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Abstract. One of the important factors in real-time track-
ing of the moving radar targets is the speed of the algo-
rithm. In the multi-model particle filters (MMPFs) which is 
frequently preferred tracking of such targets, the numbers 
of particles and motion models are important parameters 
determining the speed of the filter. Reducing the number of 
particles and/or the model transitions processes as much 
as possible will facilitate real-time tracking of moving 
targets by accelerating the algorithm. In this study, for 
reducing the time cost of the MMPF, a new approach 
called weighted statistical model selection (WSMS) which 
reduces the number of model estimation calculations is 
proposed. A new basic MMPF algorithm that allows the 
use of the WSMS approach is also constituted. In order to 
evaluate the success of the WSMS; the MMPFs integrated 
with the WSMS, are simulated for different noise vari-
ances, particle numbers, and scenarios. The simulation 
results are compared based on processing time and pre-
diction error criterions. The results demonstrate that the 
WSMS approach increases the speed of the algorithm by 
reducing the processing time at high rates without any 
change in the prediction error and, thus it can be used in 
real-time tracking of the moving targets. 
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1. Introduction 
The radar systems have different infrastructures and 

a wide range of applications that focus on the target de-
tecting, positioning, tracking, etc. [1–3]. Therefore, the 
approaches used in the development of these systems are 
quite varied. In this context, tracking of moving targets is 
one of the important issues based on the estimation of the 
target location by using noise-based measurements. The 
possible maneuver of the target is tried to be estimated by 
using a system (motion) model and the measured values 
from the target. In the maneuvering target tracking problem 
that includes a nonlinear structure, the Kalman Filter (KF) 

which tries to resolve the problem by linearizing it, and the 
improved versions of this filter have been frequently used 
approaches [4–6]. Since the estimation performance of KF 
is weak for the nonlinear systems having non-Gaussian 
distribution, the use of particle filters (PFs), which is also 
known as the Monte Carlo (MC) filter approach, has come 
into prominence in the solution of these problems. In PF, 
nonlinear structures in the kinematic variables of the sys-
tem and/or measurements can be better estimated by using 
the samples (particles) from the state space [7–10]. 

For tracking a moving target, it is very important to 
identify all possible maneuvers of the target. However, 
there is no single model representing all possible move-
ments of a maneuvering target. In this case, multiple 
model-based approaches offering different models for each 
maneuver are used. Multi-model particle filters (MMPFs) 
are frequently used for this purpose [11–14]. The working 
principle of the MMPFs is generally to run all particles of 
the PF for each step in each model. However, this proce-
dure reduces the algorithm speed by increasing the com-
putational cost of the processing unit. For real-time track-
ing of targets, it is important that the algorithm is fast. 
Reducing the number of particles and/or models used in the 
estimation plays an active role in increasing speed. 

In recent years, there have been several studies trying 
to reduce the complexity of the processor or to increase the 
processing speed of MMPFs. Yang and Zhao added the 
probabilistic data relationship structure to the MMPF to 
overcome the measurement-related uncertainty and the 
increment in the process complexity [15]. The proposed 
approach is compared to a traditional PF for very low noise 
intensities (0.0001, 0.001 and 0.005) and 2000 particles. 
According to their results, the error performance of the 
proposed algorithm is better within all noises and, the pro-
cessing time is halved for 0.005 noise level. Another PF is 
developed by adding a gray estimation algorithm to stand-
ard PF [16]. This algorithm does not require a model 
approach and predicts the system state based on past meas-
urements. The results of simulation given for 1000 parti-
cles showed that the error performance of the proposed PF 
is approximately similar to that of MMPF and it uses about 
10% less time than MMPF. Hong et al. proposed a MMPF 
structure consisting of a statistical model for maneuvering 
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motion [17]. It is stated that, for the 0.01 noise level and 
1000 particles, the presented algorithm has similar error to 
traditional MMPF and lower processing time at resampling 
step. In another study, a novel MMPF based on composite 
sampling is presented [18]. The results of this study 
showed that the processing time performance of the pro-
posed filter is similar to the single model PF. 

