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Abstract. To achieve high quality localization of nodes, 
a smart-mesh strategy is employed in the discontinuous 
Galerkin time-domain (DGTD) simulation. The strategy is 
able to adjust adaptively the nodes defined on the unstruc-
tured triangular element in real-time simulation, thus 
an arbitrary or uncertain shaped object can be modeled 
accurately. The benefits of smart-mesh strategy are demon-
strated for a partially dielectric filled cavity with micro-
scale random material height and uncertain rough inter-
face. Numerical experiments show that the smart-mesh 
approach can capture fine structural information and 
achieve more effective positions to match variable shapes. 
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1. Introduction 
A partially dielectric-filled cavity is a special type of 

resonator, consisting of a metallic enclosure that confines 
electric and magnetic energy therein. It is widely used in 
oscillators, frequency-selective limiters, filtering applica-
tions, resonator antenna elements, etc. [1]–[4]. When lack 
of detailed knowledge about some sensitive parameters of 
the cavity studied, e.g., geometrical shapes, physical di-
mensions, or surface roughness, there exists inevitably 
uncertainty in analyzing and characterizing the electromag-
netic (EM) properties of this type of cavity. These uncer-
tainties lead to a very challenging issue for computational 
electromagnetic (CEM) simulations. Many researchers 
have developed various ways to handle with these issues. 
For example, the method of moments (MoM) which relies 
on a first order truncated Taylor series expansions to obtain 
the estimates of the mean and uncertainty [5]. But the 
MoM has potential ill-condition matrices, resulting in 
a progressive degradation of accuracy of solutions as the 
size of the matrix increases. And its system matrix is full 

and dense, the computation efficiency of this approach is 
not very high [6]. Using the finite difference time domain 
(FDTD) method variables in the physical geometry or 
dimensions are modeled by an uncertainty in the material 
properties [7]. Reference [8] combines the FDTD and the 
stochastic Galerkin method in processing bio-electromag-
netic uncertainty analysis. However, the staggered Carte-
sian grid of the FDTD can cause serious stair-casing errors 
[9]. Chauvière et al. demonstrate the randomness in shape 
or dimension can be modeled by the Jacobian of the trans-
formation [10]. One of the major limitation in this method 
is the uncertainty must be described by a proper formula 
with some associated probability density function (PDF). 

The necessity of geometry modeling and spatial 
meshes with good quality is well known as a key first step 
for CEM methods. While dealing with the EM problems of 
arbitrary or uncertain complex objects, geometry modeling 
and grid generation become more intractable. Especially, 
for an uncertain object incorporating anomalous small 
bumpiness or nanoscale pits on its surface, which may be 
introduced by a small fabrication tolerance in manufactur-
ing processes [11], [12]. One general way is to generate 
different meshes for each of different objects. Obviously, it 
is a too waste of computational resources to generate re-
peatedly grid for every object sample. Because the uncer-
tainty in the output of a computational scenario should be 
similar despite the CEM technique used [7], it may be 
possible to use a computationally efficient DGTD ap-
proach, along with a Monte Carlo method (MCM) with 
a good degree of accuracy to provide an accurate estimate 
of the output uncertainty with relatively little computa-
tional expense. Furthermore, since random meshes can’t be 
obtained in an automatic and efficient way for a complex 
object with arbitrary shapes or uncertain parameters, 
a much smarter and more efficient uncertainty modeling is 
necessary. 

In this paper, a smart-mesh strategy is proposed to ap-
ply to the DGTD simulation, which is able to adaptively 
adjust location of single node and multiple nodes (which 
defined on unstructured triangular elements) in a desired 
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region to match arbitrary complex geometries with uncer-
tainties in real-time simulation. For the partially filled cav-
ity with microscale random material height and uncertain 
microscale rough interface, the core of the smart-mesh 
method is to keep the same mesh, e.g., the mean mesh, and 
to move randomly one side of the triangles sitting on the 
material interface. The advantage of the procedure lies in 
the fact that one need only generate a single mesh, the 
number of nodes and elements remains the same, and only 
the positions of few selected nodes are modified automati-
cally to build a required interface. Moreover, the smart-
mesh procedure is integrated more easily into the DGTD 
algorithm and it mainly involves the generation of an initial 
coarse mesh, the adjustment of nodes according to the 
desired pattern, and the repetition of the process to meet 
some accuracy requirements. Following the principle of 
minimization of interpolation errors, local optimal grids 
can be captured for arbitrary observation points and uncer-
tain material interfaces. 

