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Abstract. Recent studies have shown that deep learning
algorithms are very effective for evaluating the security of
embedded systems. The deep learning technique represented
by Convolutional Neural Networks (CNNs) has proven to be a
promising paradigm in the profiled side-channel analysis at-
tacks. In this paper, we first proposed a novel CNNs archi-
tecture called DeepSCA. Considering that this work may be
reproduced by other researchers, we conduct all experiments
on the public ASCAD dataset, which provides electromag-
netic traces of a masked 128-bit AES implementation. Our
work confirms that DeepSCA significantly reduces the num-
ber of side-channel traces required to perform successful
attacks on highly desynchronized datasets, which even out-
performs the published optimized CNNs model. Addition-
ally, we find that DeepSCA pre-trained from the synchronous
traces works well in presence of desynchronization or jitter-
ing after a slight fine-tuning.
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1. Introduction
Side-channel analysis (SCA) is a powerful cryptanalytic

attack that exploits the information leaked from the physical
implementations of cryptographic algorithms to break the
secret key [1]. The profiled SCA attacks based on supervised
learning techniques have recently received significant atten-
tion in the SCA community. Researchers in the security field
explore different machine learning techniques to assess their
effectiveness in the SCA context. As a consequence, there
are several papers on the intersection of machine learning
techniques and profiled SCA attacks [2–9]. While different
scenarios usually require different machine learning tech-
niques, almost all work demonstrates that Support Vector
Machines (SVM) and Random Forests (RF) are good base-
line algorithms for profiled SCA attacks.

In recent years, deep learning has begun to demon-
strate its powerful efficiency in profiled SCA attacks because
it almost perfectly approximates arbitrary functions. Sev-
eral studies have already investigated the performance of
deep neural networks in profiled SCA attacks. Maghrebi
et al. [10] first compare the SCA-efficiency of deep learn-
ing and machine learning in terms of the number of side-
channel traces. The work [11] evaluates the performance of
convolutional neural networks (CNNs) in scenarios where
power consumption traces are misaligned due to counter-
measures or hardware-related effects (clock jitter). Their
research shows that CNNs combined with data augmentation
technique can effectively suppress the misalignment effects.
Prouff et al. [12] give an empirical solution to the question of
the choice of hyper-parameters for CNNs andmulti-layer per-
ceptron (MLP), further confirming the power of deep learn-
ing applied to profiled SCA attacks. The other important
contribution is the release of the public ASCAD database,
which provides side-channel traces of a masked 128-bit AES
implementation. The ASCAD dataset makes it easy for re-
searchers to improve existing models or compare new deep
neural network architectures.

Based on the CNNs model proposed in the article [12],
this paper introduces several mechanisms to achieve high per-
formance in profiled SCA attacks. In particular, we evaluate
the effect of the batch normalization layer on improving the
SCA-efficiency of CNNs and we present that the pre-trained
CNNs model can also help us make more appropriate deci-
sions. Briefly, the main contributions of this paper are as
follows:

• We propose a deep learning architecture called Deep-
SCA that can reach higher SCA-efficiency than the
CNNs architecture designed in [12].

• The batch normalization layer is necessary to get good
performances in our case. Furthermore, batch normal-
ization acts as a regularization in deep neural networks,
which makes it more robust and easier to generalize.

• After a slight fine-tuning, DeepSCA pre-trained from
the synchronous side-channel traces works well in pres-
ence of desynchronization or jittering.
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The rest of this article is organized as follows: Section 2
introduces the basic knowledge of profiled SCA attacks and
deep learning. In Sec. 3, we provide the details about datasets
used in this article, the DeepSCA architecture and evaluation
metrics. The designed experiments and results obtained are
presented in Sec. 4. We conclude this article in Sec. 5.

2. Preliminaries
This section briefly introduces profiled SCA attacks

and deep learning algorithms, especially convolutional neu-
ral networks.

2.1 The Profiled SCA Attacks
For profiled SCA attacks, the adversary is assumed to

have a pair of identical devices: a profiling device and a target
device. In this scenario, the target device runs a symmetric
cryptographic algorithm with the fixed secret key. The at-
tacker has access to control the input and the key of the
profiling device, so he has the ability to characterize the
leaked information very precisely by manipulating some sta-
tistical techniques. The profiled SCA attacks are performed
in two steps: the profiling (training) phase and the attack
(test) phase.