In this study, a new model determination approach 
called the weighted statistical model selection (WSMS) 
algorithm is proposed for MMPFs. The proposed method 
determines the motion model to be used in the next estima-
tion step by using the statistical information obtained from 
previous model estimates. In this approach, the model 
calculation process is made for a specified model instead of 
all models so the processing time of MMPFs can be effec-
tively reduced. In the simulations, three MMPFs are tested 
on various conditions. The WSMS is integrated into two of 
these filters. The results are interpreted based on perfor-
mance criterions. 

2. Particle Filter 
The PF is used for estimation of posterior density 

function for target state in non-linear and non-Gaussian 
filter problems. By using the sequential MC estimation 
method in the PFs, it is tried to determine the posterior 
distribution using a large number of weighted particles that 
are samples taken from the state space. The particles are 
weighted according to the dynamics of the target and, the 
particles with high probability assumed to be closer to the 
object remain more in the system [9], [19]. 

For PF, the state and the observation (measurement) 
equations are given in (1) and (2), respectively. In (1), xk 

is 
state, uk 

is processing noise and fk(.) 
is system transition 

function. In (2), yk is observation vector, vk 
observation 

noise, hk(.) is observation function. fk(.) 
and hk(.) are non-

linear functions. k is the time variable in here. 

 ),(1 kkkk f uxx   (1) 

 ),( kkkk h vxy   (2) 

In order to approach the posterior distribution in the 
PF, the state density at k is expressed by M particles 
weighted by w. Weights indicate the importance of the 
particles. A random measurement with M particles at k is 
defined as in (3), where xk

(m)

 
is the m-th particle at k, x1:k

(m)

 
are the particles from time 1 to k, wk

(m)

 
is the weight of the 

particle at k. 
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The probability distribution function according to the 
observation values is as in (4). Here, M denotes the total 
number of particles (randomly generated and weighted), w 
is the weight of particle, x is the particle position, z is the 
observation value and the δ indicates the Dirac function. 
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There are three basic steps in the PF: Formation of 
particles (initialization), weighting (calculation/updating 
and standardization) and resampling.  

Formation of particles: The process of forming 
particles is made by using the importance density function 
q (5). Here, x and z represent state and observation values, 
respectively, and m is the number of particles at the k state  

 ( ) ( )
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Weighting: The calculation and standardization of the 
weights are made by importance sampling (6) that allows 
Bayesian filtering with the MC method. The distribution 
parameters are estimated by using the randomly selected 
particles of the posterior distribution [8, 9, 19]. The 
normalization is made by (7) 
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Resampling: Over time, the weights of selected parti-
cles increase and the others’ weights approach to zero. In 
this case, the representation of the posterior distribution 
with a small sample set reduces the estimation accuracy. 
To prevent this situation named deterioration phenomenon, 
resampling is done. In resampling, the low weighted parti-
cles are discarded from the sample set, and high weighted 
samples are duplicated in resampling. This process causes 
sample impoverishment problem and it can be prevented 
by adding noise samples that have small variance Gaussian 
distribution to new samples [8], [19]. The most commonly 
used resampling methods are systematic and sequential 
importance resampling (SIR). In this study, because of easy 
application, SIR method is used [20–22].  

3. The Motion Models 
In order to be able to follow the moving target in the 

best way, it is necessary to model the target movement and 
to obtain maximum information from the observations. The 
problem of moving target tracking is defined by the state-
space model consisting of two parts: the motion model (8) 
and the observation model (9) [20]  

 kkk
u
kkkk wnGuGxFx 1 , (8) 

 kkkk vxHz  . (9) 

In (8), Fk is state transition matrix, xk is state (prediction) 
vector, Gk

u is control input matrix, uk is control input vec-
tor, the wnk is process noise, and the Gk is process noise 
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matrix. In (9), Hk refers to the observation matrix, xk is the 
state vector, and vk is the observation noise. The movement 
of the target can be expressed by various models. The 
models used in this study are explained below.  