2. DGTD Approximation and 
Uncertainty Analysis 
Consider two-dimensional (2D) TMz-polarized time-

dependent Maxwell’s equations in normalized form, 
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where Hx, Hy, and Ez denote the components of magnetic 
and electric fields, εr and μr are the relative local 
permittivity and permeability, respectively, of the assumed 
isotropic, linear, and time-invariant medium in which the 
electromagnetic fields propagate [13]. 

The DGTD method offers a number of advantages, 
such as high-order accuracy in spatial and temporal dimen-
sion, geometrical flexibility through fully unstructured 
grids and higher computational efficiency [13]–[17]. In our 
work, it is employed to solve the coupled equations (1) and 
find approximations for Hx, Hy, and Ez. Supposing a gen-
eral computational domain Ω is decomposed into K non-
overlapping triangles in 2D space, x = (x,y). Given an arbi-
trary element Dk of the tessellation, the local unknown 
solutions can be well approximated as  
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where ℓi
k(xi

k) is the two dimensional multivariate Lagrange 
interpolation polynomial, Np = (N + 1)(N + 2)/2 stands for 
the minimum number of nodal points, and N signifies the 
maximum order of the polynomial [14]. On account of the 
fact that correctly choosing interpolation nodes can bring 
about good numerical behaviors, this work employs the 
Legendre-Gauss-Lobatto (LGL) interpolating nodes as xi, 
[14], [21]. 

The discrete unknown solutions of Maxwell’s 
equations are required to satisfy 
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In (3), n̂ denotes the local outward pointing normal vector. 
[E*

zh, H*
h = (H*

xh, H*
yh)] stand for the numerical fluxes, 

whose expression can be found in [14]. Using the Riemann 
conditions and for stability reasons, we use a pure upwind 
flux [14] which could strongly damp unphysical modes.  

After discretization of the operators and evaluation of 
the integrals, the fully explicit semi-discrete scheme can be 
obtained, 
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The matrices J, D, and M represent the transformation 
Jacobian, differentiation matrix and mass-integration ma-
trix, respectively (see [14] for details). The material coeffi-

cient Z and Y are given as 1/ /Z Y       , the minus 
and plus signs represent the ‘left’ and ‘right’ elements 
which share a common interface. Temporal integration of 
the semi-discrete formulation given in (4) is done by 
employing a 4th-order low-storage explicit Runge-Kutta 
(LSERK) solver. 

Lack of detailed knowledge about system parameters, 
e.g., geometry shapes or boundary conditions, leads to the 
introduction of uncertainty in the output of the DGTD 
simulations. Assume there are random events θ with some 
associated PDF in the input parameters, the field solutions 
can, therefore, be represented as Hx(x, y, t, θ), Hy(x, y, t, θ), 
and Ez(x, y, t, θ). 

Monte Carlo method (MCM) is a widely used to solve 
stochastic differential equations and has been demonstrated 
to provide accurate results for EM issues [18]. To deter-
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mine the uncertainty in a DGTD simulation via the MCM, 
the uncertain input parameters associated with PDF must 
first be sampled many times. To estimate the statistical 
properties of random parameters, multiple deterministic 
DGTD simulations are required. One DGTD simulation is 
performed for each sample and the outputs formed from 
each simulation are combined to form the output statistics 
of interest, e.g., mean and standard deviation. Although its 
convergence rate is relatively slow, it is generally accepted 
as a benchmark uncertainty analysis (UA) method with 
a good degree of accuracy, which can test the computation-
ally efficient of other UA methods. In addition, the MCM 
does not rely on any assumption on the relationship be-
tween the uncertain inputs and the output of the DGTD 
simulations. It is independent of the number of random 
variables used to characterize the random inputs [19].  

