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Abstract.  In this paper, a novel design of highly com-
pact power divider employing substrate-integrated waveg-
uide (SIW) is proposed for dual-band applications. The
double-ring asymmetric complimentary split-ring resonators
(CSRRs) are utilized to obtain dual-band operation. The
asymmetric double-ring CSRRs create mixed magnetic and
electric coupling resulting two distinct resonating frequen-
cies which exhibits bandpass behaviour below the resonating
frequency of the cavity. The resonating passbands can be
designed individually by varying the dimensions of the pro-
posed CSRRs. In addition, the position of output ports can be
varied to achieve arbitrary power division. To demonstrate
the proposed analysis, three prototypes (two equal power di-
vision and one unequal power division) of dual-band SIW
power dividers are designed and fabricated. Measurement
performance provides a good consistency with that of sim-
ulated one. The circuit areas of the fabricated prototypes
1, 2 and 3 excluding microstrip transitions are 0.0532,°,
0.088/lg2 and 0.0331,2, respectively. The proposed design
process exhibits dual-band performance with smaller circuit-
area, suitable isolation and hence appropriate for dual-band
communication services.
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1. Introduction

The Development power dividers (PDs), directional
couplers, bandpass filters and diplexers etc, employing SIW
technology have gained a great attraction due to their larger
Q-factor, lower insertion-loss, low cost, compact size and
easily integrable with other components [1-7]. The SIW
power divider becomes a key component at millimeter wave
band and widely used in array antennas, multiplexers and
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power amplifiers (PAs). In recent years, the development
of SIW power dividers with low insertion loss, broadband,
miniaturization has been attracted many researchers [8-22].
A high isolation SIW power divider based on the fixed width
lines has been designed [8]. In [9], a miniaturized power
divider has been designed using 1/32th mode SIW resonator.
In [10], a 3-dB E-plane PD with the use of resistive layer
has been implemented applying SIW technology. In [11],
a two layer PD employing SIW has been developed to ob-
tained out-of-phase response. A PD has been realized on
SIW using EBG (electromagnetic band-gap) structures for
broadband and wide out-of-band rejection [12].

Recently, several designs have been presented to im-
prove isolation and to achieve filtering response. A compact
power divider employing quarter-mode circular cavity has
been designed to obtain filtering response [13]. A compact
SIW power divider has been implemented applying defected
ground structure (DGS) for improved isolation and bandpass
response [14]. The T-junction SIW structure has been em-
ployed to design a PD with distinct power distribution [15].
A compact power divider using SIW has been developed to
obtain stop-band performance [16]. In [17], A PD employing
SIW has been designed by applying CSRR for compactness
and filtering response. In [18], half-mode SIW structure has
been used to develop a power divider for compactness and
distinct power division. An eight-way power divider applying
SIW has been presented to achieve low insertion-loss [19].
The Y-junction four-way PD employing SIW has been devel-
oped for broadband application [20]. In [21], a multi-layer
power divider employing SIW has been implemented to ob-
tain out-of-phase response. In [22], the SIW magic-T has
been designed for wideband application.

Miniaturized dual-frequency microwave devices such
as PDs, filters and branch-line baluns facilitate the utilization
of space and operating at distinct frequency bands simulta-
neously for modern wireless communication services. Ac-
cordingly, they have gained significant interest in the imple-
mentation of dual-frequency PD employing SIW. In recent
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years, few development of dual-frequency PD using SIW
have been reported [23-24]. In [23], half-mode SIW with
slots and resistive elements has been used to develop a PD
for dual-frequency communication services. This PD im-
proves isolation by using four resistors but increase the pro-
totype size as well as insertion loss. SIW triangular cavities
along with resistive elements have been employed to design
dual-frequency power divider in [24]. This prototype im-
proves isolation, occupies larger circuit-area and increases
insertion-loss due to the usage two resistors.

This work presents the design of a novel compact STW
power divider for dual-band applications. By loading double-
ring asymmetric CSRRs on the top conducting surface of the
cavity, a dual-band frequency response is obtained. Different
center frequencies are achieved by varying the design param-
eters of the CSRRs. In addition, the position of output ports
can be varied to achieve arbitrary power division. For veri-
fication of the proposed concept, three SIW power dividers
(two equal power division and one unequal power division)
working at two distinct resonating frequencies are imple-
mented and fabricated. The measurement performances are
in good consistency with that of simulated one. The isola-
tion and return loss at each resonating passband are obtained
as 9dB and 16dB, respectively. The phase and magnitude
imbalances are well below 0.7 dB and 1°, respectively, at all
the resonating frequencies.