Constant velocity (CV): This model indicates that the 
target moves at a constant velocity on a straight line (10). 
Fk and Gk matrices are given by (11) and (12), respectively. 
∆t is the difference between the time t(k + 1) and tk [23]. 

 kkkkk wnGxFx 1 ,  (10)
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Constant acceleration (CA): In this model (13), the 
target moves with a constant acceleration and the accelera-
tion change is expressed by noise [20]. Fk is given by (14).  

 kkkk wn xFx 1 , (13) 
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Coordinated turn (CT): In CT model (15), the target is 
assumed to move with constant speed, constant altitude and 
constant angular rotation ratio (ω) [20], [23]. The state 
transition matrix is given by (16).  
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4. Multi Model Particle Filter  
All possible maneuvers of the target should be intro-

duced to the MMPF for correct tracking. The MMPF 
works by calculating all models introduced to the system 
for the k step and predicting the target state for the k + 1 
step. In this study, three MMPFs are evaluated to reveal the 
performance of the WSMS approach. The common feature 
of these MMPFs is that the calculations are made for all 
models (X model) and N particles (for each model) at each 
step. For this reason, X × N particles exist in the system 
during the calculation phase. After calculation, the number 
of particles is reduced back to N for the next step.  

Algorithm 1 (A1): According to A1, X × N particles 
at each step are weighted according to their fitness and 
Markov transition possibilities. In the resampling step, 
particles are selected according to their weight to reduce 
the number of particles to N again. A1 does not include 
a model prediction step, and with this feature, it carries the 
basic characteristics of a traditional MMPF [14]. 

Algorithm 2 (A2): In A2, N particles generated for 
each model propagate separately through all models for 
each step. At the importance step, particles are weighted 
and resampling is applied. Target’s location is predicted 
with division of the sum of all models estimations by the 
sum of particle weights which are obtained by resampling. 
Thus, A2 does not need model transition probabilities for 
determining the model and has a better processing time 
performance when compared to a traditional MMPF [17]. 

Algorithm 3 (A3): A3 is proposed in this study and 
has a simple approach. A3 uses the structure of A2 up to 
the prediction step. The prediction errors obtained for each 
model at the previous step are evaluated for model selec-
tion at the current step. A3 selects the model that has the 
least prediction error at the previous step. When the pre-
diction process is started, the system has total X × N parti-
cles and N prediction values belonging to the target loca-
tion. In order to determine which of the N predictions is 
correct, the amount of error between the prediction and the 
observation values at t – 1 is examined. Based on the as-
sumption that the movement will be more likely to con-
tinue with the model that has the least error, this model is 
used at time t. The Pseudo code for A3 can be summarized 
as follow: 

i = 1:N 
j = 1:X 

 Draw the particles from impotence density 
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 Normalize the X × N particles’ weights: 
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 Resample the particles with SIR 

 Take the observation value (angle and distance 
information from x and y coordinates) from the 
estimated value obtained for each model: 

 yx1tan ,

 

22 yxR   

 Calculate the error rates at time t – 1 for each 
model 

 Choose the model with the lowest error rate for t 
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5. Proposed Model Selection Approach 
In the MMPFs, which are frequently preferred in real-

time target tracking, decreasing the processing time is 
an important issue. It is necessary to keep the number of 
particles and/or the prediction operations at the optimum. 
In this study, the weighted statistical model selection 
(WSMS) algorithm aimed to perform the model estimation 
process with the least operation is presented. The WSMS 
algorithm chooses the most appropriate motion model for 
the target in each step and reduces the processing time by 
calculation for only selected model instead of all models. 
We are starting from the fact that the target, which starts to 
act following a motion model, must continue its movement 
with the same model during a period of time to complete its 
movement. From this point of view, the possibility of con-
tinuing the last motion model of the target will be high. 
The previous movement dynamics of the target are evalu-
ated statistically and included in the probabilistic evalua-
tion for predicting the next motion model. For model se-
lection, the error values are must be under the threshold 
value which is dynamically set at each time step. Consid-
ering that there are X models and N particles (for each 
model) in the MMPF, the total number of operations is 
X × N. The number of operations can be reduced to N with 
WSMS. This makes the MMPF faster up to X times. The 
WSMS algorithm includes the following steps: 

1. A window P is created and an error threshold is 
assigned. The minimum length of P is as the number of 
models defined in the system. 

2. The PF is operated as much as the number of 
models (X times).  
a) All models are calculated in each time step. 
b) The model has the least error at t – 1 is used at t. 
c) The information about the selected model for each step 
is stored in the P window created in point 1. 

