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Abstract. This paper presents a new approach for vari-
ability analysis of microwave devices with a high dimension
of uncertain parameters. The proposed technique is based
on modeling an approximation of system by its poles and
residues using several modeling methods, including ordinary
kriging, Adaptive Polynomial Chaos (APCE), and Support
Vector Machine Regression (SVM). The computational cost
is compared with the traditional Monte-Carlo method. To
improve the efficiency, mesh deformation is applied within
3D FEM framework.
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1. Introduction
One of the main challenges in designing high frequency

microwave filters is predicting the impact of the physical pa-
rameters and geometrical variability on their performance
in micro-scale fabrication. The rapid development of 3D-
printing technologies gives one great flexibility on device
geometry but also is connected with limited accuracy of the
manufacturing process. For example, Selective Laser Melt-
ing (SLM) technology can be used in 3D printing of RF
components, while covering the wide range of materials that
can be processed, including aluminum, titanium, and steel al-
loys the manufacturing accuracy range varies from 0.02mm
to 0.1mm depending on the specific material used [1]. This
variability is an unavoidable part of the manufacturing pro-
cess and it leads to slight changes of the dimensions of the
physical devices, which brings uncertainty of the response
of the microwave components. Traditionally, Monte-Carlo
(MC) simulations have been used in the commercial circuit
and electromagnetic simulations for predicting the statisti-
cal distribution of the component and system-level perfor-
mance [2–5]. However, the slow convergence for the MC has
become a computational burden, especially in simulations

of large and complex circuits. This fact has prompted wide
interest in exploring alternative approaches to the problem
of statistical analysis of the performance of electronic de-
vices. Recently some intrusive methods using generalized
Polynomial Chaos (PC) have been reported to overcome MC
problems [6–8]. Intrusive methods generally lead to a cou-
pled system of equations by modification of the system fun-
damental equations, which is very time consuming to solve
with respect to the original problem when the dimension of
uncertain parameters is high [9]. Alternatively, there are non-
intrusive methods that treat the original system of equations
as a black-box, and there is no need to change the funda-
mental system equations. As a result, they are easier to im-
plement, comparing to intrusive methods [9]. For problems
with higher dimensions, non-intrusive hierarchical sparse PC
approaches have been used, which the PC expansion terms
are reduced based form of conventional full-blown PC expan-
sions in general [10–14]. For eliminating the computational
cost of model construction due to the large size of PC expan-
sions, in [14], a new approach has been presented, which ends
up in lower PC expansion with keeping the model accurate.
However, the technique needs a large number of training sam-
ples for the PC black-box model to be trained. In [15] Least
Square Support Vector Machine method (LSSVM) for mod-
eling variability analysis of a system with a large number
of uncertain parameters has been adopted, while the com-
plexity of the black-box model is generally lower than PC
based methods, it still needs a large set of training samples.
Usually for creating a surrogate model of microwave circuits
the values of the device’s scattering parameters at selected
frequency points are considered [16], [17]. Recently, several
approaches based on the characterization of rational models
have been presented [18–20]. In [19], neural networks are
trained to learn the relationship between residues and poles
of the rational model approximating scattering matrix and
the geometrical parameters. In this approach, still many full-
wave response samples were needed to train the system to
achieve reasonable accuracy. In [20] the efficiency of creat-
ing the surrogate model using the rational representation of
the system has been proved for a large amount of deviation
of uncertain parameters with a smaller set of training sam-
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ples. However, the process of building the model is complex,
because the approach considers the zeroes of the system in
addition to the poles and residues as well. Moreover, the pro-
cess of vector fitting is more complex than what is proposed
in this paper. In [20] to obtain more accuracy for surrogating,
the order of vector fitting is chosen to be higher than needed.
Therefore, the insignificant poles should be discarded, which
makes the process of building the model of the system more
complicated. The central issue in applying the non-intrusive
variability analysis methods to the complex microwave sys-
tems is the computational cost of generating proper samples
for training the black-box model of the system. Usually,
the training samples are generated using an Electromagnetic
(EM) simulator, and the cost of generating every single sam-
ple (that corresponds to single EM simulation) is very high,
especially for a device with a large number of inputs or ran-
dom parameters. In the case of microwave filters, the 3D fi-
nite element method in frequency domain is commonly used
as a simulation tool. Therefore, it is essential to train the
black-box model with a lower number of training samples to
make the complete uncertainty analysis faster. Moreover, the
complexity of building the model with respect to its accuracy
is another topic of interest.

