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Abstract. This paper presents a general survey of digital
predistortion (DPD) techniques with segmentation. A com-
parison of global DPD with two segmented approaches
namely Vector-Switched DPD and Decomposed Vector Rota-
tion DPD is presented with the support of experimentation on
a strongly non-linear 3 ways Doherty PA. It shows the interest
of both segmented approaches in terms of linearization per-
formance, complexity and ease of implementation compared
to the global DPD. The paper starts with some mathemati-
cal generalities on interpolation and splines. It focuses on
segmented models derived from Volterra series even if the
presented principles can also be applied to neural networks.
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1. Introduction
Digital predistortion is an efficient technique to linearize

power amplifiers (PA) in wireless transmitters. It is widely
used in base stations of cellular communication and broadcast
systems. Power amplifiers are critical elements of radiocom-
munication systems because their power efficiency conditions
the autonomy and cost of equipments and their linearity in-
fluences communication performance. New waveforms pro-
posed in order to improve spectral occupancy exhibit very
high crest factors and are very sensitive to PA nonlinearities.
But to achieve a good power efficiency, it is necessary to op-
erate the PA in a nonlinear region. Linearization techniques
are therefore necessary to limit in-band signal distortion and
out of band spectral regrowth.

The principle of digital predistortion consists in pro-
cessing the baseband complex envelop of the PA input signal
by a predistorter (DPD) so that the cascade of the DPD and
PA becomes linear up to a certain amplitude value. the DPD
should have inverse characteristics of those of the PA to be

able to pre-compensate for nonlinear distortion and dynamic
behavior (memory effects) of the PA.Manymodels of nonlin-
ear dynamic system have been proposed for the DPD [1], [2].
They are discrete-time baseband models with complex input
and output signals. Most of them are derived from trun-
cated Volterra series (Memory Polynomial models (MP) [3],
Generalized Memory Polynomial models (GMP) [4], [5])
or dynamic Volterra series (Dynamic Deviation Reduction-
Based models (DDR) [6]) with limitation to finite memory
lengths and nonlinearity orders. Neural networks are also
potential candidates but they require nonlinear optimization
techniques to update their coefficients which is not very ap-
propriate for real-time adaptive DPD.

Volterra series present two interesting properties for the
modeling of nonlinear dynamic systems: generality and lin-
earity of the model in function of their coefficients which
simplifies their identification. But their number of coeffi-
cients increases dramatically with memory depth and order
of nonlinearity. Moreover they are generally built with non-
orthogonal basis based on monomials which leads to bad
numerical properties for their identification especially for
high-order nonlinearity.

Models derived from Volterra series such as GMP or
DDR have proven their effectiveness for numerous applica-
tions using mildly nonlinear PA such as class AB PA. But
advanced architectures of power transmitters with good ef-
ficiency such as Doherty PA, envelop tracking, switched or
out-phasing PA exhibit strongly nonlinear dynamic behavior
more difficult to model. Also, new communication systems
allow for very high data rate by using very wide bandwidth
multidimensional signals (e.g. 4G and 5G systems with car-
rier aggregation andMIMO). It represents new challenges for
DPD in terms of bandwidth, nonlinearity and dynamic behav-
ior. It becomes difficult for a global DPD model to achieve
an accurate representation of the system with good numeri-
cal properties and low computational complexity. This has
moved research interest towards different local modeling ap-
proaches in which the global operating space is split into
several subspaces represented by local models well suited to
each sub-space. These local models have to be joined in some
way to cover the global space. One of the motivations is to
decompose a complicated problem into several simpler ones.
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Another one is to use the locality to obtain quasi-orthogonal
basis. The decomposition (segmentation) can be applied on
temporal signal magnitude and phase, on signal spectrum,
on the system. This segmented or piecewise DPD approach
raises different questions such as:

• how to partition the original space,

• how to determine good models for the different seg-
ments of the partition,

• how to handle DPD operators with complex inputs,

• how to handle the dynamic aspects,

• how to estimate the coefficients of these local models
and how to represent them with sparsity,

• how to join the local models.

Piecewise approximation is not a new idea. There has
been a lot of works in particular on piecewise interpolation or
approximation of nonlinear real-valued functions, e.g. using
splines. The application of these theories to the case of DPD
is not straightforward because of two main reasons:

• the DPD is not a simple function. It is a dynamic non-
linear system;

• the input and output of the DPD are complex signals.
TheDPD is a complex-valued operator ofmultiple com-
plex variables.

This paper presents a general survey of DPD techniques
with segmentation in the temporal domain. It also presents
an experimental comparison of different approaches. It fo-
cuses on segmentedmodels derived fromVolterra series even
if the presented principles can also be applied to neural net-
works. It starts with some mathematical generalities on in-
terpolation, approximation and splines (Sec. 2). In Sec. 3 it
gives some generalities on modeling and training of DPD.
Section 4 focuses on segmented DPDwith functions of a sin-
gle real-valued variable. Section 5 is dedicated to segmented
DPD that can manage nonlinearity and memory domains.
Section 6 briefly presents some advanced segmented mul-
tidimensional DPD for multiband or MIMO applications.
Section 7 is devoted to an experimental comparison of two of
the most promizing segmented DPD techniques. Section 8
is the conclusion.

2. Some Mathematical Considerations

2.1 Polynomial Interpolation/Approximation
For a function y = f (x) : [a, b] → R and a set of N + 1

points {(x0, y0), (x1, y1), · · · , (xN , yN )}, there is a unique poly-
nomial interpolator of degree N p(x) such that p(xi) = yi .
This polynomial can be expressed in different ways, e.g. us-
ing the Newton’s divided difference formula or the Lagrange
interpolation formula. The interpolation polynomial of f ,

can be written using the basis made of Lagrange polynomi-
als LN ,i(x), as:

LN f (x) =
N∑
i=0

f (xi)LN ,i(x),

with
LN ,i(x) =

∏
j,i

x − xj
xi − xj

, i = 0,1, · · · ,N .

The approximation error is e(x) = f (x) − p(x) and for
f (x) (N + 1) times differentiable:

∀x ∈ [a, b] ∃ξ ∈ (min(xi, x),max(xi, x)),

e(x) = f (x) − p(x) = (x − x0) · · · (x − xN )
f N+1(ξ)

(N + 1)!
,

max
x∈[a,b]

|e(x)| ≤
(b − a)N+1

(N + 1)!
max

x∈[a,b]
| f N+1(x)|.

Weierstrass has shown that f can be uniformely ap-
proximated by a polynomial but this is not the interpolation
polynomial. Indeed, even if the interval between points xi is
reduced and the degree of p(x) is increased, p(x) does not
converge towards f (x). This is called Runge’s phenomena.

The approximation error depends on the product v(x) =
(x−x0) · · · (x−xN )whose value is related to the segmentation
points x0, x1, · · · , xN . Tchebychev has studied the segmen-
tation that minimizes the maximum of |v(x)| on the interval
[a, b]. Tchebychev’s alternance theorem states that the monic
polynomial u(x) of degree n that minimizes L = max |u(x)|
(on a given interval) takes alternatively the values ±L, n + 1
times. The best solution is u(x) = 2−nTn(x) where Tn is the
Tchebychev polynomial of degree n. On the interval [−1,+1],
it is defined by:

Tn(x) = cos(nφ) with x = cos(φ) for x ∈ [−1,+1].