The first few resonant frequencies of the partially 
loaded cavity are referred to as an output measure of inter-
est in our work. To compute the resonant frequencies, we 
solve the time-domain DG equations for each sample, and 
collect one time-trace at an observation point in the cavity. 
The spectrum of the time-series yields the resonant fre-
quencies. Once the numerical solutions of (4) are obtained, 
the statistical moments (mean and variance) of the random 
unknown solutions can also be evaluated as 
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where fm signifies the resonant frequency resulted from the 
mth stochastic input parameters. These input parameters are 
able to be generated by a random number generator. M is 
the number of samples of the stochastic input parameters. 
E[f] and Var[f] are the expectation and the variance of the 
random variable f, respectively. These statistical moments 
are essential when determining whether the output results 
are acceptable or useful.  

3. Accounting for Smart-Mesh 
Strategy 
For arbitrary complex objects or uncertain computa-

tional domains, accurate modeling and flexible division of 
space are crucial. For a DGTD simulation, unstructured 
mesh always suffers from variation in geometric joints or 
grid nodes. Using the smart-mesh technique developed in 
this paper, the grid size and the nodal position can be ad-
justed adaptively in order to match the variational physical 
objects with uncertainties. Our smart-mesh strategy is com-
posed of five steps as follows: 

Step 1. Generation of an original mesh 
For an arbitrary computational domain, its original 

grids can be generated by any mesh generating software. In 
our work, the arbitrary computational domain is covered 
fully by body-conforming triangular elements. 

x

y

x

y

P P

 
           (a) Unmodified mesh                          (b) Modified mesh 

Fig. 1. Illustration showing how the desired observation point 
and the neighbor nodes are moved automatically:  
(a) unmodified mesh, (b) modified mesh. 

Step 2. Smart mesh of single node 
In the DGTD technique, the unknown fields are de-

fined on interpolation nodes for, as sensitive parameters 
vary uncertainly, the required nodal locations become in-
definite in the domain. The original mesh may turn into 
a nonconforming grid which could lead to non-coincide 
position of a desired point. This scenario is depicted in 
Fig. 1(a). The desired point P (green star) does not lie on 
either of the nodes of two different triangular meshes. Thus 
the effective field values would not be captured. Tradition-
ally, it can be achieved by iteratively refining the mesh till 
the error introduced is minimized [22]. The refinement of 
the unstructured triangles can be done by employing edge 
bisection [23], point insertion, or by use of templates [24], 
[25]. These methods suffer from various problems like 
handling nonconformity, treatment of surrounding ele-
ments, generation of redundant elements, and over-refine-
ment which leads to strict the Courant-Friedrichs-Lewy 
(CFL) condition in time-domain simulations [22].  

Using the proposed smart-mesh technique, the nodes 
(red dot and black dot) which lie in the proximity of the 
desired point are identified by using Euclidian distance 
formula, given in (6). Then, the position of the identified 
nodes, which is the closest to the desired point, is smart to 
match the exact coordinates of the desired point, as shown 
in Fig. 1(b).  

 2
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where Qk is the kth number of node in the n-dimensional 
Euclidian space and dk is the distance between Qk and the 
desired point P. The node with the shortest distance dk is 
marked out. 

Step 3. Smart mesh of node to node 
To model an uncertain material interface, such as, to 

split the unstructured triangular mesh with respect to some 
reference line. The reference line is defined by two points, 
P1(x1, y1) and P2(x2, y2), in the 2D Cartesian coordinate 
system, as shown in Fig. 2. If the two points do not exist as 
nodes in the mesh, they are constructed by employing the 
methodology presented in Step 2.  