In the profiling phase, a customized leakage model can
then be built by using the key-related information of the pro-
filing device. The attacker calculates an estimation ek of
the probability distribution function (pdf) for each possible
k ∈ K as follows:

ek= ζ[T = t |(P,K) = (p, k)] (1)

where the dataset of side-channel traces is denoted by T
and the estimation êk is processed from a profiling set
Dp = {ti, pi, ki}, i = 1, ...,Sp . The side-channel trace ti is
acquired under known plaintext pi and secret key ki of a
cryptographic algorithm.

During the attack step, the attack set Da = {ti, pi},
i = 1, ...,Sa is used to test and the correct secret key is fixed
but unknown. The final goal is to obtain the latter secret key
k∗ by using side-channel traces of the attack set. For this
purpose, an attacker who builds the statistical model must
decide which of the pdf estimations êk , k ∈ K, is the most
likely for the attack set. As we all know, maximum likelihood
estimation is the most efficient way to make such decisions
about the nature of the data distribution in real-world scenar-
ios. This strategy is equivalent to estimating the following
log-likelihood L[k] for each key candidate k ∈ K:

log L[k] =
Sa∑
i=1

log ζ[(P,K) = (pi, k)|T = ti] (2)

where L[k] is the log-likelihood probability corresponding
to key candidate k. The most appropriate model for side-
channel traces collected from the target device is used to
reveal the correct key that maximizes L[k].

2.2 Deep Learning
Deep learning is a branch of machine learning, which

has been applied to image classification, speech recognition,
and other fields [13]. Machine learning usually requires
manual feature engineering while CNNs learn the automatic
features directly from raw data [14]. Furthermore, the fea-
tures extracted by convolutional layer are independent of their
position in the data and dense layers can identify the features
related to the labeled traces. Therefore, convolutional neural
networks should be robust to the jitter effects from unstable
clock domains or even desynchronization.

The basic structure of CNNs is a convolutional layer
Conv followed by a nonlinear activation layer Act. The con-
volutional layer extracts local information from the input
through a bunch of filters and the subsequent nonlinearity
activation function can implement more complex learning
strategies. After a series of (Act ◦ Conv) modules, a pooling
layer Pool is usually added to reduce the input size of the
next module: Pool ◦ [Act ◦ Conv]l2 . This module is stacked
in the neural network until a reasonable size of the output is
obtained. Subsequently, several fully-connected dense layers
are used to map the learned features to the label space of
the samples. The well-known translation-invariant feature is
implemented through local connections and shared weights,
as well as a specific form of pooling operations (e.g, Max-
Pooling, AveragePooling, etc.). In addition, compared with
fully-connected networks with the same number of hidden
layers, convolutional neural networks greatly reduces the size
of parameters so that it works well in practice. In brief, the
general CNNs architecture can be characterized as follows:

s ◦ [FC]l1 ◦
[
Pool ◦ [Act ◦ Conv]l2

] l3
(3)

where s denotes a softmax layer and FC represents a fully-
connected layer.

In the article [15], batch normalization is introduced to
remedy the defect of internal covariate shift in deep neural
networks, ultimately allowing for higher learning rates. The
input data distribution of a machine learning system varies
when the covariate shift happens. The internal covariate
shifting means that this change occurs at the input of neurons
inside hidden layers of deep neural networks. We can use a
higher learning rate and don’t care about initialization due
to batch normalization. The superior performance of batch
normalization is demonstrated by comparing the VGG net-
works with and without batch normalization in [16]. Thus,
batch normalization acts as a regularization that eliminates
the dependency on dropout in the neural network.

For the AES algorithm, the attacker can adopt a divide-
and-conquer strategy to break only one secret key byte at a
time. Generally, deep learning classifies the side-channel
traces based on the labels derived from the assumed leakage
model. However, an attacker cannot reveal the secret key
directly from the classification results of side-channel traces,
so the key enumeration process is necessary. The output of
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the softmax layer in deep neural networks is the classification
probability vector for one side-channel trace. These proba-
bilities are then used to calculate the log-likelihood of each
key byte candidate through (2).