In this paper, the training samples for creating the black-
box model of the system are generated by InventSim, a full-
wave 3D FEMEM simulator [21]. The simulator was used to
calculate scattering matrix parameters of a microwave filter
for a given set of frequency points and a set of slightly dis-
turbed values of its geometrical parameters. A set of poles
and its corresponding residues of the calculated scattering
matrix was then used as the training samples required to
build a surrogate model of the original system. There are
many toolboxes which allow constructing such a model, e.g.
Polynomial Chaos, kriging, Support VectorMachine Regres-
sion. Moreover, there are several MATLAB toolboxes avail-
able for this purpose, such as UQLAB [22], LSSVM [23]
and SUMO [24]. In this paper, the models are computed
using UQLAB Toolbox in MATLAB by applying kriging
method [25]. Then they are compared with Adaptive Sparse
PC [26] and Support Vector Machine Regression [27] meth-
ods using UQLAB toolbox with respect to model accuracy
and computational cost. If the output is the component re-
sponse in the form of the scatteringmatrix, a simpleway to do
the variability analysis is tomodel themagnitude of scattering
parameters at each frequency point. To build a high-quality
model of the microwave filter, one may need to provide the
response for many frequency points. However, in such an ap-
proach (hereinafter called theDirectmethod), doing themod-
eling for many frequency points is time-consuming. In this
paper, an advanced technique for prediction of the behavior
of complex systems, by modeling their residues and poles,
will be discussed. It will be shown that by using only a few
tens of training samples, a low-cost model can be built and
trained to follow the behavior of the black-box microwave
system with a large number of uncertain parameters.

The remainder of the paper is organized as follows: Sec-
tion 2 presents mathematical background on different surro-
gating techniques. Two different approaches for modeling
an approximation of system are described in Sec. 3 and 4.
In Sec. 5, two different ways of sampling using InventSim
software are discussed. The concepts introduced are then
verified and compared together by experiments in Sec. 6,
which is followed by the conclusion in Sec. 7.

2. Surrogating Modeling Techniques

2.1 Kriging
Kriging is a well-known interpolation technique, which

is used in the deterministic simulation. Let us assume that
variability analysis will be performed by changing d physi-
cal and geometrical parameters of the microwave device and
that properties of this device are represented by a scatter-
ing matrix S.1 The black-box model of this device can be
built using K training samples. ith training sample (xi,yi)
is a pair of an input vector xi and output vector yi . Input
vector xi = [x1, x2, ..., xd] contains values of the mentioned
d parameters. Output vector xi for a Direct method con-
tains scattering matrix parameters for all required frequency
points and for a Residue-Pole method yi it contains values
of the residues and poles. The system can be modeled using
the basic type of kriging technique, which is named ordi-
nary kriging. Mathematical description of ordinary kriging
includes the definition of correlation matrix ψ(x,x∗; θ). This
matrix is symmetric and positive semi-definite and represents
the correlation between vector of observation points x (train-
ing data points) and vector of prediction points x∗ (evaluation
data points). The size of this matrix is the K × K . For the
purpose of this article the correlation family is chosen to be
Gaussian, therefore the correlation matrix is defined by (1),

ψ(x,x∗; θ) =
d∏
i=1

[
exp

[
−

1
2

(
|x − x∗ |

θ

)2
] ]

(1)

where θ is the optimal hyper-parameter [25], exp is exponen-
tial function. Correlation matrix defined in (1) is used in the
definition of the ordinary kriging equation (2), [25], [28].

ModelKrig(x) = β + γ(x)Tψ−1(y − β1) (2)

with
β = (1Tψ−11)1Tψ−1y (3)

where 1 is a K-dimensional vector with each element be-
ing the value 1, β is the constant mean function, γ - the
K-dimensional vector of cross-correlations (similarities) be-
tween the prediction point and each one of the observation
points, AT denotes the transpose of matrix A.