3. When the first X time step is completed, the WSMS 
algorithm starts to work from step X + 1, where weighting 
and statistical information are used together for the model 
selection. 
a) The probabilities of the models are determined by con-
sidering the number of usages in the P. 
b) The weights of the models within the P are assigned by 
decreasing so that the last selected model has the largest 
weight. 
c) The weights and the probabilities of the models are 
multiplied and the multiplication results are summed for 
each model. 
d) The model with the largest total value is selected and the 
calculation is made for only this model at the next step. 

4. The information about the selected model is saved 
at the P and the target position is estimated by using this 
model. 

5. The error between the actual observation and the 
estimated values is calculated for the current step. 

6. The size of P and threshold are updated. 

7. The error value is compared to the threshold. 

8. As a result of this comparison;  
a) If the error value is smaller than the threshold, the algo-
rithm goes to 3a). 
b) If the error value is higher than the threshold, the calcu-
lation for the next step is done for all models. The model 
that has the least error is selected and stored to the P win-
dow. The algorithm goes to 2a).  

In the WSMS algorithm, if the threshold is greater 
than the current error, then the threshold is updated with 
current error value for the next step. If the threshold is less 
than the current error, then the same threshold value is used 
in the next step. So, the threshold is always equated to the 
smallest error value obtained from operations. In this case, 
after a while, the current error values will always be higher 
than the threshold; therefore, the WSMS algorithm will 
lose its function and all motion models will need to be 
calculated for all remaining steps. To avoid this situation, it 
is necessary to prevent the threshold dropping below 
a certain value, an inferior threshold is used. The too-small 
inferior threshold will cause the proposed approach to lose 
its effectiveness, and the large values will lead to decreas-
ing in model estimation accuracy. Therefore, it is appropri-
ate to determine the inferior threshold with an intuitive 
approach; it is recommended to select between 0.05 and 
0.1. In the case of an interruption in the target tracking in 
some way, the PF cannot correctly weight the particles. In 
this condition, according to the proposed algorithm, be-
cause the error value will be higher than the threshold, all 
models need to be calculated for the next step. 

The WSMS works based on the statistics of the usage 
of models selected in previous steps. In order to obtain 
a statistic, the algorithm needs to work for several times. 
Initially, it is suggested that the window size should be at 
least equal to the number of models. The initial window 
size does not affect the processing speed of the algorithm 
because WSMS is activated after the algorithm runs up to 
the number of models and, the window size begins to be 
updated. So, the initial window size will already change 
after a few steps. However, the initial window size affects 
the new window size at updating step. The window size is 
also updated according to the comparison between the 
threshold and the observed error. If the current error is 
smaller than the threshold, then the window is enlarged as 
much as "current window size/number of models", if not, 
then the window is reduced at the same rate. Since the 
window size is used to determining model probabilities, it 
should not be forgotten that the large selections can lead to 
incorrect model estimation especially for dynamic routes. 

An example of the WSMS operation is given below. 
For a stored window with P = 10 elements, WP refers to 
model weights (WP >…> W4 > W3 > W2 > W1), and Mi refers 
to model type (i: model number). The selected models and 
the weights assigned by decreasing from the last to the 
first, are given at the first and second rows of Tab. 1, 
respectively. 

At first, the model probabilities (MP) in the window 
are calculated. Here; the probability of M2 is 0.4, the proba- 
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Mi M2 M2 M2 M2 M1 M1 M1 M3 M3 M3 ?

WP 1 2 3 4 5 6 7 8 9 10 - 

MP 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 - 

WMP 0.4 0.8 1.2 1.6 1.5 1.8 2.1 2.4 2.7 3 - 

Tab. 1.  Model weighting. 

bility for M1 and M3 is 0.3 (Tab. 1, 3rd line). The weighted 
model probabilities (WMP) are obtained by multiplying the 
weights and the probabilities (Tab. 1, last line). For each 
model, these values are summed and the total weighted 
model probabilities are found as 5.4, 4 and 8.1 for M1, M2 
and M3, respectively. In this case, the WSMS will select M3 
which has the largest total probability for the next step. 
Thus, instead of calculating all models at the next step, 
only calculation of M3 will be sufficient. 