3. Methodologies
First of all, it is important to understand the overall

framework for applying deep learning to profiled SCA at-
tacks. The scenario described here is that the input and key
are known, which is a supervised learning problem. The
input and key are used to label each side-channel trace ac-
cording to the hypothetical leakage model. The dataset of
side-channel traces is then split into a training set and a test
set. Ideally, the testing set is measured from another identi-
cal device that contains an unknown key. The training phase
consumes a lot of computing resources while the test phase
is usually very fast.

3.1 DeepSCA
As far as we know, the most popular CNNs architecture

reported in the field of SCA attacks can be seen as a variant of
the VGG network [17] under a specific design strategy. The
VGG network was originally designed for image classifica-
tion. Therefore, the input signal is a two-dimensional image,
while the spatial dimension of our side-channel traces is only
one. Fortunately, convolution and pooling operations are also
feasible for one-dimensional signals. Based on literature and
experimental results, we created hyper-parameter constraints
and then selected the final CNNs architecture. Additionally,
the hyper-parameter values of the CNNs architecture can be
obtained by random search. The hyper-parameters that need
to be optimized are: the number of convolutional/pooling lay-
ers, the number of epochs, the learning rate, batch normaliza-
tion, batch size, dropout, convolutional activation functions,
stochastic gradient descent, the kernel size of a convolutional
filter, stride, padding, and the number of neurons in each
fully-connected layer.

Our deep neural network is stacked by 6 convolu-
tional/pooling layers and two fully-connected layers. All con-
volutional layers use filters with kernel size 11 and stride 1,
which create many activation mappings for each layer. The
activation function of convolutional layers is Leaky Rectified
Linear Unit (Leaky ReLU). The Leaky ReLU fixes the prob-
lem of dying ReLU since it doesn’t have zero-slope parts.
Therefore, it is feasible to make the network learn more and
more abstract representations from the training set by stack-
ing many convolutional/pooling layers [18]. The form of
padding is set to the same, which means that the output size
is the same as the original input for each convolutional layer.
The number of filters per layer follows a geometric progres-
sion (where the initial value is 32 and the ratio is 2) until
the maximum value 512. The average pooling is configured
as the kernel of size 2 and stride 2. Two fully-connected
layers have 2048 units respectively and the softmax function

is used to obtain a probability distribution from the input in
the classification layer. Note that dropout is not used in the
convolutional and fully-connected layers.

Besides, batch normalization is a widely used technique
to train deep neural networks faster and more stable. Here,
we only applied the batch normalization for the first and last
convolutional layers to standardize the output values after the
Leaky ReLU activation function. In order to facilitate writ-
ing and comparison, we denoted this deep neural network
architecture as DeepSCA. Figure 1 provides a visual Deep-
SCA network architecture and Table 1 lists the following
hyper-parameter values of DeepSCA: the input and output
shapes, filter size, sampling and activation function. Com-
pared with the CNN_best architecture in [12], our DeepSCA
is added one convolutional/pooling layers and batch normal-
ization operation is performed after the first and last convo-
lutional layers. In order to reduce the number of trainable
parameters, we reduced the number of neurons in the last two
fully-connected layers from 4096 to 2048.

There are a large number of hyper-parameters to con-
sider when training a deep neural network for profiled SCA
attacks. Due to the limited space of the article, we will not
discuss these hyper-parameters one by one in the next section.
More detailed descriptions of the choice of hyper-parameters
and rationality analysis are given in [12].

3.2 Evaluation Metrics
The common evaluation metrics are accuracy and loss

in the machine learning community. The training accuracy
refers to the successful classification rate over the training set,
and training loss is the error rate over the training set. As the
training accuracy continues to increase and the training loss
decreases after many epochs, we know that the deep neural
network is learning from the training set. The test accuracy
indicates how good the trained model predicts side-channel
traces of the test set that have never been learned before.
However, the accuracy is not adequate in the key recovery
phase for profiled SCA attacks.