1In this paper symbols which represent matrices are written using bold capital letters and vectors using bold small letters.
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2.2 Adaptive Sparse Polynomial Expansion
This section presents a quick overview on the advanced

sparse PC expansion concepts and mathematical descrip-
tions. Considering xi = [x1, x2, ..., xd] in d dimensions, the
PC expansion of the model can be written as

y = MPC(x) =
∑
ζ∈Nd

aζφζ (4)

where aζ are the unknown deterministic coefficients and φζ
are the multivariate polynomials which in this paper they are
considered as Hermite polynomial. In the normal expansion
the number of total terms is,

H =
(d + h)!

d!h!
(5)

where d is the dimension of the input vector x and h is the
highest degree of polynomial [29]. In the case of high dimen-
sional input, the number of PC terms increases very fast and
it is almost impossible to use all the terms due to the large
size of the model expansion. Usually in PC expansion all of
the basis are not needed and in order to make the expansion
more efficient in high dimensional problem, the basis of the
expansion could be reduced by hyperbolic truncation (6),

A
d,h
k
= {ζ ∈ Nd : ‖ζ ‖q =

(
d∑
i=1

ζ
q
i

)1/q

≤ h} (6)

where the q is the hyperbolic term and 0 < q < 1. In this
method the degree of polynomials will be increased adap-
tively and regression method is chosen to be Least Angel
Regression (LARS). For detailed information a reader may
refer to [26], [29]

2.3 Support Vector Machine Regression
To approximate a problem provided by a generic black-

box system, containing a set of K training data {(xi,yi)}Ki=1
y = ModelSVM(x) with input parameters xi = [x1, x2, ..., xd],
the system can be modeled by using the following nonlinear
SVM regression:

y = ModelSVM(x) = wTx + b (7)

wherew is a vector of weight coefficients and b is an offset pa-
rameter. To find the best combination of the parameters (w, b)
in (7), the following loss-function should be minimized by:

|yi − ModelSVM(xi)|ξi (8)

=

{
0, if |yi − ModelSVM(xi)| ≤ ξi

|yi − ModelSVM(xi)| − ξi, otherwise.
(9)

Fig. 1. Graphical representation of SVM concept.

For minimizing (9), the below optimization problem
can be solved,

minimize
1
2
‖w‖2 + C

K∑
i=1
(ξi + ξ

∗
i ) (10)

subject to


yi − wTxi − b ≤ ξi + ξ∗i
wTxi,+b − Yi ≤ ξi + ξ∗i
ξi, ξ

∗
i ≥ 0, for i = 1, . . . ,K

(11)

where ξi and ξ∗i are slack variables, which measure the de-
viation from the insensitive tube and C is a regularization
parameter, which provides a trade-off between the accuracy
of the model and its flatness. The concept is shown in Fig. 1,
readers may refer to [27], [15] for more detailed information.

3. Standard Approach: Direct Method
With the filter optimization parameters as an input of

the system, if the desired output is the magnitude of scat-
tering parameters, the training input matrix of the model is
defined as follows:

XK×d
Training =


g1,1 g1,2 ... g1, d
...

...
...

...
gK,1 gK,2 ... gK, d

 (12)

where,
gi, j - value of the j th optimization parameter for th training
sample, i ∈ {1,2, ...,K} and j ∈ {1,2, ..., d},
K - number of training samples and number of rows of the
input matrix,
d - number of physical and geometrical parameters and num-
ber of columns of the input matrix.
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In Direct-method, the output of the system should be
evaluated at each frequency point. The training output is
defined as a matrix YK×[NS ·Nf ]

Direct in (13).

YK×[NS ·Nf ]
Direct =

[
|S11|K×Nf , |S12|K×Nf , . . . , |SNN|K×Nf

]
(13)

with

|SIJ|K×Nf =


|SI J1, f1 | . . . |SI J1, fNf

|

...
...

...
|SI JK , f1 | . . . |SI JK , fNf

|

 (14)

where,
N - the number of rows of the scattering matrix S,
NS - the number of S parameters in the scattering matrix,
NS = N2,
fp - the pth frequency point,
Nf - the number of frequency points,
SIJ - the elements at I th row and J th column of the scattering
matrix S,
|SI Jk , fp | - the magnitude of SI J at k th sampling point and fp
frequency.