6. Implementation and Results  
The noise in target tracking is the most important 

factor increasing the amount of error. Increasing the num-
ber of particles reduces the amount of error, but increases 
the processing time. The effects of MMPFs and WSMS 
approach, on the target tracking accuracy and the pro-
cessing speed, are investigated for four noise levels and 
several particle numbers. The WSMS is integrated to two 
MMPFs (A2 and A3) as a model selection method. Since 
the structure of A1 has not model the prediction step, the 
WSMS cannot be integrated into A1. The simulations are 
performed on three scenarios (S1, S2 and S3) by using 100 
MC runs for 2D tracking. S3 is more difficult and dynamic 
than the others. S2 and S3 have four motion models alt-
hough S1 has three. The performances of MMPFs are 
evaluated according to the root mean square error (RMSE) 
and processing time. The RMSE for each simulation is 
given by averaging the RMSE values obtained from each 
MC run. In the simulations, the initial window size is set to 
10 for the first two steps and the threshold is set to 0.07 for 
the first (number of models) steps. After these steps, the 
window size and error threshold are dynamically updated. 
The other simulation parameters for all scenarios are as 
follows:  

 Sampling interval: 1 s. 

 Total number of steps: 100. 

 The noise variance: σ² = 0.01, 0.1, 0.15 and 0.2. 

 Number of particles: 1000, 3000, 5000 and 7000. 

 Models: Combination of CV, CA and CT models. 

 Observer (S1, S2, S3): (–6, 12), (4, 10), (–3, 16). 

 Target maneuver area (km²) (S1, S2, S3): 196, 116, 665. 

6.1 The Results of Simulations 

Simulations are realized for five algorithms (A1, A2, 
A3, A2+WSMS, A3+WSMS). The tracking results from 
one simulation with 100 MC runs (σ² = 0.15 and 5000 parti- 

 
(a) 

 
(b) 

 
(c) 

Fig. 1. The results of target tracking a) S1, b) S2, c) S3. 

 
Fig. 2. RMSE for S3. 
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Number of Particles N = 1000 N = 3000 N = 5000 N = 7000 
Algorithms Noise Level RMSE t RMSE t RMSE t RMSE t 

A1 

σ² = 0.01 0.2259 1.3814 0.1012 5.8019 0.0946 12.6163 0.0928 21.9441 
σ² = 0.1 1.2597 1.3586 0.8736 5.8333 0.8342 12.7216 0.7214 21.9434 
σ² = 0.15 2.8748 1.4716 1.8862 5.6207 1.6265 12.3564 1.6175 21.1936 
σ² = 0.2 5.5993 1.7706 2.7044 5.5141 2.5273 12.2517 2.3059 21.0791 

A2 

σ² = 0.01 0.2541 0.6933 0.2171 1.8217 0.2115 3.0021 0.2021 4.1009 
σ² = 0.1 0.5311 0.6374 0.5082 1.7137 0.4839 2.8577 0.4838 3.7804 
σ² = 0.15 0.8901 0.6327 0.6951 1.6868 0.7010 2.7723 0.6810 3.8148 
σ² = 0.2 1.1428 0.5962 1.0299 1.6176 0.9910 2.6415 0.9276 3.6122 

A3 

σ² = 0.01 0.2590 0.6858 0.2109 1.8078 0.2042 2.9503 0.1944 4.3019 
σ² = 0.1 0.5347 0.6362 0.4977 1.7061 0.4906 2.8138 0.4764 4.0644 
σ² = 0.15 0.8610 0.6185 0.7039 1.6484 0.6945 2.6806 0.6999 3.6851 
σ² = 0.2 1.1831 0.5977 1.1602 1.5964 0.9872 2.5837 0.9647 3.5766 

A2+WSMS 

σ² = 0.01 0.2768 0.5527 0.2066 1.3597 0.2056 2.1834 0.2061 3.0242 
σ² = 0.1 0.5476 0.6083 0.4861 1.5182 0.4710 2.5156 0.4717 3.4567 
σ² = 0.15 0.8582 0.5576 0.7310 1.5189 0.6939 2.4221 0.6816 3.3481 
σ² = 0.2 1.2311 0.5533 0.9899 1.5168 1.0120 2.3126 0.9128 3.4886 