2. Design Configuration and Analysis

The schematic configuration of the dual-band power di-
vider (DBPD) employing SIW is depicted in Fig. 1. The
proposed topology is consists of a rectangular cavity with
linearly arranged metallized vias and CSRRs of unequal di-
mensions. The double-ring CSRRs are different in size and
connected in parallel on the top conducting surface of the
cavity. The metallic vias are structured in two parallel rows
to obtain electric-walls of the cavity. The direction of the
magnetic field is parallel to the metallic-facet of the cavity
whereas the electric field is perpendicular to the ground and
top conducting surface. The mixed magnetic and electric
couplings are created by the split rings and slots, resulting in
the resonance frequencies. This resonance frequencies can
be produced below the resonating frequency of the cavity.
Three design steps are followed to develop the dual-frequency
power divider using SIW: firstly, the resonating frequency of
the dominant mode (TE;g) is computed by employing the
formulas [2]:

C
=— 1
Je(TE ) W (D
dZ
=W - 2
Ws=W 0.95s @)

where W is specified as effective width of the cavity. The di-
ameter and the center-to-center distance of the via-holes are
specified by d and s, respectively. In order to keep leakage

loss as minimum as possible, the diameter and pitch need to
be chosen as d/dg < 0.1 and d/s > 0.5 (4, is defined as the
guided wavelength at the resonating frequency).

Secondly, the resonance generated due to the mixed cou-
pling of magnetic and electric fields of the rectangular CSRRs
is employed to achieve the passband frequencies below the
resonating frequency of the SIW. The distinct resonating fre-
quencies can be achieved by varying the parameters of the
rectangular CSRRs. The variables L, Ly and W, are varied
to determine the different operating frequency bands. Fi-
nally, the variables of the resonators are optimised to achieve
required resonance frequencies.

Initially, a power divider is structured using SIW cav-
ity of dimensions 10.8 mm X 4.8 mm. The diameter and
the center-to-center distance of the via-holes are assigned
as 0.6 and 1.2 mm, respectively. The simulated magnitude
responses and field distribution of the SIW PD without res-
onators are depicted in Fig. 2. Then, the asymmetric double-
ring rectangular CSRRs connected in shunt are engraved on
the cavity surface to obtain two distinct resonating frequen-
cies. The operating passbands below the cavity resonating
frequency are generated by the mixed coupling of magnetic
and electric fields of the rectangular CSRRs. By varying
the parameters of the resonators, the resonating frequen-
cies of the SIW PD can be tuned as per the requirement.
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Fig. 1. Schematic configuration of the proposed SIW
power divider.
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Fig. 2. Performance of SIW PD without resonators.
(a) Magnitude resoponse and (b) E-field distribution.
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Figure 3 shows that the resonant frequencies (f; and f>) can
be tuned by L;, L4 and W;. From Fig. 3(a), it is observed that
the lower resonant frequency tuned significantly with respect
to L;. The higher resonant frequency tuned significantly
with L4 as depicted in Fig. 3(b). The resonant frequencies
can be varied with the space between two resonators (W) as
illustrated in Fig. 3(c).

2.1 Implementation of Dual-Band SIW PD with
Equal Power Division

In this section, dual-band SIW power dividers with
equal power division are developed and implemented. To
achieve dual-band operation, two unequal CSRRs are loaded
on the surface of the SIW. Due to mixed magnetic and elec-
tric coupling, the passbands are obtained below the waveg-
uide cut-off frequency. The output ports (ports 2 and 3)
are placed symmetric with respect to input port (port 1) to
achieve equal power division. To demonstrate the analysis,
two dual-band SIW power divider with equal power division
are developed and fabricated. The prototypes are operat-
ing at 6.5/8.65 GHz (for prototype 1) and 8.4/11.65 GHz (for
prototype 2). The SIW DBPDs are fabricated on RT/Duroid
5870 substrate having thickness = 0.787 mm, € = 2.33 and
tand = 0.0012. The optimised dimensions for prototype 1
are: Wy =108, W1 =05, W, =1.69, s =1.2,d =0.6, L;
= 3.5, L2 = 3.5, L3 = 3.5, L4 = 2.7, cl = 0.2, C) = 0.2, c3
=0.2, c4 =0.2, ¢c5s = 0.2, ¢¢ = 0.2 and for prototype 2 are:
Ws =108, W; =0.5, W, =1.69, s =1.2,d=0.6, L; =2.5,
Ly=2513=35 L4=28,¢1=02,¢,=021,¢3 =02,
¢4 =02, c5 =0.2, cg = 0.23. Units are in millimeters. The
fabricated DBPD prototypes are shown in Fig. 4. The E-field
distributions of the proposed DBPDs are illustrated in Figs. 5
and 6 for prototypes 1 and 2, respectively.