Figure 2 shows a block diagram representation of rela-
tion between input and evaluated output for a single training
data.

3.1 An Example for Relation between Input and
Output in Direct Method

For example, if a scattering matrix is S =
[
S11 S12
S21 S22

]
and Nf = 501, then N = 2, and NS = 4. For a set of 40
training samples (K = 40) X40×[4·501]

Training (each sample is rep-
resented by a single row in the XTraining matrix), there will
be NS · Nf = 4 · 501 = 2004 number of independent outputs
for the Direct-method for every set of training samples (the
number of columns of YDirect would be equal 2004 for this
example in (13)).
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Fig. 2. Block-Diagram representation of input and evaluated out-
put relation ofDirect-method for a single set training data.

4. Proposed Residue-Pole Method
Scattering parameters can be represented as rational

function of the poles and the corresponding residues of the
system. For given frequency response in frequency domain,
the residues and poles can be calculated using Vector Fitting
method [30–32]. In this approach, each element of the entire
scattering matrix S is approximated as (15),

SI J( f ) ≈
OVF∑
i=1

ri IJ

s − pi
(15)

where,
pi - ith pole of the system,
r IJi - ith residue of the SI J,
s - the complex frequency,
OVF - the order of vector fitting, which means there are OVF

2
pairs of complex conjugated residues and poles.

In the variability analysis using Residue-Pole method
(RP), the set of residues and poles calculated using Vector
Fitting method defines an output matrix YRP of the model
of the system. Instead of modeling the absolute value of
S-parameters directly for all frequency points, the values of
residues and poles are going to be modeled. In this approach,
first, a few tens of full-wave responses are generated using
an EM simulator, then, by initializing OVF=2, the process of
vector fitting starts. The order of vector fitting is increased
adaptively till the accuracy of the rational representation of
the scattering parameters is acceptable, and with the mini-
mum amount of OVF the process of vector fitting stops to
avoid modeling of unnecessary poles and residues. Consid-
ering the same input for both models, the size of the output
matrix of the Residue-Pole method, defined in (16), is much
smaller in comparison with the Direct method because there
is no need to model the system at each frequency point. The
size of the output matrix of the Residue-Pole method is equal
K ×[OVF · (NS+1)], and it is not dependent upon the number
of frequency points.
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Fig. 3. Block-Diagram representation of relation between input
and evaluated output of Residue-Pole-method for a single
set of input.
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YK×[OVF ·(NS+1)]
RP =

[
Re[RK×[(

OVF
2 )·NS]] ,

Im[RK×[(
OVF

2 )·NS]],

Re[PK×[(
OVF

2 )]],

Im[PK×[(
OVF

2 )]]

]
(16)

with

RK×[(
OVF

2 )·NS] =
[

R11,R12, . . . ,RNN
]
, (17)

(18)

RIJ =



rIJ1

rIJ2
...

rIJK


, (19)

(20)

PK×[(
OVF

2 )] =


p1
...

pK

 (21)

where,
Re[...] and Im[...] denote the real and imaginary part of
a complex vector or matrix,
rIJ
k

- a row vector of complex residues of the SIJ for the k th

training sample (length of the vector is OVF
2 ),

RIJ - a matrix of complex residues of the SIJ for all training
samples (size of the matrix is K × OVF

2 ),
pk - a row vector of complex poles which is common to all
scattering parameters calculated for the k th training sample
(length of the vector is OVF

2 ),
N is the number of rows of the scattering parameter matrix S.

Size of YRP depends on the order of Vector Fitting,
OVF. In this method, OVF is always an even number because
the system has OVF

2 pairs of complex conjugate poles and
residues. Because of this property model can be built using
only half of the number of residues and poles (only one com-
plex value from a complex pair is required). In the result, the
dimension DYRP of the YRP is defined in (22). Multiplication
by two in (22) denotes number of variables in the complex
number. Dimension of the YRP is,

DYRP = K × [
OVF

2
· (N · N + 1) · 2]. (22)

Simplification of (22) is defined in (23).