The polynomial Tn(x) has n roots xk , Tn(xk) = 0.

We can deduce that the segmentation x0, x1, · · · , xN that
minimizes the maximum of |(x − x0) · · · (x − xN )| on the in-
terval [−1,+1] corresponds to the roots of the Tchebychev’s
polynomial of degree N + 1. They are given by:

xk = cos
(
2(k + 1)π
2N + 2

)
, k = 0,1, · · · ,N .

The solution for the interval [a, b] is obtained as:

xk =
a + b

2
+

b − a
2

cos
(
2(k + 1)π
2N + 2

)
, k = 0,1, · · · ,N .

Using this segmentation, the approximation error using the
Tchebychev segmentation is bounded by:

max
x∈[a,b]

| f (x)−p(x)| ≤
2

(N + 1)!

(
b − a

4

)N+1
max

x∈[a,b]
| f N+1(x)|.

This bound is 4N+1/2 times smaller than that of the general
case. This highlight the importance of the segmentation to
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minimize the approximation error. For example, Fig. 1 shows
the interpolation by a polynomial of degree N = 10 of the
function y = 1/(1 + x2) for x ∈ [−5,+5] using a uniform
segmentation or a Tchebychev segmentation.

The Lagrange polynomials LN ,i(x) using Tchebychev
segmentation are interesting because their supports are well
localized around points xi . So they are quasi-orthogonal
which is not at all true for uniform segmentation. Figure 2
shows the Lagrange polynomials of degree 10 with a uniform
or a Tchebychev segmentation.

In the case of the approximation of a data sequence of
M samples (xk, yk), k = 0, · · · ,M − 1 with xk ∈ [a, b] by
a polynomial p(xk) of degree n, p(xk) can be expressed us-
ing different basis corresponding to different segmentations
of [a, b]. If we call respectively Li,Tch(xk) and Li,Uni(xk),
i = 0, · · · ,n, the Lagrange basis with Tchebychev or uniform
segmentation, the approximation polynomial p(xk) is:

p(xk) =
n∑
i=0

ciLi,Tch(xk) =
n∑
i=0

diLi,Uni(xk). (1)

If a least-square criterion is used, minimizing∑M
k=1(p(xk) − yk))

2, the vectors c and d containing coeffi-
cients ci or di are obtained as solutions of :

Rc = ΦTy with R = ΦT
Φ. (2)

The matrix y is the M × 1 column vector of samples
yk, k = 0, · · · ,M −1, Φ is the matrix M ×(n+1) of the basis
functions Φ(k, i) = Li(xk) and ΦT is the transpose of Φ. In
theory, whatever the chosen basis, the optimal solution for p
should be the same. But the condition number of the corre-
lation matrix R strongly depends on the basis. For example,
for a polynomial of degree n = 35, the condition number of
the correlation matrix R is greater than 1016 for the uniform
segmentation while it is smaller than 30 for the Tchebychev
segmentation. Therefore due to those bad numerical proper-
ties, the quality of the approximation obtained with uniform
segmentation can be degraded specially when computation
is done in single precision.

Fig. 1. Interpolation of y = 1/(1+ x2) with an order 10 polyno-
mial with uniform or Tchebychev segmentation.

The good locality of Lagrange polynomials with
Tchebychev segmentation has been exploited for DPD mod-
eling by Barradas et al. in [7–9]. Details will be given
later.

Another interesting point to remind is the influence of
noisy data yi on the approximation results. It is important for
example to better understand the influence of the measure-
ment noise on the PA output when training the DPD using
indirect learning approach (see Sec. 3). It is well known
that the noise will introduce a bias on the coefficients of the
DPD. Suppose that the data yi are corrupted by some noise
εi , with |εi | < ε . The corrupted data are noted ŷi = yi + εi
and the interpolation polynomial p̂. The error p̂(x) − p(x)
can be bounded with Lebesgue constant that depends on the
segmentation nodes:

| p̂(x) − p(x)| ≤ ε
n∑
i=0

max
x∈[a,b]

|Li,n(x)|.

The Lebesgue constant max
x∈[a,b]

|Li,n(x)| increases with

the polynomial degree and is much smaller for Tchebychev
segmentation than for uniform segmentation.

Lagrange interpolation only requires that p(xi) =
f (xi) for i = 0, · · · ,n. Other polynomial interpolations re-
quest additional conditions on the derivatives of f . For ex-
ample, Hermite interpolation requires that the 1st derivatives
of f and p be equal at points xi . For these 2(n + 1) condi-
tions, there is a unique polynomial solution p(x) of minimum
degree 2n + 1. The approximation error e(x) = f (x) − p(x),
for f (x) (2n + 2) times differentiable, is such that:

∀x ∈ [a, b] ∃ξ ∈ (min(xi, x),max(xi, x)),

e(x) = (x − x0)
2 · · · (x − xn)2

f 2n+2(ξ)

(2n + 2)!
.

Hermite interpolation does not guarantee a uniform approx-
imation of f when n increases.
But Bernstein polynomials associated to a continuous func-
tion f and noted Bn f (x), converge uniformly towards f when
the degree n increases. They correspond to a uniform seg-
mentation and are expressed, for x ∈ [a, b] as:

Bn f (x) =
n∑

k=0

(
n
k

)
f (a + (b − a)k/n) (x − a)k(x − b)n−k .

The Bernstein basis polynomials of degree n are defined by
Bk ,n(x) =

(n
k

)
(x − a)k(x − b)n−k, k = 10, · · · ,n. Figure 3

shows Bernstein basis polynomials for n = 10 on the interval
|−5,5]. It can be seen that they are quitewell localized around
points xi . Also the sum

∑n
k=0 Bk ,n(x) = 1 ∀ x ∈ [a, b]. The

Bernstein approximation is obtained by convex linear com-
bination which leads to good numerical properties.

Figure 4 shows the approximation by a polynomial of
degree n = 10 of the function y = 1/(1+ x2) for x ∈ [−5,+5]
using a Bernstein polynomial (uniform segmentation) or
a Lagrange polynomial with Tchebychev segmentation.
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Fig. 2. Lagrange polynomials of degree 10 with uniform (left figure) or Tchebychev (right figure) segmentation.

Fig. 3. Bernstein polynomials of degree 10.

Fig. 4. Approximation of y = 1/(1+x2)with order 10 Bernstein
or Lagrange (Tchebychev segmentation) polynomial.

On this example, it can be seen that the approximation
error obtained with the Bernstein polynomial is larger than
that obtained with Lagrange interpolation and a Tchebychev
segmentation. But there is no Runge’s phenomenon in the
Bernstein approximation and, if f (x) is continuous, it con-
verges uniformly (even if rather slowly) towards f (x) which
is not true for Lagrange interpolation. An interesting way
to obtain a faster convergence of the approximation is to use
piecewise approximation.

2.2 Piecewise Polynomial Approximation
Approximation of functions by a single polynomial has

some limitations, such as Runge’sphenomenon for Lagrange
uniform interpolation, necessity of high polynomial degree
polynomials leading to high computation complexity and
potential numerical problems. Piecewise approximation is
a way to overcome some of these limitations. It allows to
take advantage of the regularity of the function in a limited
region.