Prototype 1

Fig. 4. Fabricated prototypes of proposed DBPD with equal
power division.

(@ (b)

Fig. 5. E-field distribution of the DBPD (prototype 1). (a) Lower
resonating frequency (6.5 GHz) and (a) higher resonating
frequency (8.65 GHz).

(a) (b)

Fig. 6. E-field distribution of the DBPD (prototype 2). (a) Lower
resonating frequency (8.4 GHz) and (a) higher resonating
frequency (11.65 GHz).

2.2 Implementation of Dual-Band SIW PD with
Unequal Power Division

In this section, dual-band SIW power divider with ar-
bitrary power division is developed and implemented. To
achieve arbitrary power division, the output ports (port 2
and 3) are placed asymmetric with respect to center of in-
put port 1. Power division between two output ports can be
controlled by varying the parameter W,. The power division
increases by increasing the parameter W,. The output port 2



RADIOENGINEERING, VOL. 29, NO. 1, APRIL 2020

97

(port 3) receives more power than output port 3 (port 2) when
placed nearer to the center with respect to input port 1. To
validate the analysis, a dual-band SIW power divider with
power division of 4 dB operating at 4.35 GHz and 5.72 GHz
is designed and fabricated. In prototype 3, the output port 2
receives more amount of power than the port 3. The opti-
mised dimensions of the fabricated prototype 3 are: Wy =
12.4, W, =0.4, W, =4.69, W3 = 1.595, W4 =3.095, s = 1.6, d
=08, L1=4,1,=4,13=55L4=4,¢1=02,c0=02,¢c3=
0.2,¢4=0.2,¢c5 =0.2, cs =0.2. Units are in millimetres. The
fabricated prototype is depicted in Fig. 7. The E-field distri-
bution of the proposed SIW DBPD with power division of
4 dB is illustrated in Fig. 8. It can be seen that the maximum
field is concentrated at the center of the SIW cavity.

Fig. 7. Fabricated prototypes of proposed DBPD with unequal
power division.

(a) (b)

Fig. 8. E-field distribution of the DBPD (prototype 3). (a) Lower
resonating frequency (4.35 GHz) and (a) higher resonat-
ing frequency (5.72 GHz).

3. Performance Analysis of Proposed
Dual-Band SIW Power Dividers

This section demonstrates the comparative analysis of
the proposed dual-band SIW PD prototypes. Comparison of
performances for all the fabricated prototypes are discussed
in detail. To highlight the advantages of the proposed work,
the state-of-the-arts SIW power dividers are summarized and
discussed. The R&S ZVL network analyzer is employed to
obtain the measurement parameters for all fabricated proto-
types. A good consistency is found between the simulated
and tested performances.

3.1 Performances of Dual-Band SIW PDs with
Equal Power Division

Figures 9 and 10 illustrate the simulated and tested am-
plitude response and isolation of the dual-frequency SIW
power dividers, respectively. From the responses, it is seen
that two transmission zeros are generated after the passbands
resulting good out-of-band suppression. The simulated and
tested return loss are greater than —16 dB at each frequency
band. The tested and simulated performances of the fabri-
cated prototypes are summarized in Tab. 1. The tested and
simulated phase differences of the STW DBPDs are illustrated
in Figs. 11 (prototype-1) and 12 (prototype-2). The tested
phase differences between output ports (at fi/f>) of the proto-
type 1 and 2 are 0.79°/1.45° and 0.74°/0.61°, respectively.
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Fig. 9. Simulated and measured amplitude response of the
proposed DBPDs. (a) Prototype-1 and (b) prototype-2.
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Fig. 10. Isolation (]S3,]) of the fabricated DBPDs.
(a) Prototype-1 and (b) prototype-2.
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Phase Difference (deg)

Phase DIfference (deg)

