S1, S2, S3 and S4: (a) The scene, (b) Above: masked target region, below: 

zoomed target area, (c)-(h) Above: enhancement result of FT Set1, FT Set2, IS Set1, IS Set2, SR Set1 and SR Set2, respectively, 
below: magnified target areas found from the method-set combination above. 

 
each method. Each of the methods is processed 100 times 
for all scenes and the average computation time is calcu-
lated for each of them. Algorithms are performed on 
a computer with 3.50 GHz Intel® Xeon® CPU E3-1270 v3 
and 32 GB RAM. A threshold calculated via the method 
mentioned in the previous section is applied to each en-
hanced target images and accordingly detection results are 
obtained. Detection results for the methods FT, IS, SR with 
the sets Set1 and Set2 around the magnified target region 
for both small and large target scenes are shown at the 
second row for each scene in Fig. 1 and Fig. 2, respec-
tively. The targets are aligned at the center of the region 
exactly. As visually perceived in the given results in the 
figures and the tables, FT is not capable at the diminutive 
target scenes especially having the cluttered background 
such as S1 and S2 for both of the sets. FT with Set1, which 

has smaller standard deviation, highlights the target region 
as well as the largest uniform area in the scene that is 
a road at S4. In addition to poor performance in enhance-
ment, FT usually loses the targets and offers very high false 
alarm rates (compare the number of blobs detected at the 
target and at the background in Tab. 8). The performance 
of FT is additionally not adequate at the large targets lo-
cating at the cluttered background such as L1 and L2 in 
Tab. 9. If a target is larger and nearly uniform at a scene 
like L3 and L4, FT may perform better and is capable to 
detect blobs placed at the target region and may provide no 
false alarm. Moreover, the other methods fail visually in 
particular at L3, as shown in Fig. 2. Consequently, FT 
generally emphasizes immense uniform areas. If a target 
suits these conditions in an application, FT with larger 
standard deviation may have successful results. According to 
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Fig. 2.  Detection results of the enhanced large target scenes, L1, L2, L3 and L4: (a) The scene, (b) Above: masked target region, below: 

zoomed target area, (c)-(h) Above: enhancement result of FT Set1, FT Set2, IS Set1, IS Set2, SR Set1 and SR Set2, respectively, 
below: magnified target areas found from the method-set combination above. 

 
 

Scene Blob 
FT IS SR 

Set1 Set2 Set1 Set2 Set1 Set2 

S1 
T 4 1 1 - 1 1 
B 558 35 24 3 10 3 

S2 
T 2 - 1 1 1 1 
B 45 2 1 - 4 1 

S3 
T - - 1 1 1 1 
B 12 1 - - 5 2 

S4 
T 1 - 1 1 1 1 
B 13 3 - - - - 

Tab. 8.  Number of blobs detected in the small target scenes. 
 

Scene Blob 
FT IS SR 

Set1 Set2 Set1 Set2 Set1 Set2 

L1 
T 9 2 1 1 1 1 
B 47 12 2 - 2 - 

L2 
T 11 4 2 1 2 1 
B 51 5 - - 3 1 

L3 
T 4 3 4 1 5 1 
B - - - - 1 - 

L4 
T 2 1 1 1 1 1 
B - - - - - - 

Tab. 9.  Number of blobs detected in the large target scenes. 

the tables and the figures, SR and IS yield very close per-
formance. It is conceivable that utilizing phase information 
in both methods can cause that homogeneous attribute. 
Both of the methods are very successful to stick out dimin-
utive targets even when the background is highly cluttered, 
if the standard deviation is set to a small value as in Set1. 
Amount of false alarms may be quite a lot at S1 if the ap-
plied threshold is not high enough. Here it is noted that the 
target is located around the most proper region in the en-
hanced images obtained by both methods, that is to say that 
the threshold is convenient to be increased to get lower 
false alarms. Increasing threshold is also applicable to the 
other scenes (S2, S3 and S4), but it is noted that there is 
a tradeoff between detection probability and false alarm 
rate. As shown in Fig. 1 for both SR and IS, Set1 estimates 
the size of the small target more accurately than Set2.  

Additionally, the target regions have pixels with the 
highest values in all enhanced images achieved by utilizing 
Set1. However, utilizing Set2 does not provide pixels with 
the highest value for all target regions conversely (see S1 in 
Fig. 1, the brightest region does not refer to the target). 
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Fig. 3.  Detection results (ROC) of the small target scenes. 

On the other hand, the detected blobs by using Set1 
are biased according to the center of the region at the sec-
ond row at S1 and S2 in Fig. 1. This implies that Set1 has 
disadvantage on determining exact location of the targets. 
For the large targets, Set2 works well in contrast to Set1. 

Both of parameter sets show poor performance at L3 
that has large target size-image resolution ratio (almost 
50% in one dimension). At large target scenes, Set1 may 
induce partial detected blobs at the target region and false 
alarms at the background, which are unpropitious. The exe- 
cution times given in Tab. 10 indicate that SR and IS meet 

L1 

 

L2 

 

L3 

L4 

Fig. 4.  Detection results (ROC) of the large target scenes. 
 

 
FT IS SR 

Set1 Set2 Set1 Set2 Set1 Set2 
Time (ms) 79.4 78.7 5.79 5.83 5.76 5.86 

Tab. 10. Average execution time. 

requirements for real-time applications since they may be 
performed on more than 150 frames for each second. 

In general speaking, Set1 with smaller standard devi-
ation is more felicitous for very small targets, whereas Set2 
with larger standard deviation is more opportune for large 
targets. FT may be well-accomplished if a target is virtually 
uniform and occupies a sizably voluminous region in 
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an image, otherwise SR and IS with congruous parameter 
sets outperform FT. The performances of SR and IS are 
proximate to each other.  

One of the most consequential and vital goal of auto-
matic target detection algorithms is to find pixel coordi-
nates of the targets in an image. Lower scaling factor in SR 
and IS should be employed with the intention of getting 
target position in high precision, particularly at the diminu-
tive targets. Furthermore, SR and IS are also acceptable for 
real-time applications. 

5. Conclusion 
Three different saliency detection algorithms com-

monly utilized in visible wavelength are used newly for IR 
images and compared in this work. Each of them is de-
signed with two diverse parameter sets to examine the 
results of parameter choice on target enhancement and 
detection under sundry conditions such as different target 
size, target contrast, image resolution and background 
complexity. Size of the target is the most foremost limita-
tion while selecting a well-suited parameter set. IS and SR 
with right parameter sets give adequate results in all condi-
tions aside from the scenes where target-image resolution 
ratio is too high. FT shows better performance in these 
scenes by highlighting large uniform target areas. This 
designates that the methods are preferable to each other 
according to different conditions. An exertion can be ex-
pended to develop new methods that need no prior infor-
mation about scene and are influenced less from varieties 
of the conditions in the future. Also, an SNR method that is 
more coherent with human visual perception system than 
the existing objective evaluation algorithms can be studied 
to evaluate the detection results. 
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