To approximate a function y = f (x), x ∈ [a, b], the ba-
sic idea of piecewise polynomial approximation is to partition
the interval [a, b] in N segments overwhich f is approximated
by a polynomial. As the segments are shorter than the length
of [a, b], f should have a more regular shape on each local
segment than on the global interval and it should be possi-
ble to use polynomials of smaller degree than for the global
polynomial approximation. Without additional constraints,
the piecewise approximation may be discontinuous. Gener-
ally, some regularity is required for the approximation and
a popular approach is the approximation by spline functions.
There are two different ways to present splines. The first one
consists in considering piecewise polynomials with continu-
ity constraints on the function and its first derivatives at the
borders of the segments. In this first approach the regularity
constraints can be different for the different nodes. The sec-
ond approach is based on a trade-off between the accuracy of
the approximation and its regularity. In the second approach,
the natural splines solution is obtained for a set of N data
(xi, yi)Ni=1 by approximating f by a function h optimizing the
criterion:

min
h

1
N

N∑
i=1
(yi − h(xi))2 + λ

∫ b

a

(hm(x))2dx

where λ > 0 is a smoothing constant. The solution of this
problem is a piecewise function made of polynomials of de-
gree 2m − 1 in segments defined by boundaries xi and sat-
isfying continuity at the boundaries for the function and its
2m−2 first derivatives. With m = 2, this gives cubic splines.
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A function h(x) is a polynomial spline of order d + 1 in
[a, b] if h ∈ C(d−1) (C(d−1) space of functions with d −1 con-
tinuous derivatives) and for a given set s of non-decreasing
segmentation values (knots) (a = x0, x1, · · · , xn−1, xn = b),
h(x) is a polynomial pi(x) of degree d on each segment
[xi, xi+1[. We note Sd,s the set of all spline functions of
order d + 1 for the set of knots s. A cubic spline corre-
sponds to the case d = 3. For a cubic spline, pi(x) =
ai x3 + bi x2 + ci x + di, x ∈ [xi, xi+1[ and pi(x) ∈ C2[x0, xn],
with the conditions pi−1(xi) = pi(xi), p

′

i−1(xi) = p
′

i(xi),
p”
i−1(xi) = p”

i (xi), i = 1,2, · · · ,n − 1. Cardinal splines corre-
spond to an infinite number of knots with unit spacing.

With cubic interpolation, for a given set (xi, yi)ni=0, there
are 4n coefficients (ai, bi, ci, di)n−1

i=0 to determine and a set of
n + 1 linear equations h(xi) = yi plus 3(n − 1) continuity
equations which gives a total of 4n − 2 linear equations. So
there are 2 possible degrees of freedom that correspond to
different types of splines. For example, natural splines are
defined by setting h”(x0) = 0 and h”(xn) = 0. Natural splines
minimizes the integral of the squared second derivative of h.

Sd,s is a vector-space of dimension n+d. An interesting
basis is that of B-splines (Basis-spline) [10]. B-splines are
splines functions with minimum support [xi, xi+d+1[. They
can be defined by a recurrence relation for a given degree
of polynomials d and a partition s of the interval [a, b] with
n + 1 knots and n > d + 2. The recurrence relation defining
the ith B-spline of degree d, noted Bi,d,s (∀x ∈ R) is:

Bi,d,s(x) =
x − xi

xi+d − xi
Bi,d−1,s(x) +

xi+1+d − x
xi+1+d − xi+1

Bi+1,d−1,s(x).

Bi,0,s(x) = Xi(x) =
{

1, if xi ≤ x < xi+1
0, otherwise.

And
∑
i

Bi,0,s(x) = 1 ∀ x.

The B-spline Bi,d,s can be expressed as a concatenation
of d + 1 successive polynomials pieces of degree d. It is
equal to 0 outside the segment [xi, xi+d+1[. And Bi,d,s = 0
if xi = xi+d+1. On any interval [xi, xi+d+1[, at most d + 1
B-splines are different from 0: (Bi−d,d, · · · ,Bi,d). For a finite
set of knots in a finite interval [a, b], there are n− d B-splines
whose support is completely included in [a, b]. To obtain
a full basis of B-splines functions on [a, b], we must had
2d basis-functions whose support is partly inside [a, b], with
usually d nodes equal to a and d nodes equal to b. A knot
has a multiplicity m if it is repeated m times in the sequence.

Any spline function hd,s can be written as a linear com-
bination of B-splines:

hd,s(s) =
∑
i

ciBi,d,s(x).

Figure 5 shows an example of cubic B-splines defined
for x ∈ [0,1] with a uniform segmentation and a sequence
of 9 knots. The basis functions are well localized around
the knots and are therefore quasi-orthogonal. It also shows
another spline basis proposed in [11] that keeps a very short
support when d increases.

Fig. 5. Cubic B-splines (top with 9 knots) or spline basis of [11]
(bottom) with uniform segmentation.

Splines functions can be used to approximate functions
generally defined by a set of data points. The approximation
can be based on interpolation or on minimizing a given crite-
rion. A commonly used approximation criterion in the field
of DPD is the least-square criterion. The approximation by
a spline function with LS criterion can be achieved as in (1)
and (2). in the case of the approximation of a data sequence
of M samples (xk, yk), k = 0, · · · ,M − 1 with xk ∈ [a, b]
by a spline function h(x) of degree d and segmentation s,
h(x) can expressed as a linear combination of B-splines with
coefficients ci:

h(x) =
∑
i

ciBi,d,s(x).

For LS critera min
∑M

k=1(h(xk) − yk)
2, the vector c of coef-

ficients ci is obtained as the solution of (3), where y is the
M × 1 column vector of samples yk, k = 0, · · · ,M − 1 and
Φ is the matrix M × (n + 1) of the B-spline functions.

Rc = ΦTy with R = ΦT
Φ. (3)

3. Generalities on DPD
A general presentation of digital predistortion can be

found in [1]. Figure 6 shows a basic tansmitter architecture
using adaptive DPD.

(FPGA)
Predistorter

AnalogDigital

)t(y)n(I

)n(Q

ZIF/IF
downconverter

PARF
upconverter

Dual/Single
ADC

DSP

DAC

Fig. 6. Transmitter architecture with DPD.
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Volterra based models are very common for DPD.Most
of them can be expressed as a linear combination of regres-
sors that are derived from the input signal z(n). For example,
for the generalized memory polynomial model (GMP) , the
output y(n) is expressed as:

y(n) =
Ka−1∑
k=0

La−1∑
l=0

ak ,lz(n − l)|z(n − l)|k

+

Kb∑
k=1

Lb−1∑
l=0

Mb∑
m=1

bk ,l,mz(n − l)|z(n − l − m)|k

+

Kc∑
k=1

Lc−1∑
l=0

Mc∑
m=1

ck ,l,mz(n − l)|z(n − l + m)|k . (4)

It can bewritten as a dot product between the Nc×1 vec-
tor d of all the coefficients (ak ,l, bk ,l,m, ck ,l,m) and the Nc×1
regressor vector φz(n), with y(n) = φT

z (n)d. The regressor
vector φz(n), built on z, contains the different basis functions
(z(n−l)|z(n−l)|k, z(n−l)|z(n−l−m)|k, z(n−l)|z(n−l+m)|k).
For a set of N signal samples, the column vector y =
(y(n), · · · , y(n − N + 1))T is equal to:

y = Φzd,with

Φz =
(
φz(n),φz(n − 1), · · · ,φz(n − N + 1)

)T
,

φz(n) = (φ1(n), φ2(n), · · · , φNc (n))
T.

where Φz is the N × Nc matrix of regressors, φi(n) is the ith

basis function, Nc is the number of coefficients.