DYRP = K × [OVF · (NS + 1)]. (23)

Figure 3 shows a block diagram representation of re-
lation between input and evaluated output of Residue-Pole-
method for a single set of input.In the next step, the state

space equation can be calculated for all frequency points at
once. Therefore, the entire scattering matrix S can be de-
fined in a matrix equation (24). It should be noted that the
in (24), E and D matrices of state space equation definition
are neglected.

S ≈ C(sI − A)−1B (24)

where,
A - a diagonal matrix of complex conjugated poles of the
transfer function ( size of the matrix is (N ·OVF)× (N ·OVF)),
C - a matrix of corresponding residues of the transfer func-
tion ( size of the matrix is N × (N · OVF)),
s - the complex frequency,
I - the identity matrix ( size of the matrix is (N ·OVF) × (N ·
OVF)).
B - port selector matrix with value 1 for each port (size of
the matrix is (N · OVF) × N).

4.1 An Example for Relation between Input and
Output in Residue-Pole Method
For example, if a residue matrix is R =[

R11,R12,R21,R22] then in the (22), N = 2 . If we con-
sider OVF = 16, with respect to the (23), and K = 40, the
size of output will be:

DYRP = 40 × (16 · (2 · 2 + 1)) = 40 × 80.

5. Sampling Method for Generation of
a Training Set
There are several methods for the generation of training

set information. In this paper, the source of design uncer-
tainties is introduced by selected design parameters of the
filter structure. The variability is defined as the functions of
normalized Gaussian random variables, and the samples are
gathered by the Latin Hypercube Sampling method (LHS).
The training set is generated by running simulations in In-
ventSim software. Inputs of the system are geometrical pa-
rameters for a filter, and the outputs are S-Parameters that
result from the full-wave simulation. There are two ways for
perturbation simulation using InventSim. The first method
is setting new values of inputs and creating the mesh for the
filter from scratch, then calculating the desired output. By
repeating the simulation (using FOR loop), a desired experi-
mental design is generated. The disadvantage of this method
is its computational cost due to creating a complete mesh in
every simulation. Another way is to use the mesh morph-
ing technique. In this method, the mesh will not be created
from scratch in every simulation, and it will be adjusted with
respect to the difference of the mean values of inputs and
new values for the next simulation (a new sample for the
inputs) [33], [34].
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6. Numerical Examples
In this section, the performance of the Direct and

Residue-Pole approaches with three different techniques for
modeling is compared for the variability analysis of mi-
crowave filter in example 1. It will be shown that ordinary
kriging modeling technique has the best accuracy among the
other methods. In example 2, the efficiency of the Direct and
RP approaches is compared using ordinary kriging modeling
method only, which has the best accuracy with respect to
APCE and SVM modeling techniques.

6.1 Example 1: Waveguide Filter
As the first example, the third order H-plane rectangu-

lar waveguide filter with the center frequency of 10.25GHz
and the bandwidth of 500MHz is presented. The microwave
filter is shown in Fig. 4 and has defined d = 8 uncertain geo-
metrical variables, that control the lengths of the resonators
and coupling irises.

The nominal values of optimized geometrical parame-
ters of filter are considered to have a deviation by a span of
−180 to +180 microns by Gaussian distribution with a stan-
dard deviation of σ = 0.06 in millimeters. The simulation
has been done for Nf = 401 frequency points. Only K = 20
samples are used for training the model of the system using
kriging, Adaptive PCE, and SVM methods. The results are
compared with Nval = 500 validation samples set, which is
generated by InventSim by MC method.

Fig. 4. Waveguide filter.
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Fig. 5. Accuracy comparison of Residue-Pole method and Di-
rect method implemented with kriging, APCE and SVM
for S11 of example 1.