Fig. 1. The DeepSCA architecture diagram. The 1-dimensional
convolutional layer is represented as a green rectangu-
lar block, the orange blocks indicate batch normalization
layers, and the blue blocks indicate average pooling lay-
ers. The output of the final average pooling layer is
flattened into feature vectors of a single dimension. The
fully-connected layers are used to identify features for
classification and the softmax layer gives the categories
to which the input belongs. The number on the top of
each block indicates the number of filters or neurons in
the corresponding layer.
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Layer Output Shape Filter Size Sub-Sampling Activation
Conv1 700 × 32 1 × 32 × 11 - Leaky ReLU
BN1 700 × 32 - - -
Pool1 350 × 32 - 2 -
Conv2 350 × 64 1 × 64 × 11 - Leaky ReLU
Pool2 175 × 64 - 2 -
Conv3 175 × 128 1 × 128 × 11 - Leaky ReLU
Pool3 87 × 128 - 2 -
Conv4 87 × 256 1 × 256 × 11 - Leaky ReLU
Pool4 43 × 256 - 2 -
Conv5 43 × 512 1 × 512×11 - Leaky ReLU
Pool5 21 × 512 - 2 -
Conv6 21 × 512 1 × 512×11 - Leaky ReLU
BN2 21 × 512 - - -
Pool6 10 × 512 - 2 -
FC1 2048 - - -
FC2 2048 - -

Output 256 - - Softmax

Tab. 1. The DeepSCA architecture parameters.

The rank function is widely used to evaluate the effects
of attacks in multi-trace experimental scenarios. When using
maximum likelihood estimation to recover the secret key, we
paymore attention to the final probability output of each side-
channel trace. The output probability of each key candidate
is considered as the score in rank function. The rank function
then ranks the scores of all key candidates. In a successful
attack, the rank function of the correct secret key k∗ is zero.
The rank function is defined as follows:

rank(êk,Sa) =
��{ ki ∈ K | score(ki) > score(k∗)

}�� (4)

where score(k) denotes the score of a key candidate ki ,
i = 0,1,2, ...,255.

More precisely, we perform a 10-fold cross validation
in the following attack experiments to get a better measure of
rank function. The average rank of the correct key is denoted
as mean rank function. Thus, the mean rank function is used
to be an evaluation metric for assessing the performance of
profiled SCA attacks.

4. Experiments
We use Keras with TensorFlow backend [19], [20] to

construct the DeepSCA architecture. The training phase
is performed on a desktop computer equipped with an In-
tel Xeon E5-2698 v4 @2.2GHz processor, 16GB of RAM
and an NVIDIA TESLA P100 card. In all experiments, we
use a set of randomly selected profiled traces from ASCAD
datasets with 256 classes.

4.1 ASCAD Dataset
The DeepSCA architecture is tested on the ASCAD

dataset, which is available at https://github.com/ANSSI-
FR/ASCAD. The target platform is an 8-bit AVR micro-
controller implemented a masked AES-128 algorithm and

side-channel traces are captured by using electromagnetic
emanation. The dataset follows the format of the MNIST
dataset, of which 50000 side-channel traces were used for
training and the remaining 10000 for the test phase. The
hypothetical leakage model is the unprotected S-Box output
byte, i.e. SBox[pi ⊕ ki]. The pre-selected window of 700
relevant samples per side-channel trace corresponds to the
masked S-Box. Our attack experiments performed in this
paper only aim at the output of the third S-Box processed in
the first round of AES.

For the ASCAD dataset, a parametrized desyn-
chronization is added to side-channel traces to test the
SCA-efficiency of different attack algorithms against jitter-
ing. A desynchronization amount of Desyncmax indicates
that each side-channel trace has been randomly shifted by
δ ∈ [0,Desyncmax] points to the left. A new side-channel
trace is generated from the original trace after the desynchro-
nization. Interested readers can get more useful information
about the ASCAD dataset in [12]. Theoretically, the CNNs
architecture is naturally able to extract information from de-
synchronized side-channel traces thanks to its translation-
invariance property.