There are two general approaches for the identification
of coefficients, namely the direct (DLA) and the indirect
learning (ILA) approaches.

Fig. 7. Principle of DLA direct learning approach.

Fig. 8. Principle of ILA direct learning approach.

DLA approach tries to minimize a criterion based on
the error eDLA(n) = x(n) − y0(n) where x is the DPD input
and y0(n) = y(n)/G is the normalized output with a reference
gain G (Fig. 7). Many of DLA algorithms are based on first
identifying the PA model and then inverting it or use it to
train the DPD.

ILA approach (Fig. 8) is based on first solving a post-
distortion problem and then using the postdistorter as a pre-
distorter. The postdistorter is a fictive block placed after
the PA that corrects the normalized PA output in order to
minimize a criterion based on error eILA = (z(n) − w(n))
where z in the PA input and w(n) is the postdistorter output
(Fig. 8). Using a LS criterion J =

∑n
i=n−N+1 |eILA(n)|2 on N

observation samples correponding to the PA output and input
(y0(i), z(i))ni=n−N+1, the coefficients of the postdistorter that
minimize J are solutions of a linear set of equations. The op-
timum coefficients vector is obtained with the pseudo-inverse
of the regression matrix Φy0 built on y0 (5).

ΦH
y0Φy0 d = ΦH

y0 z,

d =
(
ΦH

y0Φy0

)−1
ΦH

y0 z (5)

where ΦH
y0 is the hermitian transpose of Φy0 .

ILA approach is popular because the coefficient iden-
tification is a linear optimization problem. However, the
measurement noise at the output of the PA introduces a bias
on the solution. The DLA approach does not suffer from this
drawback but it leads to a nonlinear optimization problem.

Both approaches depends on matrix R = ΦH
y0Φy0 . Un-

fortunately, the successive signal samples are usually cor-
related and therefore matrix R is badly conditioned, espe-
cially when the the nonlinearity orders are high. To manage
this problem, different methods can be used: regulariza-
tion techniques such as L2 norm Tikhonov (ridge regres-
sion), orthogonal polynomial basis, orthogonalization (e.g.
Gram-Schmidt technique), dimension reduction by suppress-
ing less-significant basis functions (e.g. orthogonal matching
pursuit algorithm (OMP)). Another possible approach is to
segment the problem into several problems of smaller di-
mensions. Different types of segmented DPD have been
proposed. They are presented in the following sections.

4. Segmented DPD with Functions of
a Single Real-Valued Variable
We have seen in Sec. 2 some results about interpolation

or approximation of functions by polynomials or piecewise
polynomials in the case of functions of a single real-valued
variable. But in general, DPD are not such simple func-
tions. First the input signal is complex-valued and secondly
the DPD has to take into account the memory effects of the
PA. It is ruled by nonlinear differential equations. It can be
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simplified by considering that the memory length is finite.
The DPD can then be represented by a multivariate function
of complex-valued variables. The complexity is much higher
than for a function of a single real-value input variable.

Fortunately there are several cases, where simplifica-
tions can be done allowing to represent the nonlinear aspects
of the DPD by a simple single-variable function of a real
variable. This is object of the next two sections.

4.1 Piecewise Modeling in Quasi-Memoryless
Models
In this section we will address the cases of quasi-

memoryless models and of block oriented models separating
nonlinearity from memory effects. These are special cases
where single-variable real-valued functions can be used for
the DPD model.

The first works on DPD were dedicated to signals with
narrow bandwidths for which PA memory effects could be
neglected. In that case, the quasi-memoryless PA can be
modeled with its AM/AM and AM/PM characteristics as
functions of the magnitude (or power) of the input signal
z(n). The baseband equivalent of the PA output can be ex-
pressed as y(n) = GPA(|z(n)|)z(n) where the magnitude and
the phase of the gain GPA respectively represent the AM/AM
and AM/PM of the PA. A major breakthrough was realized
by Cavers [12] who proposed to model the DPD as a simple
complex gain GPD depending only on the magnitude of the
input signals and allowing to compensate for the AM/AM
and AM/PM distortion of the PA. So, the output z(n) of the
DPD, for an input signal x(n) can be written as:

z(n) = GPD(|x(n)|)x(n), with x(n) = |x(n)| exp(jφx(n)),

GPD(|x(n)|) = |GPD(|x(n)|)|ejθPD( |x(n) |),

z(n) = |x(n)| |GPD(|x(n)|)| ej(φx (n)+θPD( |x(n) |)).

The DPD complex gain should pre-compensate the PA gain
so that the PA output be proportional to the input signal x
with a reference gain G, which means:

y(n) = GPA(|z(n)|) z(n) = GPA(|z(n)|) GPD(|x(n)|) x(n)

= G x(n) ∀x(n).

So: GPA (|x(n) GPD(|x(n)|)|) GPD(|x(n)|) = G, ∀x(n).

The DPD corrective complex gain can be implemented
by a Look-up-Table (LUT) [12] or by a polynomial func-
tion [13]:

GDPD(|x(n)|) =
K∑
k=1

ak |x(n)|k−1. (6)

The content of the LUT or the coefficients of the poly-
nomial are adaptively updated by DLA or ILA. In practice,
either the DPD is directly updated or the PA gain is first
estimated and then inverted to obtain the DPD.

For polynomial DPD, the DPD output is directly ob-
tained by (6). For the LUT case, the LUT is addressed by the

quantized value of some companding function of the input.
If we note (xk)N−1

k=0 the different possible quantized values,
the LUT contains the corresponding gain GPD,k = GPD(xk).
For an input value x, the corrective gain is obtained by some
interpolation or approximation of the function GPD(x) from
the data (xk,GPD(xk)).

In order to cope with complicated PA characteristics,
it is possible to increase the polynomial order or the LUT
size but at the price of introducing ripples in the function
(Runge phenomenon), increasing training convergence time,
complexity and numerical problems. Therefore, different
segmented approaches have been proposed: piecewise linear
regression of the AM/AM and AM/PM of the PA gain [14],
piecewise polynomial modeling of AM/AM and AM/PM in
two regions (with a high order polynomial for the saturation
region and a low order one for the linear region) [15], cubic
spline interpolation [16], [17], piecewise interpolation by arc
of circles [18], piecewise bilinear rational function [19] of
the PA gain with piecewise inverse of the PA model to obtain
the DPDmodel. An advantage of piecewise linear and piece-
wise bilinear function is that they can be easily inverted. For
example, in the case of a bilinear function, if the PA model,
for an input z and an output y is defined by:

|y | =
ai |z | + bi
ci |z | + di

, arg(y) = arg(z) +
φi |z | + ψi
θi |z | + ηi

|z | ∈ Ri, i ∈ {1,2, . . . ,N} where Ri is the segment Noi.

the inverse model used for the DPD (with input x and output
z) is given by:

|z | =
di |x | − bi
−ci |x | + ai

, arg(z) = arg(x) −
φi |z | + ψi
θi |z | + ηi

.