6.1.1Comparison of Proposed Residue-Pole Method with
Direct and MC Methods

Figure 5 shows the Root Mean Square (RMSE) errors
of Direct and RP approach using different training meth-
ods. Sampling in this example is generated without mesh-
morphing. Both the Direct and RP approaches are compared
with the same input training set and the RMSE is calculated
in each frequency point with (25),

RMSE( fp) = log 10

©­­­­­«

√√√√√ Nval∑
k=1

(��SI Jk , fp
�� − ��YModel(SI Jk , fp )

��)2

Nval

ª®®®®®¬
(25)

where
|SI Jk , fp | - the magnitude of the k th sample of the reference
scattering matrix element at frequency point fp ,
|YModel(SI Jk , fp )|- the magnitude of the k th sample of the SI J
evaluated byDirect or Residue-Polemodel at frequency point
fp ,
Nval- size of validation set.

As can be seen in Fig. 5, the accuracy achieved by
the proposed RP approach using ordinary kriging is the best
among other methods. Where, |SI J |mean denotes the mean
value for Nval samples of MC simulation, |RMSE |method−RP
shows the RMSE error value of evaluated data by Residue-
Pole model using mentioned method with respect to original
data and |RMSE |method−D describes the RMSE error value of
evaluated data by Direct model usingmentionedmethod with
respect to original data.

The model cost is about 9 seconds only, and the time
needed for generating training samples by InventSim EM
simulator is 10 minutes. Therefore, the kriging technique is
chosen for training the RP model. In the case of modeling
the system using the Direct approach, again, the best accu-
racy is achieved by kriging while the model cost is about
111 seconds, which is 13 times more than the model cost
of RP method because the model size of Direct approach
is much bigger than RP approach. Moreover, the accuracy
of the RP approach for S11 is five times higher than the
Direct approach. In a manner of total computational cost
comparison with MC method, the RP approach needs only
3.3 seconds for vector fitting plus 8.7 seconds of the train-
ing model and evaluation cost in addition to 10minutes for
generating K = 20 samples for the training set. Therefore,
the total cost for variability analysis of Nval = 500 validation
samples is 10.2 minutes for the RP approach using kriging,
while using the traditional MC method needs 250minutes,
so the RP approach is 24.5 times faster than MCmethod with
an excellent level of accuracy. Detailed information of the
compared results for entire S parameters of the waveguide
filter example- without mesh morphing technique (error is
calculated for S11 and S12 parameters only). The detailed
information about comparison of different surrogating tech-
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niques is given in Tab. 1, where,YD denotes the size of output
of experimental design (output training set), XD is the size
of inputs of experimental design (input training set), Model
cost is the elapsed time for applying the corresponding surro-
gating technique and train the model based on experimental
design, S11 max RMSE and S12 max RMSE are the maxi-
mumerror calculated by (25) only element of Smatrix, Training
samples cost describes the elapsed time for generating train-
ing samples by InventSim full-wave simulator, and MC cost
is the elapsed time for generating Nval = 300 MC samples by
InventSim full-wave simulator.

6.2 Example 2: Combline Filter
In the Sec. 6.1 it was shown that kriging method has

significantly higher accuracy than APCE and SVM meth-
ods. Therefore, in this section only ordinary kriging method
is used to construct the model for both Direct and RP ap-
proaches. The structure is a 6th order combline filter with
center frequency 1.74GHz and bandwidth 70MHz. In the
structure, single cross-coupling (quadruplet topology) is in-
troduced that realizes a pair of symmetric transmission zeros.
The microwave filter example in Fig. 6 has d = 15 uncertain
optimization geometrical variables. The design variables are
six tuning screws that control the resonant frequency of the
combline resonators, six tuning screws that control couplings
between resonators, and remaining design parameters con-
trol source/load couplings to first/last resonator. The nom-
inal value of optimized geometrical parameters of filter is
considered to have a deviation by a span of −100 to +100
microns by Gaussian distribution with a standard deviation
of σ = 0.035 in millimeters. The simulation has been done
for Nf = 501 frequency points. Only K = 40 samples are
used for modeling the behaviour of system and results are
compared with Nval = 300 validation samples set which is
generated by InventSim with MC method.

Fig. 6. Combline filter.

Method OVF XD YD

S11
max

RMSE

S12
max

RMSE

Model
cost
[s]

Training
samples

cost
[min]

MC
cost
[min]

Direct - 40 × 15 40 × 2004 0.089 0.042 855 60.06 450.75
RP 16 40 × 15 40 × 80 0.033 0.019 37 60.06 450.75

Tab. 2. Detailed information of the compared results for entire
S parameters without mesh morphing technique, (error
is calculated for S11 and S12 parameters only).