4.2 Results
In fact, we do not make a comprehensive analysis of

the impact of hyper-parameters on the SCA-efficiency of
DeepSCA in this paper. The main reason for this decision
is that Prouff et al. [12] discusses in detail the question of
the choice of the hyper-parameters for convolutional neural
networks. Consequently, this article does not discuss the
effects of hyper-parameters such as the learning rate, kernel
size, batch size, padding, the optimization of loss function,
etc. We explored the impact of the number of epochs, batch
normalization layer, and the pre-training mechanism on im-
proving the SCA-efficiency of DeepSCA. At the same time,
our experiments compared the SCA-efficiency of DeepSCA
and CNN_best.
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The first experiment was obtained by training Deep-
SCA with a different number of epochs. The epoch value is a
hyper-parameter, which defines the number times a learning
algorithm traverses the whole training set. In an epoch, each
sample in the training set is likely to be used to update the
internal parameters of the model. By increasing the number
of epochs, DeepSCA obtains a set of appropriate parameters,
thereby improving the ability to fit side-channel traces of the
training set. Figures 2, 3 and 4 report respectively the mean
rank of DeepSCA as a function of the number of epochs
when the amount of desynchronization is 0, 50 and 100. We
can see that the SCA-efficiency of DeepSCA also continues
to increase as the number of epochs increases in terms of
the mean rank. These results imply that there is no overfit-
ting phenomenon (relatively to our rank function) when the
number of epochs increases.
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Fig. 2. Mean ranks of DeepSCA with different numbers of
epochs when the desynchronization amount is 0.
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Fig. 3. Mean ranks of DeepSCA with different numbers of
epochs when the desynchronization amount is 50.
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Fig. 4. Mean ranks of DeepSCA with different numbers of
epochs when the desynchronization amount is 100.

It can be seen that themean rank is also close to 0 as long
as the number of epochs is sufficient in the training phase.
When the maximal desynchronization value increases, we
need more time to train parameters of DeepSCA and more
side-channel traces in the test (key recovery) phase. With
the increase of desynchronization, the number of epochs has
more andmore influence on the SCA-efficiency of DeepSCA.
An epoch value of 50 is sufficient for our datasets in view
of the mean rank, but it does not yield to the satisfactory
performance when side-channel traces are desynchronized.
For the sake of robustness and acceptable training time, the
number of epochs is set to 60 in this case. The DeepSCA
acquires less than 100 side-channel traces when the maximal
desynchronization value Desyncmax is 0. However, for the
case where the maximal desynchronization value is 100, the
number of required traces is about 3000 when the mean rank
is equal to 0. These results highlight the success of DeepSCA
in the context of desynchronized traces, but DeepSCA still
needs a lot of side-channel traces to recover the secret key in
the test phase.

Figure 5 depicts the training loss varies with the num-
ber of epochs when the desynchronization value is 0, 50
or 100. The training loss is decreasing continuously as the
number of epochs increases. Correspondingly, the SCA-
efficiency of DeepSCA is also increasing from the per-
spective of the training accuracy in Fig. 6. Moreover,
the emergence of desynchronization accelerates the train-
ing speed of DeepSCA. The DeepSCA is robust to desyn-
chronization, which can be explained in terms of local
connection characteristics of the convolutional layer [13].
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Fig. 5. The training loss of DeepSCA with different numbers of
epochs when the desynchronization amount is 0, 50, 100.
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Fig. 6. The training accuracy of DeepSCA with different num-
bers of epochs when the desynchronization amount is 0,
50, 100.
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Interestingly, the training loss and accuracy of DeepSCA are
almost the same when the desynchronization amount is 50
or 100. Remarkably, the accuracy of random guessing ac-
counts for about 0.39% ( 1

256 ). Moreover, we do not further
increase the number of epochs to reduce loss and improve test
accuracy. The main reason for this choice is that the SCA-
efficiency of DeepSCA after training 60 epochs is sufficient
when we use the mean rank function as a measure.

The second experiment was used to discuss the effect
of batch normalization on the SCA-efficiency of DeepSCA.
Therefore, we removed batch normalization layers of Deep-
SCA and then retrained this network. Figures 7, 8 and 9
show the mean rank of DeepSCA without batch normaliza-
tion layers on the test set as the training phase progresses.
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Fig. 7. Mean ranks of DeepSCA (without batch normalization
layers) with different numbers of epochs when the desyn-
chronization amount is 0.
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Fig. 8. Mean ranks of DeepSCA (without batch normalization
layers) with different numbers of epochs when the desyn-
chronization amount is 50.
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Fig. 9. Mean ranks of DeepSCA (without batch normalization
layers) with different numbers of epochs when the desyn-
chronization amount is 100.