In most of those studies, the segmentation (number of
segments, position of the knots) and degrees of polynomial
segments are determined in an empiricalway. In [20], authors
use AM/AM derivatives to segment it into linear, nonlinear
and saturation regions.

Cavers worked on the optimal LUT-spacing [21]. He
derived the optimum companding function of input magni-
tude for table indexing. It depends on the signal statistics and
on PA characteristics. He showed that for a class AB PA,
equispacing by amplitude is closed to the optimum. In [22],
authors propose a non-uniform LUT indexing function that
allows for a signal to quantization noise that does not de-
pend on input signal statistics or power backoff of the PA.
In [23] a segmented approach is used with more LUT en-
tries in the strongly nonlinear segments than in the linear
ones. In [24] the LUT-spacing is dynamically optimized in
function of online estimated PA characteristics and the input
signal statistics using histograms to approximate the signal
statistics. In [25] and in [26], the authors theoretically study
respectively the optimal spacing of piecewise linear LUT
DPD and of a quadratically interpolated LUT DPD.
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4.2 Piecewise Modeling in Block-Oriented
Models

In order to take into account PA memory effects, one
possible approach is to use block oriented nonlinear mod-
els (BONL) separating nonlinearity from memory effects
such as Wiener, Hammerstein, Wiener-Hammerstein mod-
els. These models associate in cascade or in parallel several
linear time-invariant filters (LTI) that represent the dynamics
of the system and static nonlinear (SNL) blocks. A Wiener
model is made of a cascade of an LTI followed by an SNL
block and an Hammerstein model of an SNL block followed
by a linear filter. One drawback of BONL models is that
the identification of their parameters has to be done by non-
linear optimisation technique. But an interesting point is
that SNL blocks can be represented as complex gains that
are single-variable functions of their input signal magnitude.
And therefore, all the piecewise techniques presented in 4.1
can be applied to the SNL blocks of BONL models.

In [27], the PA is modeled by a Wiener model where
the SNL block is represented by a simplicial canonical piece-
wise linear (SCPWL) function [28]. Two SCPWL functions
are used respectively for AM/AM and AM/PM characteris-
tics. The DPD is an Hammerstein model. The inverse of
the SNL-block of the PA model is also a piecewise linear
function that can be easily obtained by inverse coordinate
mapping. In [29], a piecewise linear predistorter is also pro-
posed. the parameters of the SNL block are estimated by
particle swarm optimization (PSO).

In [30], the authors apply aWienermodel to the PA. The
SNL block of the PA Wiener model comprises an AM/AM
characteristic that is modeled by a piecewise linear continu-
ous and monotonically increasing function and an AM/PM
characteristic represented by a piecewise constant function.
The segmentation is determined empirically. The DPD is
modeled by a memory polynomial model. A direct learning
adaptive DPD is proposed. First the PA model is identi-
fied using RLS (recursive least square) algorithm. There
are two parameters to identify for each segment of the SNL
block. The inverse of the PA model is easy to obtain. It is
an Hammerstein model with a piecewise SNL block. The
DPD parameters are obtained by a piecewise RLS (PRLS)
algorithm. The error to minimize is calculated thanks to the
inverse function of the PA. This segmented approach leads
to a direct learning adaptive algorithm that is less complex
than common direct learning algorithms but it offers the same
level of performance.

In [31], two Hammerstein models with Catmull-Rom
cubic spline static nonlinearity are used for the DPD. One
for correcting AM/AM distortion and the other for correct-
ing AM/PM distortion. The DPD coefficients are identified
using ILA with a separable nonlinear least squares (SNLS)
optimization [32]. The segmentation is optimized empiri-
cally. The approach allows to compensate for high-degree
nonlinearity with a limited set of coefficients.

In [33], we proposed a BONL DPD called "Filtered
LUT" or FLUT. The FLUT DPD is made of an SNL block
followed by a linear filter. But at the difference of Hammer-
stein models, the filter coefficients vary with the magnitude
of the DPD input signal. The SNL block is implemented by
a linear piecewise LUT (gain-LUT). A codebook stores the
coefficients of the different filters. Both the gain-LUT and
the codebook of filters are indexed by the magnitude of the
input signal with a uniform companding function.

4.3 Piecewise Modeling in Volterra Based
Models
Models derived fromVolterra or from dynamicVolterra

series can be reformulated (or generalized) with nonlinear
single-variable functions of the input-signal magnitude.

For example, anMPDPDmodel with input x and output
z defined as:

z(n) =
K−1∑
k=0

L−1∑
l=0

ak ,l x(n − l)|x(n − l)|k,

can be reformulated with L single-variable nonlinear func-
tion fNL,l as:

z(n) =
L−1∑
l=0

x(n − l)

(
K−1∑
k=0

ak ,l |x(n − l)|k
)

=

L−1∑
l=0

ak ,l x(n − l) fNL,l(|x(n − l)|).

These single-variable nonlinear functions fNL,l can be ap-
proximated by different piecewise functions; A DPD model
where the fNL,l are modeled by complex-valued cubic splines
is proposed by Safari et al. in [34] and compared with MP
model. The obtained piecewise model is linear with respect
to its coefficients and can be identified using LS criterion and
by ILA approach with similar equations as (3) and (5). It
shows better results than MP model for a smaller number of
coefficients. The same kind of approach is proposed in [35]
using 2nd order nonlinearity piecewise MP and a single knot.

The same method can be applied to reformulate GMP,
DDR or any other Volterra based models. The principle is to
first do the summation on the nonlinearity orders. In a GMP
model, each of the 3 terms of (4) can be reformulated in the
same way, e.g., for the second term:

Kb∑
k=1

Lb−1∑
l=0

Mb∑
m=1

bk ,l,mu(n − l)|u(n − l − m)|k

=

Lb−1∑
l=0

Mb∑
m=1

x(n − l)

(
Kb∑
k=1

bk ,l,m |u(n − l − m)|k
)

=

Lb−1∑
l=0

Mb∑
m=1

x(n − l) fNL,l,m(|x(n − l − m)|).

There are ML single-variable nonlinear functions fNL,l,m.
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Barradas et al. in [9] show how this approach can be
applied to any Volterra based model. They approximate the
fNL,l,m by cubic splines functions constructedwith B-splines.
They suggest to use Tchebychev nodes as splines knots. They
show that the numerical stability (matrix conditionning) of
ILA identification with this approach is much better than
with GMP model for similar performance and complexity.
In [7] they expound that the high locality (limited support) of
nonlinear splines basis makes them quasi-orthogonal which
explains their better numerical properties. They develop their
analysis by a theoretical comparison of polynomial and LUTs
in PA modeling.

This approach is applied in [36] with fNL,l,m functions
approximated by piecewise Lagrange (APL) basis functions.

Authors of [37] consider the determination of DPD as
a multivariate regression problem and use the fact that any
multivariate function can be approximated by a sum of sep-
arable functions to express a very general form of DPD with
single-variable real-valued nonlinear functions. These func-
tions can then be piecewise approximated by splines.