Method Modeling
technique Kernel XD YD

S11
max

RMSE

S12
max

RMSE

Model
cost
[s]

Training
samples

cost
[min]

MC
cost
[min]

Direct kriging Gaussian 20 × 8 20 × 1604 0.0812 0.0218 110.54 10 250

RP
OVF = 10 kriging Gaussian 20 × 8 20 × 50 0.0160 0.0056 8.7 10 250

Direct PCE

Adaptive
PolyOrder

1:10
q = .75

20 × 8 20 × 1604 0.169 0.0377 18.6 10 250

RP
OVF = 10 PCE

Adaptive
PolyOrder

1:3
q = 1

20 × 8 20 × 50 0.0163 0.0083 1.37 10 250

Direct SVM Gaussian 20 × 8 20 × 1604 0.114 0.0595 1107 10 250

RP
OVF = 10 SVM Gaussian 20 × 8 20 × 50 0.0635 0.0481 24 10 250

Tab. 1. Detailed information of the compared results for entire S parameters of the waveguide filter example - without mesh morphing technique
(error is calculated for S11 and S12 parameters only).
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6.2.1Sampling without Mesh Morphing

Both the methods are compared with the same input
training set. Figures 7–8 show the results of accuracy com-
parison for S11 and S12 parameters respectively, when the
number of training samples is K = 40 for a validation set of
Nval = 300. Instead of plotting all of the Nval = 300 sam-
ples, the mean value of evaluated model for each method and
the reference data is calculated by using (26) and then are
compared together.

mean( fp) = log 10
©­­­­«
Nval∑
k=1

(��YModel(SI Jk , fp )
��)

Nval

ª®®®®¬
. (26)

As can be seen in the Figs. 7–8, the proposed method
has better accuracy. For the Residue-Pole method RMSE er-
ror at its most is equal to 0.033 for S11, which is significantly
lower than 0.089, the maximum RMSE error calculated for
a Direct method. The computational time for building amod-
eling for the entire S parameters (S11; S12; S21; S22) when
the number of training set is K = 40, is about 855 seconds for
Direct method, while, for the proposed approach is 37 sec-
onds, which is about 23 times faster in computational time of
creating the model.
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Fig. 7. Accuracy comparison ofResidue-Polemethod andDirect
method for S11, K = 40.
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Fig. 8. Accuracy comparison ofResidue-Polemethod andDirect
method for S12, K = 40.

Since the Residue-Pole model has an acceptable accu-
racy in comparison with the MC method, it can be used in-
stead of theMCmethod. As long as the Residue-Polemethod
needs a few tens of samples for the training set for creating the
model, it could be compared with the MC method in a man-
ner of computational cost. In this example, for Nval = 300,
only K = 40 training samples are needed; therefore, 60.06
minutes are required for training set generation and the over-
head time for Vector Fitting and kriging is only 37 seconds.
Alternatively, 450.45 minutes are needed for variability an-
alysis using the MC method. Therefore, the Residue-Pole
method is about 6.75 times faster than the MC method with
acceptable accuracy.

6.2.2Sampling using Mesh Morphing Technique

Further improvement of the performance of the variabil-
ity analysis was achieved using mesh morphing technique.
By applying the mesh morphing technique for perturbation
analysis, the time needed for generating each sample is re-
duced 1.7 times comparing to regular sampling without mesh
deformation. Using the mesh-morphing technique, there are
improvements in the accuracy of modeling the S parameters
by using Residue-Pole-method as well. The cost for creating
models for theDirect andResidue-Polemethods remained the
same as before, while the time needed for generating train-
ing samples reduced significantly. The total time needed for
generating Nval = 300 samples usingMCmethod is 261 min-
utes, while for Residue-Pole method, there are just K = 40
samples needed to create a model for predicting the behavior
of the system. The time spent for simulating the variabil-
ity analysis of the combline filter in the numerical example
for Residue-Pole method is 34.8 minutes for generating the
training set which contains only K = 40 samples plus 37 sec-
onds overhead for building a model due to vector fitting and
kriging, which in total will be TtotalRP = 35.4 minutes. The
time for generating Nval = 300 samples using traditional MC
method is 300×0.87 = 261minutes. Therefore, with K = 40
training samples, the proposed method is 7.37 times faster
than the MC method with an excellent level of accuracy.