First, select P1 as the current node and find all the 
nodes which are connected with P1, e.g., the magenta dot 
N1, N2, N3, and N4. Next, calculate the relative distance of 
all the nodes to the end point P2, that is, the distance of 
point to point, d1, d2, d3, and d4, by using (6). Last, shortlist 
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two nodes with the smallest value of a point-to-point dis-
tance are picked up, N2 and N3. 

Step 4. Smart mesh of node to line 
After Step 3, we get two candidate nodes. Next, it 

needs to decide which node should be suited to modify the 
mesh based on some criterion (guarantee a good accuracy 
without increasing the computational cost). 

Calculate the perpendicular distance from the 
shortlisted nodes to the reference line by using (7), 

      
   

2 1 2 1 2 1 2 1
1 2, 2 2

2 1 2 1

, , k k
k k

y y x x x y x y y x
Dis P P x y

y y x x

    


  
  

  (7) 
where (xk, yk) are the coordinates of the kth node in the 2D 
mesh. 

Finally, the smallest perpendicular distance is singled 
out to determine the most suited node. Thereby, the se-
lected node is adjusted adaptively to match the computa-
tional model. If this node belongs to an element whose two 
nodes have already been modified, then skip this node and 
adjust the other node. Otherwise, three nodes of the same 
element will become collinear giving rise to the silver ele-
ment with a radius equal to zero. To understand the modifi-
cation of nodes, a graphical sketch of the whole process is 
given in Fig. 2.  

Step 5. Update mesh 
For the given ensample shown in Fig. 2, the node N3 

is selected to substitute the node P1 of the reference line as 
the current point. Thus, N3 and P2 compose an updated 
reference line. Repeat Step 3 and Step 5 until the distance 
of the reference line becomes equal to zero. Consequently, 
the unstructured triangular mesh can be split into a differ-
ent region by adjusting adaptively nodal position and grid 
size that fall in the vicinity of the reference line. 

To demonstrate the smart-mesh procedure discussed 
above, a simple test case is considered firstly, i.e., 
a straight line with a fixed height is built by recurrently 
executing smart-mesh strategy. In this trial, the 2D unstruc-
tured triangular mesh is made from 32 nodes and consti-
tutes 46 elements. The red squares highlight the nodes 
whose position is used to change. The green line, black 
dotted lines and the cyan circles show the modification of 
the mesh. The advantage of the procedure is that the num-
ber of nodes and elements remains the same, and only the 
positions of few selected nodes are changed automatically 
to build a required interface, as shown in Fig. 3.  

4. Numerical Experiments 
With the terahertz electromagnetic wave detection 

technology developing very rapidly, its application is also 
becoming wider and wider. Using terahertz non-destructive 
testing technique, microscale bumpiness or nanoscale pits 
on a material  surface  can be detected. To validate the  per- 

 
Fig. 2. Illustration showing how the triangular nodes are 

moved adaptively for point to point. 

 
Fig. 3. One ensample of a body-conforming nature of the grid 

and the nodal grid: (a) Before modification. (b) After 
modification. 

formance of the smart-mesh procedure described above, we 
consider a metallic partially dielectric-filled cavity with 
microscale defective material interface, i.e., random micro-
scale material height h and uncertain local microscale 
rough interface. 
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4.1 Setup of EM Problem 

Figure 4 shows a setup of the partially dielectric-filled 
cavity with the material interface perpendicular to the y 
axis, assumed to be defined by (x, y) = [1, 1]2. The region 
I stands for vacuum and region II is dielectric, which are 
designated by subscripts 0 and d, respectively. For simplic-
ity, the materials are assumed as nonmagnetic. The compu-
tational domain is discretized by triangular elements, each 
supporting a 4th-order polynomial approximation. The 
initial condition is a simple oscillatory solution as 

       , ,0 0, , ,0 0, , ,0 sin .x y zH x y H x y E x y y    (8) 

To compute the resonant frequencies which are output 
measure of interest, we solve the 2D time-domain Max-
well’s equations in the TMz-polarization and collect one 
time-trace at the desired observation point in this type of 
cavity. The spectrum of the time-series yields the resonant 
frequencies as strong peaks which are found by using Fast 
Fourier Transform (FFT). 