In [38], Zhu et al. propose a different approach to cope
with envelop tracking PA, the behavior of which changes
significantly in functions of power region. The technique
is called "Decomposed Piecewise Volterra Series". It is
based on vector threshold decomposition of the input sig-
nal x(n) = |x(n)|ejφ . It was initially proposed by Heredia for
real-valued signals in [39]. For a given set of real positive
increasing thresholds (λi)Ni=1 and λ0 = 0, N sub-signals xi
are obtained, with:

xi(n) =


0, |x(n)| ≤ λi−1
(|x(n)| − λi−1)ejφ, λi−1 < |x(n)| ≤ λi
(λi − λi−1)ejφ, |x(n)| > λi

with x(n) =
N∑
i=1

xi(n).

Every sub-signal is processed by a specific sub-DPD model
(here DDR models are used). And the outputs of all
these DPD are summed to obtain the global predistorted
signal. In [40], the authors apply GMP models for the
sub-DPD and the thresholds are determined using the
slope and the rate of slope of the AM/AM characteris-
tic. In [41], the same technique is used with a learning
algorithm that decorrelates the DDR polynomial basis func-
tions and is applied on each sub-DPD independently.

5. Segmented DPD for Nonlinearity
and Memory Domains
In Sec. 4, the segmentation is applied on the nonlin-

earities only. But for some types of PA, e.g. Doherty PA,
the memory effects are different at different power levels. In
such cases, it may be useful to also segment the memory do-
main. In this section, we present different approaches that are
not limited to the piecewise approximation of single-variable

functions for nonlinearities. These approaches partition the
global space of the input signals and fits a piecewise DPD
to each of the regions of the partition. In this section, we
present three techniques: Vector-Switched (VS) DPD, Con-
tinuous Piecewise Linear (CPWL) DPD and Decomposed
Vector Rotation (DVR).

5.1 Switched DPD
Switched DPD allows to derive piecewise DPD taking

into account nonlinearity and memory effects and applying
the segmentation in both domains. The principle consists
in switching several DPD models, each of them being well
suited to a specific segment (or region) of the input signal.
The continuity between the different models is a delicate
notion. There are at least two questions: how should this
continuity be defined and is it really necessary. Indeed, we
can consider continuity with time and continuity with mag-
nitude. When the models include some kind of memory,
the final condition of one model can be used as the initial
conditions of the next model, which ensures some kind of
temporal continuity.

Switched DPD allows to use in each region a DPD
model of smaller complexity (nonlinearity orders, memory
lengths) than would be necessary with a global model. It has
the ability to represent hard nonlinearities and to identify the
region-DPD models with good numerical stability.

In [42], Afsardoost et al. propose the vector-switched
(VS) DPD model. the VS model is a set of DPD mod-
els that can be switched and applied to the input according
to some switching function based on the region of the in-
put signal. The space of input signals x(n) is partitioned
into N regions using vector quantization (VQ). VQ is ap-
plied to vectors of Q successive complex input samples
X(Q)(n) = {x(n), x(n − 1), . . . , x(n − Q + 1)}. For an in-
put sample x(n), the class of X(Q)(n) is determined and the
corresponding model is chosen for x(n). Authors note that it
is generally sufficient to use Q = 2 and to apply VQ on the
input magnitude only.

Authors of [41] apply this approach with a set of GMP
models and a learning algorithm that decorrelates the GMP
polynomial basis functions. This training is applied on each
DPD model independently using the input samples of the
corresponding region. The VQ segmentation is achieved on
the magnitude of the input signal with Q = 1 .

5.2 From PWL to Memory-SCPWL DPD
Piecewise linear functions and in particular simplicial

canonical piecewise linear (SCPWL) functions were first ap-
plied to approximate functions of a single real-variable vari-
able such as those presented in Sec. 4, in static cases to model
AM/AM and AM/PM characteristics of quasi-memoryless
PA [43], [44] or in dynamic cases to represent nonlinearities
functions in Volterra based models [45]. Then they were
also used to model functions of complex input [46] with the
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name memory-SCPWL functions. A PWL representation
has several interests. In particular, thanks to its linear affine
property, it can be inverted very easily. A PWL function can
be described segment per segment, which may require a large
number of coefficients. The number of coefficients can be
reduced by using a global representation called Canonical
PWL (CPWL) function [47] or an even more compact form
called Simplicial Canonical PWL (SCPWL) function [28].
A SCPWL function f of a single real-variable x, is given by:

f (x) = c0 +

σ−1∑
i=1

ciλi(x), x ∈ R

where σ is the number of segment breakpoints, ci are coef-
ficients, and λi(x) are basis functions defined with a set of
increasing breakpoints values (βi)σi=1 by:

λi(x) =
{ 1

2 (x − βi + |x − βi |), x < βσ
1
2 (βσ − βi + |βσ − βi |), x ≥ βσ .

The coefficients ci can be complex-valued.

Cheong et al. in [46] modified that expression to make
it suitable for modeling nonlinearities and memory effects.
For a given memory length L, considering the last L input
samples (x(n − l))L

l=0, the new form is:

f (x) =
L∑
l=0

[
cl,0 +

σ−1∑
i=1

cl,iλi(|x(n − l)|)ej arg(x(n−l))

]
. (7)

This new form is linear with respect to its coeffi-
cients cl,i which simplifies its identification. Replacing
|x − βk | where x is real-valued by | |x | − βk |ej arg (x) where
x = |x |ej arg (x) is complex-valued, is calledDecomposedVec-
tor Rotation (DVR). Authors of [46] compared the memory-
SCPWL DPD with MP and GPM DPD. They showed that
memory-SCPWL DPD offers better modeling accuracy for
sharp nonlinearities and that it is less sensible to noise at PA
output thus reducing the potential bias on coefficients for ILA
identification.

Of course, CPWL functions can also be used with the
generalized form of Volterra DPD using function of single
real-valued variables [48].

5.3 Decomposed Vector Rotation (DVR) Mod-
els for DPD
Zhu [49] has extended the memory-SCPWL model

given by (7) with a more general model called Decomposed
Vector Rotation DVR model. It starts from the represen-
tation by CPWL of a finite memory nonlinear system with
real-valued input and output signals z and y. CPWL achieves
a partition of the input signal space into K polyhedral regions
separated by hyperplanes whose boundaries are defined with
thresholds (βk)Kk=1. The input-output relation is expressed
as:

y(n) =
L∑
l=0

al x(n − l) + b +
K∑
k=1

ck

����� L∑
l=0

ak ,l x(n − l) − βk

�����

where L is the memory length. The hyperlanes are defined
by

∑L
l=0 ak ,l x(n − l) − βk = 0.

CPWL can approximate a wide range of continuous
nonlinear function with a very good accuracy [50]. Unfortu-
nately, this model is not linear with respect to its coefficients
(al, b, ck) and it is not directly usable for complex-valued input
signal x. To overcome these two limitations, Zhu proposed
a new formulation:

y(n) =
L∑
l=0

al x(n − l) + b

+

K∑
k=1

L∑
l=0

ck ,l | |x(n − l)| − βk | ej arg (x(n−l)).