A3+WSMS 

σ² = 0.01 0.2605 0.5406 0.2066 1.3246 0.2091 2.0404 0.1872 3.2045 
σ² = 0.1 0.5182 0.5823 0.4921 1.5299 0.4816 1.7613 0.4882 2.5310 
σ² = 0.15 0.8843 0.5240 0.6864 1.5108  0.6760 2.4217 0.6659 3.3286 
σ² = 0.2 1.2023 0.5516 1.0072 1.4658 1.0456 1.7234 1.0515 3.1746 

Tab. 2. Simulation results for S3. 

cles) are given in Fig. 1 for three scenarios. The RMSE 
graphs obtained from S3 is presented in Fig. 2. The RMSE 
and processing time (t) performances obtained from S3, 
which is the most dynamic scenario compared to the oth-
ers, are presented in Tab. 2. The comparisons of the algo-
rithms for the results in Tab. 2 are given below. The results 
obtained from S1 and S2, which are similar and slightly 
better than those of S3 in some cases, are also expressed. 

In A1, as the number of particles and the levels of 
noise increases, the processing time and the RMSE greatly 
increase when compared to those in A2 and A3. It is said 
that A2 and A3 work more efficiently than A1. In compari-
son of A1 and A3, A1 has good error performance for only 
0.01 noise level; in all other cases, A3 yielded better results 
that are ranging from 34% to 79% (S1: 44–76%, S2: 42 to 
78%) for RMSE and 50% to 83% (S1: 51–83%, S2: 49 to 
83%) for processing time. In A1 and A3+WSMS compari-
son, at the lowest noise level, A1 has better RMSE than 
A3+WSMS, but has a worse performance with up to 85% 
for processing time. For all other noises and particle num-
bers, A3+WSMS has a better performance than A1 at 
an average of 57% (S1: 60%, S2: 59%) for RMSE and 
77% (S1: 77%, S2: 81%) for processing time.  

In the processing time comparisons for A2 and 
A2+WSMS, for all particle numbers, WSMS provided 
a decrement of an average of 25%, 9%, 12% and 7% 
(S1: 40%, 24%, 15% and 14%, S2: 40%, 27%, 16% and 
12%) at the 0.01, 0.1, 0.15 and 0.2 noise levels, respec-
tively. In the RMSE comparisons, WSMS caused an insig-
nificant increment of an average of 0.12% (S1: 0.9%, S2: 
0.22%) for all cases. It can be said that the prediction error 
remains the same. A2 and A3 have similar responses in all 
cases. A3 has slightly better performance than A2, at 
an average of, 0.62% (S1: 0.71%, S2: 1.3%) in RMSE and 
0.55% (S1: 0.45%, S2: 1.96%) in processing time.  

In point of the processing times of A3 and 
A3+WSMS; 26%, 24%, 11% and 15% (S1: 41%, 24%, 
17% and 15%, S2: 38%, 25%, 19% and 21%) improve-
ments are achieved at an average for noise levels of 0.01, 
0.1, 0.15 and 0.2, respectively, with the WSMS integration. 
For all cases, the RMSE improved by 0.64% (S1: 3%, 
S2: 0.1%), on average. It can be said that WSMS does not 
create any significant change in the RMSE, and it provides 
an increment in the processing speed performance by 19% 
(S1: 24%, S2: 24%), on average. 

When A2+WSMS and A3+WSMS are compared for 
all cases, A3+WSMS has a performance increment of 
0.11% (S1: 0.2%, S2: 1%) in the RMSE and 7% (S1: 1%, 
S2: 3%) in the processing time, on average. It is seen that 
these two algorithms produce similar results and 
A3+WSMS works slightly better than A2+WSMS. 