The results are shown in Figs. 9–10. Figure 11 shows
that the model of the system can be built using RP approach
with only K = 20 training samples. The maximum RMSE
error of S11 is 0.078, which is still lower than the Direct
approach with K = 40 training samples (0.096) and the max-
imum RMSE error level of S12 is equal to 0.52 which is
an acceptable level of accuracy. In this case, the total time for
the variability analysis simulation using the RP approach is
17.65 minutes, including vector fitting, model construction,
and generating training set samples, while the MC approach
needs 261minutes as mentioned earlier. Therefore, for an ac-
ceptable level of accuracy, the RP approach using the mesh
morphing technique for sampling is 14.78 times faster than
the traditional MC method.
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Fig. 9. Accuracy comparison of the Residue-Pole method and
the Direct method for S11, using the mesh morphing
technique, K = 40.
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Fig. 10. Accuracy comparison of the Residue-Pole method and
the Direct method for S12, using the mesh morphing
technique, K = 40.
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Fig. 11. Accuracy comparison of the Residue-Pole method and
the Direct method for S11, using the mesh morphing
technique, K = 20.

Method K OVF XD YD

S11
max

RMSE

S12
max

RMSE

Model
cost
[s]

Training
samples

cost
[min]

MC
cost
[min]

Direct 40 - 40 × 15 40 × 2004 0.096 0.028 855 34.8 261
RP 40 16 40 × 15 40 × 80 0.029 0.014 37 34.8 261

Direct 20 - 20 × 15 2 × 2004 0.125 0.16 715 17.4 261
RP 20 16 20 × 15 20 × 80 0.078 0.052 15 17.4 261

Tab. 3. Detailed information of the compared results for entire
S parameters using mesh-morphing technique, (error is
calculated for S11 ans S12 parameters only).

7. Conclusions
In this paper, two different modeling approaches, along

with two kinds of sampling methods for generating the train-
ing samples set for modeling a variability analysis of mi-
crowave components are proposed. First it is shown that,
among Adaptive PCE, SVM and ordinary kriging, the best
method for modeling each approach is ordinary kriging.
Thereafter, Direct and RP approaches are compared together
in the manner of accuracy and computational cost. In the
waveguide filter example, which contains eight uncertain pa-
rameters, the RP method has proven its efficiency both in
terms of accuracy and computational time. It is shown that
the RP approach using ordinary kriging method for modeling
the system behavior with only K = 20 training samples is
about 5 times more accurate than the Direct approach. In
example 2, a more complex filter structure has been adopted
for comparing two different approaches. Without using the
mesh-morphing sampling technique, by applying the pro-
posed Residue-Poles method, the maximum RMSE errors of
modeled S11 and S12 are 3 and 2 times lower than Direct
method respectively. Therefore, due to the acceptable accu-
racy of Residue-Pole method, it is chosen to be compared
with MC method. Since it is only K = 40 samples needed to
train the model, the proposed RP method is 6.75 times faster
than MC method.

When using the mesh-morphing technique for sam-
pling, there is 1.7 times speedup for generating each training
sample of the training set, while the Direct method accu-
racy is decreased, the Residue-Pole method does not loose
its accuracy and is even 1 percent more accurate at maximum
RMSE error with respect to normal sampling. When us-
ing the mesh-morphing technique, the Residue-Pole method
is 7.37 times faster than MC simulation with an acceptable
level of accuracy. It is even shown that for an acceptable
level of accuracy, only K = 20 samples are enough to train
the model using the proposed RP approach. In this case, the
proposed RP approach is about 14.78 times faster than the
MC approach.

It is north-worthy to mention that due to the smaller
size of the Residue-Pole model in comparison with the Direct
model, the computational cost of the Residue-Pole method is
less than Direct method by a factor of 23, while the accuracy
of Residue-Pole method is higher than the Direct method.
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