The DeepSCAwith batch normalization layers has the higher
test accuracy. Merely adding batch normalization yields a
substantial speedup in training. During the training phase,
the DeepSCA with batch normalization layers takes extra
time to normalize the output, thus increasing the training
time of each epoch from 10 seconds to 11 seconds. The time
required for each epoch can be further reduced by increasing
the learning rate, using Dropout, and applying other modifi-
cations supported by batch normalization [16]. However, we
are more interested in validating the effectiveness of batch
normalization, rather than finding the optimal parameters to
achieve the state of the art performance. Therefore, we have
not specifically discussed the above details.

The mean ranks obtained from DeepSCA and
CNN_best models are compared in Figs. 10 and 11.
DeepSCA outperforms significantly CNN_best on desyn-
chronized side-channel traces with only 60 epochs, although
these two models are essentially instantiated from the VGG
architecture. DeepSCA greatly reduces the number of side-
channel traces required to reveal the secret key on highly
desynchronized datasets. DeepSCA can learn more complex
and more abstract representations from the training set due
to stacking more convolutional/pooling layers. Furthermore,
the batch normalization operation makes the network more
robust and easier to generalize. Interestingly, the test accu-
racy of DeepSCA andCNN_best models is obviously at a low
level (0.8%, random guess accuracy is 0.39%) in our experi-
ments. This can be explained by the fact that both DeepSCA
and CNN_best models approximate the distribution of mul-
tiple side-channel traces rather than single traces.
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Fig. 10. Mean ranks of DeepSCA with different numbers of
epochs when the desynchronization amount is 50.
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Fig. 11. Mean ranks of DeepSCA with different numbers of
epochs when the desynchronization amount is 100.
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In this case, we introduced the idea of the pre-trained
mechanism to simplify our training process, which allowed
us to get more accurate parameters in a time-saving man-
ner [21]. Generally, it is feasible to use a pre-trained network
if both datasets have something in common. The pre-trained
model contains weights and biases that represent features
learned from other datasets through an extensive training
process. These learned features are often transferable to
different datasets. With the pre-trained mechanism, instead
of implementing the learning process from scratch, we can
start with features that have been learned when dealing with
similar problems.

We first trained DeepSCA for 40 epochs on the dataset
with a desynchronization amount of 0 as the pre-trained
model. For convenience, the pre-trained network is called
DeepSCA0

40, Next, theDeepSCA0
40 networkwas trained on the

datasetswith the desynchronization amount of 50 or 100. The
DeepSCA0

40 network has already learned rich features, but it
can learn more patterns that are specific to the new dataset
when the network parameters are fine-tuned. Figures 12
and 13 report the results of DeepSCA with the pre-trained
network when the desynchronization amounts are 50 and
100. The “0 epochs” in the legend represents the DeepSCA0

40
network is used directly to make predictions the case where
the desynchronization amount is 50 or 100.
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Fig. 12. Mean ranks of DeepSCA with the pre-train network
when the desynchronization amount is 50.
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Fig. 13. Mean ranks of DeepSCA with the pre-train network
when the desynchronization amount is 100.

As we expected, the SCA-efficiency of the fine-tuned
DeepSCA0

40 network is far superior to the DeepSCA network
trained from scratch (see Figs. 3 and 4). For the pre-trained
DeepSCA0

40 network, we only need to execute 3 epochs to
fine-tune parameters, which spend very little computing re-
sources. The pre-trained DeepSCA network is able to reveal
the secret key by using less than 200 traces during the at-
tack phase. The presence of desynchronization or jittering
in the synchronous traces (data augmentation) is equivalent
to adding regularization term to the objective function [22].
This is beneficial in the classification process as it enhances
the robustness of DeepSCA.

5. Conclusions
The application of deep learning to profiled SCA at-

tacks requires careful configuration of the hyper-parameters
of deep neural networks. The profiled SCA attacks require
deep neural networks to identify leaked information about
side-channel traces. Deep neural networks can approximate
highly complex functions by stacking different layers. As a
consequence, deep learning might be able to break widely
adopted countermeasures like masking, desynchronization
or shuffling.