When the results in Tab. 2 are evaluated graphically, 
the effect of WSMS on A2 and A3 can be better seen. The 
graphics do not include A1 because it has the worst values 
for both performances. The RMSEs and processing times 
for all particle numbers at the noise level σ² = 0.15 are 
given in Fig. 3(a) and (b), respectively. Referring to 
Fig. 3(a), it is seen that A3+WSMS has the least error in all 
particles except 1000. With the WSMS, the RMSE perfor-
mance of A3 improved by about 2%, but there is no 
significant change for A2 (0.16% increment only). A2 and 
A3 exhibit similar performances in RMSE, whereas 
A3+WSMS is 2% better than A2+WSMS. WSMS de-
creases the processing time by approximately 12%, 10%, 
13% and 12% in A2, and 15%, 8%, 10% and 10% in A3 
for 1000, 3000, 5000 and 7000 particles, respectively 
(Fig. 3(b)). 

Figures 4(a) and (b) show the RMSEs at all noise lev-
els for 1000 and 7000 particles, respectively. By integrat-
ing the WSMS, the RMSEs for 1000 particles are increased 
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Fig. 3.  Prediction error (a) and processing time (b) values for 
all particle numbers at noise level of  σ² = 0.15. 

 
(a) 

 
(b) 

Fig. 4.   RMSEs for all noise levels a) N = 1000, b) N = 7000. 

by 4% in A2 and 0.5% in A3, on average (Fig. 4(a)). For 
7000 particles, with the WSMS, the RMSE performance 
increased by 0.5% in A2, and decreased by 0.7% in A3, on 
average (Fig. 4(b)). As a result, the WSMS has no negative 
effect on the RMSE. 

The processing times at all noise levels for the 1000 
and 7000 particles are also given in Fig. 5(a) and (b), 
respectively. For both particle numbers, the WSMS 
increases the processing time performances of A2 and A3. 
With WSMS integration, for 1000 particles, processing 
times decrease by 20%, 5%, 12%, 7% in A2, and 21%, 9%, 
15%, 8% in A3 for the noise levels of 0.01, 0.1, 0.15, 0.2, 
respectively (Fig. 5(a)). For 7000 particles, WSMS 
decreases processing times as rates of 26%, 9%, 12% and 
4% in A2, and 26%, 38%, 10% and 11% in A3, for the 
noise variances of 0.01, 0.1, 0.15, 0.2, respectively 
(Fig. 5(b)). According to these results, WSMS provides 
significant performance improvement in processing time. 

 
(a) 

 
(b) 

Fig. 5.  Processing times for all noise levels a) N = 1000,  
b) N = 7000. 

7. Discussion and Conclusion  
In this study, a new motion model selection approach 

(WSMS), which is developed to use in the model predic-
tion step of MMPFs, is proposed. The WSMS proceeds by 
selecting the most suitable model by weighting the model 
probabilities on a window. The calculation is only made 
for the selected model instead of all models in the system. 
Thus, the processing time is reduced by decreasing the 
time-consuming cost.  

Looking at the results, it is seen that A1 is quite weak 
against noise when compared to others algorithms. In terms 
of processing time, the performance of A1 is the lowest in 
all cases. A2 and A3 demonstrated similar performances. 
The results show that, the WSMS is successful in reducing 
processing time. In A2, the WSMS decreased the pro-
cessing time by up to rates of 44%, 41%, 27%, for S1, S2, 
S3, respectively. The using of A3 with WSMS signifi-
cantly improved the processing time performance by up to 
rates of 51%, 45%, 38%, for S1, S2, S3, respectively. Fur-
thermore, WSMS has no significant effect on the predic-
tion error. As a result, A3+WSMS gives better results than 
A2+WSMS for time performance. 

In point of the scenarios, the results obtained from S1 
and S2 are similar in most cases. The results of S3 are 
slightly worse than those of others. Although the number 
of models in S2 and S3 is the same, the results of S2 are 
slightly better than those of S3. This situation can be inter-
preted that the performance of the proposed algorithm 
depends on the dynamic of the target motion being moni-
tored (scenario). This also applies to all target tracking 
filters. It is a common result that the performance of the 
filter reduces as the scenario becomes difficult. In dynamic 
scenarios, RMSE can often fall below the threshold and, in 
this case, the proposed algorithm will calculate all models, 
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so that, the speed of the algorithm may decrease as the 
number of models increases. In this study, the results 
obtained for a challenging scenario are quite successful. As 
a result, the WSMS algorithm, whose activity is clearly 
seen on the processing time, is available in real-time 
tracking of moving targets.  
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