In order to introduce interaction between signals at different
time instants, some other terms can be added to the model.
Depending on these added terms, the model is more or less
complex. One possible expression is:

y(n) =
L∑
l=0

al x(n − l) + b (8)

+

K∑
k=1

L∑
l=0

ck ,l,1 | |x(n − l)| − βk | ej arg (x(n−l))

+

K∑
k=1

L∑
l=0

ck ,l,21 | |x(n − l)| − βk | ej arg (x(n−l)) |x(n)|

+

K∑
k=1

L∑
l=1

ck ,l,22 | |x(n − l)| − βk | x(n)

+

K∑
k=1

L∑
l=1

ck ,l,23 | |x(n − l)| − βk | x(n − l)

+

K∑
k=1

L∑
l=1

ck ,l,24 | |x(n)| − βk | x(n − l) + . . .

Experimental tests on envelop tracking and doherty PA have
shown the very good performance of DVR models. In those
tests the threshold βk were fixed and uniformely spaced. But
an optimization of their values should improve the results.

In [51], Zhu discusses the respective interests of
Volterra series and CPWL functions for DPD.

Authors of [52] propose a modification of the DVR
model avoiding the calculation of absolute values. And the
same kind of modified model is used in [53] for linearization
of radio over fiber link.

6. Advanced Segmented DPD for
Multidimensional DPD
In this section, we briefly discuss some more advanced

points such as application of segmented DPD to systems us-
ing carrier aggregation with concurrent multi-band transmit-
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ters orMIMO techniques. Both cases correspond tomultiple-
inputs DPD (or multidimensional DPD).

In systems using carrier aggregation with concurrent
multi-band transmitters, the input signal includes several fre-
quency bands that can bewidely spaced in the non-contiguous
intra-band or inter-band aggregation. It is possible to con-
sider the multi-band signal as a unique one-dimensional (1D)
single-band signal and to design the DPD accordingly but it
will result in the use of very high sampling frequency and lead
to very high complexity. Another better approach consists in
splitting the 1D signal into N sub-signals corresponding to
each of the N band. This is a segmentation in the frequency
domain. The sub-signals have a much narrower bandwidth
than the 1D original signal and can be separately digitized at
a reasonable sampling rate. Separate feedback paths are used
for the different sub-signals. Most often, N = 2 or 3. The
N-dimension DPD must take into account the different sub-
signals to construct the predistorted signals corresponding to
each carrier and suppress the cross-distortion generated be-
tween the sub-signals [54]. For example, for a 2D-DPD with
two input sub-signals x1 and x2 and two output predistorted
sub-signals z1 and z2, a possible DPD model is:

z1(n) =
M−1∑
m=0

N∑
k=0

k∑
j=0

c(1)
k , j ,m

x1(n − m)|x1(n − m)|k−j |x2(n − m)| j

z2(n) =
M−1∑
m=0

N∑
k=0

k∑
j=0

c(2)
k , j ,m

x2(n − m)|x2(n − m)|k−j |x1(n − m)| j .

This multi-dimensional MP model have a large num-
ber of coefficients. Therefore it can be interesting to use
piecewise models to decrease the number of necessary coef-
ficients. Naraharisetti et al. [11], [55] have reformulated the
model in a more general form that is expressed for zi with
i = 1 or 2 as:

zi(n) =
M−1∑
m=0

G(i)m
(
|x1(n − m)|2, |x2(n − m)|2

)
xi(n − m).

The nonlinear gain functions G(i)m are functions of the two
real-valued signals |x1 | and |x2 |. They can be approximated
by different piecewise functions and in particular using spline
basis functions.

2D cubic splines basis are used in [11], [55] and ex-
tended to 3D cubic spline basis in [56]. The coefficients of
the cubic spline basis are obtained by LS fitting of the mea-
sured data. Using the cubic spline basis functions φ j ,k , the
gain functions are approximated by:

G(i)m
(
|x1 |

2, |x2 |
2
)
=

Ns1∑
j=0

Ns2∑
k=0

c(m)
i jk
φ j ,k(|x1 |

2, |x2 |
2).

Naraharisetti proposed the following formulation for the
splines basis [11], [55]. For a given set of 2D-knots

(|x1,u |
2, |x2,v |

2), the basis functions φ j ,k(|x1 |
2, |x2 |

2) are cre-
ated with 2D interpolation cubic spline such that:

φ j ,k(|x1,u |
2, |x2,v |

2) = δj ,uδk ,v

=

{
1 ∀( j, k) = (u, v)
0 ∀ other knots.

The 2Dcubic spline basis are built from1DCubic spline
basis by tensor product. The number of coefficients is equal
to MNs1Ns2.

In [57], instead of segmenting the model using single
input magnitude, the partioning is done using vector quan-
tization on combined input magnitudes. In [58], [59], 2D
CPWL models are proposed.

The case of DPD for MIMO transmitters is quite sim-
ilar to that of multi-band transmitters. nonlinear crosstalk
effects due to coupling at the inputs of the elementary PAs
create cross-modulation of the elementary signals. In [60],
multivariate polynomial models are used. To reduce the
complexity of such DPD, different piecewise approaches are
studied. For example in [61], [62] Dual-Input Canonical
Piecewise-Linear DPD are presented for MIMO applications
with two antennas.

A new promising approach for multidimensional DPD
withMultiple input multiple outputs, called Tensor-Network-
Based DPD, is proposed in [63]. This new development
should facilitate the identification of Volterra series with
very high memory lengths and memory orders. They are
based on the tensor-network based MIMO Volterra system
framework of [64].

7. Experimental Comparisons
In this section, we give some experimental compar-

isons of three types of DPD: a non-segmented GMP model,
a vector-switched DPD and a DVR DPD.

The experiments have been done with a strongly non-
linear 3-way Doherty PA based on three LDMOS transistors
(BLF7G22LS-130 from Ampleon). Its maximum peak out-
put power is 57 dBm. Its linear gain is 16 dB. The PA is
preceded by a driver with a gain of 31.5 dB. The used car-
rier frequency is 2.14GHz. The input signal is an LTE with
a bandwidth of 20MHz and a PAPR of 8 dB. The tests were
achieved at an average PA output power equal to 47.3 dBm.
For the presented results, training has been done with ILA.

7.1 Non-Segmented GMP-DPD
The structure of the GMP model (values of the eight

parameters (Ka, La,Kb, Lb,Mb,Kc, Lc,Mc)) is determined
by an hill-climbing (HC) optimization algorithm that we
proposed in [65]. This algorithm optimizes a trade-off
between the number of coefficients and the accuracy of
the model. The obtained GMP structure is given by:
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(Ka = 11, La = 2,Kb = 4, Lb = 1,Mb = 1,Kc = 3, Lc =

4,Mc = 1). It has 38 coefficients. The obtained normalized
mean square error (NMSE) is equal to −32.7 dB. NMSE is
defined as the ratio between the power of the error and the
power of the output signal. TheAM/AMandAM/PMcharac-
teristics with and without the GMP DPD are given in Fig. 9.

To improve the results, we can try to increase the num-
ber of coefficients to the detriment of complexity. But the
HC algorithm shows that the results cannot be significantly
improved by increasing the number of coefficients. For exam-
ple with 80 coefficients, the NMSE is only equal to −33.9 dB
(only 1 dB better than with 38 coefficients).

By inspection of the AM/AM characteristic, we can
clearly distinguish different areas with different slopes
(gains). The segmented approaches may be good candidates
to improve performance without significantly increasing the
complexity.