In this study, we have demonstrated that the proposed
DeepSCA can efficiently recover the key byte in presence
of desynchronization. The main reason that DeepSCA is
robust to the desynchronized side-channel traces is that the
convolutional layer extracts features independently of their
locations in one trace. Therefore, DeepSCA can bypass jitter-
based effects from unstable clock domains. The results are
in agreement with the conclusions in the article [12]. The
difference is that batch normalization significantly improves
the SCA-efficiency of DeepSCA in this paper. Moreover, the
pre-trained DeepSCA model simplifies our training process
and allows us to get more accurate parameters in a time-
saving manner.

The CNN_best model proposed in paper [12] has
66,652,544 parameters that need to be trained, which is
too large for the general applications. In comparison, our
DeepSCA is more lightweight, but there are still 20,011,200
trainable parameters. The last two fully-connected layers
account for most of the parameters. In the initial attempt
to design the DeepSCA architecture, we want to reduce the
number of neurons or even remove the fully-connected layer.
Unfortunately, our experimental results do not support this
view. Nevertheless, further investigations on the applica-
tion of the lightweight neural network architectures (e.g.,
SqueezeNet [23], MobileNets [24], and ShuffleNet [25]) are
necessary in profiled SCA attacks.

References
[1] KOCHER, P. C., JAFFE, J., JUN, B. Differential power analysis.

In Proceedings of the 19th Annual International Cryptology Confer-
ence on Advances in Cryptology. London (UK), 1999, p. 388–397.
DOI: 10.1007/3-540-48405-1_25



658 S. HOU, Y. ZHOU, H. LIU, CONVOLUTIONAL NEURAL NETWORKS FOR PROFILED SIDE-CHANNEL ANALYSIS

[2] MARTINASEK, Z., HAJNY, J., MALINA, L. Optimization of power
analysis using neural network. In Proceedings of the 12th Interna-
tional Conference Smart Card Research and Advanced Applications
(CARDIS). Berlin (Germany), 2013, p. 94–107. DOI: 10.1007/978-
3-319-08302-5_7

[3] WHITNALL, C., OSWALD, E. Robust profiling for DPA-style at-
tacks. In Proceedings of the 17th International Workshop Cryp-
tographic Hardware and Embedded Systems (CHES). Saint-Malo
(France), 2015, p. 3–21. DOI: 10.1007/978-3-662-48324-4_1

[4] MARTINASEK, Z., ZEMAN, V., MALINA, L., et al.
k-Nearest neighbors algorithm in profiling power analysis at-
tack. Radioengineering, 2016, vol. 25, no. 2, p. 365–382.
DOI: 10.13164/re.2016.0365

[5] HOSPODAR, G., GIERLICHS, B., MULDER, D. E., et al. Ma-
chine learning in side-channel analysis: A first study. Journal
of Cryptographic Engineering, 2011, vol. 1, no. 4, p. 293–302.
DOI: 10.1007/s13389-011-0023

[6] HEUSER, A., ZOHNER,M. Intelligent machine homicide - breaking
cryptographic devices using support vector machines. In Proceedings
of the Constructive Side-Channel Analysis and Secure Design: Third
International Workshop (COSADE). Darmstadt (Germany), 2012,
p. 249–264. DOI: 10.1007/978-3-642-29912-4_18

[7] BARTKEWITZ, T., LEMKE-RUST, K. Efficient template attacks
based on probabilistic multi-class support vector machines. In Pro-
ceedings of Smart Card Research and Advanced Applications. Graz
(Austria), 2013, p. 263–276. DOI: 10.1007/978-3-642-37288-9_18

[8] HOU, S. R., ZHOU, Y. J., LIU, H. M., et al. Wavelet support vec-
tor machine algorithm in power analysis attacks. Radioengineering.
2017, vol. 26, no. 3, p. 890–902. DOI: 10.13164/re.2017.0890

[9] HOU, S. R., ZHOU, Y. J., LIU, H. M., et al. Exploiting support vector
machine algorithm to break the secret key. Radioengineering, 2018,
vol. 27, no. 1, p. 289–298. DOI: 10.13164/re.2018.0289

[10] MAGHREBI, H., PORTIGLIATTI, T., PROUFF, E. Breaking cryp-
tographic implementations using deep learning techniques. Cryptol-
ogy ePrint Archive, Report 2016/921, 2016, p. 1–25. Available at:
https://eprint.iacr.org/2016/921

[11] CAGLI, E., DUMAS, C., PROUFF, E. Convolutional neural net-
works with data augmentation against jitterbased countermeasures -
profiling attacks without pre-processing. In Proceedings of the
19th International Conference on Cryptographic Hardware and
Embedded Systems (CHES). Taipei (Taiwan), 2017, p. 45–68.
DOI: 10.1007/978-3-319-66787-4

[12] PROUFF, E., STRULLU, R., BENADJILA, R., et al. Study of deep
learning techniques for side-channel analysis and introduction to AS-
CAD database. Cryptology ePrint Archive, Report 2018/053, 2018,
p. 1–45. Available at: https://eprint.iacr.org/2018/053.