Designs Type [S11] [dB] [S21] [dB] [S31] [dB] |S23| [dB] PD
Simulated o mo
Prototype 1 | (fi/fy) —22.46/-27.56 | -3.20/-3.89 | -3.39/-4.11 | 12.5/10.6 0°+2
Measured | _50.5/-16.6 | -3.35/-3.45 | -3.56/-3.77 | 11.2/9.75 | 0720
Nlfh
Simulated o o
Prototype 2 | filfh -20.33/-26.97 | -3.06/-3.67 | -3.78/-3.58 | 14.0/11.87 | 0°%2
Measured | _ 1o 37/ o441 | —3.67/-3.8 | —4.08/=3.71 | 11.1/9.80 | 0°42°
Silfa
Tab. 1. The measured and simulated performances of the dual-frequency SIW PDs with equal power division.
Designs Type |S11| [dB] AP [dB] |S23| [dB] PD
Simulated 0,70
Prototype 3 | (fi/fy) —28.44/-21.35 | 4.37/4.04 | 17.82/13.59 | 0°%3
Measured I o0 1/ 2068 | 4.19/4.08 | 15.55/16.52 | 0°x3°
Silfa
Tab. 2. The measured and simulated performances of the dual-band SIW PDs with unequal power division.
Ref. Band | CF[GHz] | RL[GHz] | ISL [GHz] | MI [GHz] Size [14%]
[9] 1 2.4 >10 >13 +0.4 0.49
[10] 1 10 >10 >15* +1.0 3.128
[12] 1 4.5 13 NR +1.1 0.674
[13] 1 9.1 16 NR +0.6 Not Given
[14] 1 9 12 >20* +1.1 1.09
[15] 1 6 >15 NR +0.5 Not Given
[16] 1 43 >10.6 NR +1.2 0.645
[17] 1 1.54 > 13 NR +1.0 0.011
[18] 1 9.71 >12.5 >10* +0.3 1.175
[23] 1/2 2.3/3.5 >16 >16" +1.8/x14 2.4
[24] 2 5.5/8.3 >13 >12* +0.9/£1.5 1.913
Prototype 1 (AP=0dB) | 2 6.5/8.65 >16 >9 +0.56/+0.77 | 0.053
Prototype 2 (AP=0dB) | 2 8.4/11.65 | >19 >9 +0.67/+0.71 | 0.088
Prototype 3 (AP =4dB) | 2 4.35/5.72 >20 >15 +0.25/+0.17 | 0.033

Tab. 3. The state-of-the art comparison of the SIW power dividers.

(RL: Return Loss, MI: Magnitude Imbalance,

CF: Center frequency, ISL: Isolation, NR: Not reported.)
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Fig. 11. Phase performances of the fabricated prototype 1.
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Fig. 12. Phase performances of the fabricated prototype 2.

3.2 Performances of Dual-Band SIW PD with
Unequal Power Division

The simulated and tested magnitude responses and iso-
lation of the dual-frequency SIW PD with power division
(AP) of 4dB are illustrated in Figs. 13 and 14, respectively.
From the plot, it is noticed that the tested reflection coeffi-
cient and power division at 4.35 GHz and 5.72 GHz are better
than —20 dB and 4 dB, respectively. The measured isolations
at 4.35 GHz and 5.72 GHz are greater than 15 dB. The tested
and simulated performances of the fabricated prototype 3 is
summarized in Tab. 2. The tested and simulated phase dif-
ferences of the SIW DBPDs with power division of 4 dB is
illustrated in Fig. 15.

The state-of-the-arts SIW power dividers are compared
and illustrated in Tab. 3. It is seen that the SIW power di-
viders in [9, 10, 23, 24] provide slightly better isolation than
the proposed prototypes due to the use of resistive elements
in their design. The present prototypes achieve compact
size and less insertion loss than reported SIW PDs [9-24].
Therefore the proposed SIW DBPD exhibits the advantages
of smaller circuit-area, low insertion-loss and acceptable iso-
lation beneficial for dual-band applications.
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Fig. 15. Phase performances of the fabricated prototype 3.

4. Conclusions

A novel design process for compact SIW power divider
has been proposed and implemented for dual-band applica-
tion. By configuring CSRRs properly on the top of the SIW
without increasing in the circuit size, dual-band characteris-
tic has been excited below the waveguide cut-off frequency.
Also, varying passbands have been achieved by changing
the dimensions of the CSRRs. A parametric study has been
presented with a clearer explanation to obtain dual-band oper-
ation. A number of cases to tune the resonant frequency have
been illustrated. Finally, three prototypes (two equal power
division and one unequal power division) of dual-frequency

SIW PD have been fabricated and demonstrated. The mea-
surement performances are in good consistency with that
of simulated one, demonstrating that the reported dual-band
power dividers exhibit compact size, attractive performance
and easy integration at low cost, hence suitable for dual-band
wireless communication services.
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