7.2 Vector-Switched DPD (VS-DPD)

To apply Switched-Vector DPD with have to determine
the good segmentation and the structures of models in each
segment. We have chosen GMP models for each segment
(or VQ class) with 14 coefficients and a maximum order of
nonlinearity equal to 5 (instead of 38 coefficients and a maxi-
mum nonlinearity of 11 in the global GMP model). We used
the same structure for all of the segment-models because the
FPGA implementation will be sized by the most complex of
those structures.

We have compared several types of segmentation:

• scalar uniform quantization, scalar non-uniform Lloyd-
Max segmentation,vector-quantization (VQ) with dif-
ferent vector dimensions,

• training of the segmentation codebook on the PA input
or output signal,

• segmentation determined by the signals or by the PA
characteristics.

For each type of segmentation, with have tested different
values for the number of segments

We observed that segmentation determined by the sig-
nals gives better results than segmentation driven by PA char-
acteristics (slope variation in the AM/AM characteristic).
So we focussed on segmentation determined by the signals.
Learning the VQ codebook with the PA normalized output
signal y0 is slightly better than with the original input signal
x. But it is easier to train with the input signal so we trained
VQ on input signal. Morover, quantizing complex signals
does not improve results compared to quantizing signal mag-
nitude. So we applied quantization on signal magnitude.

Fig. 9. AM/AM and AM/PM characteristics with and without
the GMP DPD (38 coefficients).

Fig. 10. Influence of the number of segments on NMSE.

Figure 10 illustrates how varies the NMSE in function
of the number of segments NS for different types of quan-
tization and VQ vector dimension. It can be seen that for
scalar quantization and NS > 10 , using Lyod-Max quantizer
instead of uniform segmentation only slightly improves the
results. But using VQ segmentation with a vector size equal
to 2 or 3 instead of scalar segmentation, improves the NMSE
by approximately 1 dB. A vector size equal to 2 is sufficient.
The results improve slowly when increasing the number of
classes but this number must remain small enough in order
that in each training buffer of N samples, the population size
of each class is large enough for a good identification of the
class-model. On the same Fig. 10, we have added the result
obtained by the global GMP-DPD with 38 coefficients. We
see that it is possible to achieve a similar NMSE with VS-
DPD using 4 segments and VQ Segmentation or Lyod-Max
scalar segmentation each segment corresponding to a model
of 14 coefficients.

Figures 11 and 12 show the result of the segmentation
of AM/AM characteristic into respectively 12 and 4 classes
with VQ (vector size = 2) or scalar Lyod-Max quantization.
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Fig. 11. Segmentation of the AM/AM characteristic into 12
classes. Left: 2D VQ, right: scalar Max-Lyod.

Fig. 12. Segmentation of the AM/AM characteristic into 4
classes. Left: 2D VQ, right: scalar Max-Lyod.

Concerning the implementations, for VS-DPD with
12 segments we have to store 168 (12 × 14) coefficients
instead of 38 coefficients for global GMP-DPD but this is
not a problem because it remains very small compared to
the memory size of common FPGA. But VS-DPD has many
advantages compared to global GMP-DPD. First, the real-
time computation complexity of the DPD is much reduced
for VS-DPD (14 coefficients instead of 38). Secondly, the
identification of coefficients is greatly facilitated, since the
covariance matrix R of (5) has much smaller dimensions
and is better conditioned (there is a ratio of ≈ 105 between
the two condition numbers). Thirdly, the dynamic of coef-
ficients is strongly reduced. For VS-DPD, the ratio between
the magnitudes of the largest and the smallest coefficients is
smaller than 500 for all the models while it is around 4e5
for global GMP-DPD. This last point is important for fixed
point implementation of DPD. The only small drawback of
SV-DPD compared to global GMP-DPD is that each input
sample has to be quantified in order to determine its class
and the coefficients of the DPD have to be modified for each
signal sample.

7.3 Decomposed Vector Rotation DVR-DPD
For DVR-DPD we have to determine the DPD struc-

ture: number of segments (or number of thresholds), mem-
ory depths and terms that we keep in the model given by (8).
Indeed in (8) there are 6 elementary types of basis functions,

but may be some of them are not usefull and some other could
be added. In [66] we have proposed an algorithm based on
hill-climbing heuristic for the sizing of DVR models. This
algorithm searches for a structure that optimizes a trade-off
between the number of coefficients of the model and its mod-
eling accuracy. The thresholds are equi-spaced but it would
be interesting to optimize their values.

Figure 13 shows the influence of the number of seg-
ments K and of the memory depth M on the NMSE. We
can observe that the curves are not monotonically decreasing
when the number of segments increases. May be an op-
timization of the threshold values would made the curves
more regular.

Figure 14 shows the number of DVR coefficients in
function of K and M . The number of coefficients Nc is equal
to M + 1 + 2K(M + 1) + 3K M = 5K M + M + 2K + 1.

We can notice that the obtained NMSE values are quite
similar to those of VS-DPD for the same number of seg-
ments. For example, for NS = 12 segments, the NMSE are
close to −36 dB in both cases with M = 3 for DVR. For
SV-DPD each model has 14 coefficients and we have to store
12 × 14 coefficients in memory. For DVR, the model is the
same for each sample. The DVR model has 208 coefficients.
The condition number of that matrix is 105 times greater
than that of the global GMP-model with 38 coefficients. The
dynamic of magnitude of coefficients is more important for
DVR (≈ 1800) than for VS-DPD (≈ 500) but it much smaller
than that of global GMP-DPD. For DVR, the identification
of coefficients requires to deal with a 208 × 208 matrix R
while for SV-DPD there are 12 identifications to do (one per
segment), each of them with a 14 × 14 matrix R. Therefore
identification step is less complex for VS-DPD.

Compared to the global GMP-DPDwith 38 coefficients,
the NMSE is improved by 3 dB with SV-DPD (12 segments
and 14 coefficients per segment) and by 3.5 dB with DVR (12
segments and memory length = 3).

Figure 15 shows the normalized power spectral densi-
ties obtained with the different DPD (the sampling frequency
is equal to 200MHz) with 12 segments for VS or DVR DPD.

Fig. 13. Influence of the number of segments on NMSE.
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Fig. 14. Number of coefficients in function of the number of
segments and of the memory length.

Fig. 15. Normalized power spectral densities, 12 segments.

8. Conclusion
This paper is a survey of predistortion techniques using

segmentation.

A comparison of global GMPDPDwith two segmented
approaches namely Vector-Switched DPD (VS-DPD) and
Decomposed Vector Rotation DPD (DVR-DPD) is presented
with the support of experimentation on a strongly nonlinear 3
ways Doherty PA. It shows the interest of both segmented ap-
proaches in terms of linearization performance, complexity
and ease of implementation compared to the global GMP-
DPD. VS-DPD and DVR-DPD improves the NMSE by more
than 3 dB. The VS-DPD shows very good numerical prop-
erties both for fixed-point real-time implementation and for
identification of coefficients. The dynamic of the coefficients
of the segmented SV and DVR DPD is very small compared
to that of the global GMP DPD. The numerical conditioning
of SV-DPD is very good.

There remain several paths to explore in the area of
segmented DPD, such as optimizing the segmentation, using
tensor algorithms for multivariate DPD, studying the poten-
tialities of localmodel networks, associationwith neural nets.
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