[13] GOODFELLOW, I., BENGIO, Y., COURVILLE, A. Deep
Learning. Cambridge (USA): MIT Press, 2016. Available at:
http://www.deeplearningbook.org. ISBN: 0262035618

[14] BENGIO, Y. Learning deep architectures for AI. Foundations and
Trends in Machine Learning, 2009, vol. 2, no. 1, p. 1–127.
DOI: 10.1561/2200000006

[15] IOFFE, S., SZEGEDY, C. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Proceedings
of the 32nd International Conference on Machine Learning (ICML).
Lille (France), 2015, p. 448–456.

[16] SANTURKAR, S., TSIPRAS, D., ILYAS, A., et al. How does batch
normalization help optimization? arXiv, 2018, p. 1–26. Available
at: https://arxiv.org/abs/1805.11604

[17] SIMONYAN, K., Zisserman, A. Very deep convolutional networks
for large-scale image recognition. arXiv, 2014, p. 1–14. Available
at: https://arxiv.org/abs/1409.1556

[18] JARRETT, K., KAVUKCOUOGLU, K., RANZATO, M., et al.
What is the best multistage architecture for object recognition?
In Proceedings of the IEEE 12th International Conference on
Computer Vision (ICCV). Kyoto (Japan), 2009, p. 2146–2153.
DOI: 10.1109/ICCV.2009.5459469

[19] CHOLLET, F., et al. Keras: Deep Learning for Humans. Available
at: https://github.com/fchollet/keras

[20] ABADI, M., AGARWAL, A., BARHAM, P., et al.: TensorFlow:
Large-scalemachine learning on heterogeneous systems. arXiv, 2015,
p. 1–19. Available at: https://arxiv.org/abs/1603.04467. Software
available at: https://tensorflow.org

[21] RAWAT, W., WANG, Z., Deep convolutional neural networks for
image classification: A comprehensive review. Neural computation,
2017, vol. 29, no. 9, p. 2352–2449. DOI: 10.1162/neco_a_00990

[22] VAN DYK, D. A., MENG, X.-L. The art of data augmentation. Jour-
nal of Computational and Graphical Statistics, 2001, vol. 10, no. 1,
p. 1–50. DOI: 10.1198/10618600152418584

[23] IANDOLA, F. N., HAN, S., MOSKEWICZ, M. W., et al.
SqueezeNet: AlexNet-level accuracy with 50x fewer parame-
ters and <0.5MB model size. arXiv, 2016, p. 1–13. Available
at: https://arxiv.org/abs/1602.07360

[24] HOWARD, A. G., ZHU, M., CHEN, B., et al. MobileNets: Efficient
convolutional neural networks for mobile vision applications. arXiv,
2017, p. 1–9. Available at: https://arxiv.org/abs/1704.04861

[25] ZHANG, X., ZHOU, X., LIN, M., et al. ShuffleNet: An extremely
efficient convolutional neural network for mobile devices. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). Salt Lake City (USA), 2018, p. 1–9.
DOI: 10.1109/CVPR.2018.00716

About the Authors . . .

Shourong HOU was born in Shandong, China. He received
his B.Eng. from Xidian University in 2015. His research in-
terests include machine learning and side channel attack. He
is now a Ph.D. candidate at Shanghai Jiao Tong University.

Yujie ZHOU was born in Zhejiang, China. She received his
Ph.D. fromUniversity of Science and Technology of China in
1997. Her research interests include digital integrated circuit
design, embedded system and digital copyright protection.

Hongming LIU was born in Jiangxi, China. He received his
Ph.D. from Shanghai Jiao Tong University in 2014. His re-
search interests include chip design and machine learning.