Theoretically, there are an infinite number of resonant 
modes for the longitudinal section electric (LSE) modes, 
and the desired mode is usually selected based on the appli-
cation requirements [1], [4]. The aim of the experiment is 
to compute the first few resonance frequencies of the par-
tially filled cavity. For the case considered, the resonant 
frequencies are given as 
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where a = 2 and b = 2 are the normalized dimensions of the 
cavity. The analytical formula of resonant frequencies (9) 
is a transcendental equation. Transcendental equations 
often do not have closed-form solution, which can be 
solved using numerical, analytical, or graphical methods. 
The graphical method is to set each side of a single varia-
ble transcendental equation equal to a dependent variable 
and plot the two graphs, using their intersecting points to 
find solutions. In our work, (9) is suited to be resolved by 
the graphical method. The intersection of the two curves of 
the right function and the left function of (9), is the root of 
the equation, as shown in Fig. 5.  

4.2 Uncertain Parameter in Material Height 

This section focuses on the cavity where the height of 
the material interface is uncertain, such that both domains 
are of variable width. These uncertain parameters may be 
caused by fabrication tolerances. Suppose the material 
interface moves only in a small region, thus the adjustment 
is made only in the local domain by using the smart-mesh 
method. The height of the material interface is defined as 

x/λ-1

Region I：
μ0=1
 0=1

Region II：
µd=1 
d=2.56

1-1

y/λ 

h=h+∆h

1

observation 
point

 
Fig. 4. One sample of a geometry for the partially dielectric-

filled cavity with defective material interface, i.e., 
random height h or uncertain rough interface. 

 
Fig. 5. Illustration showing one sample of the solution of the 

transcendental equation for LSE1n modes. 
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b
h
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where θ is a Gaussian variable with zero mean and unit 
variance. Further assume that the interface roughness of the 
material is zero, that is, the material interface is smooth. 
And all other parameters are fixed, i.e., a = 2, b = 2, μ0 = μd 

= 1, ε0 = 1, and εd = 2.56. It should be noted that using the 
smart-mesh procedure one just needs to generate a single 
mesh for the cavity with random material height. 

We compute the mean and variance of the resonant 
frequencies of the partially loaded cavity. The analytical 
results are obtained by performing up to 1200 samples 
(which  is the  sample  size of  variable θ)  on the  analytical 
 

iterations  f1 f2 f3 f4 f5 f6 

Analytical 
formula 

300 0.3214 0.4723 0.5421 0.6688 0.7554 0.9482 

600 0.3219 0.4727 0.5479 0.6712 0.7603 0.9476 

1200 0.3214 0.4722 0.5450 0.6689 0.7577 0.9470 

Smart-mesh 
DGTD 

300 0.3187 0.4697 0.5483 0.6642 0.7557 0.9502 

600 0.3183 0.4695 0.5532 0.6667 0.7606 0.9491 

1200 0.3181 0.4687 0.5500 0.6646 0.7580 0.9490 

Tab. 1. Numerical mean of resonance frequencies for a cavity 
with an uncertain thickness. 
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iterations f1 f2 f3 f4 f5 f6 

Analytical 
formula 

300 3.8406e–5 1.8847e–5 5.3706e–3 8.7219e–4 3.8061e–3 1.3424e–4 

600 4.0405e–5 1.9721e–5 5.3834e–3 8.4446e–4 3.7844e–3 1.3459e–4 

1200 3.8759e–5 1.9381e–5 5.4308e–3 9.3623e–4 3.7955e–3 1.6420e–4 

Smart-mesh 
DGTD 

300 3.0900e–5 1.2618e–5 3.9278e–3 8.4656e–4 3.7459e–3 1.4437e–4 

600 3.1954e–5 1.2766e–5 3.8661e–3 8.2194e–4 3.7249e–3 1.5443e–4 

1200 3.1518e–5 1.4369e–5 3.9766e–3 8.7190e–4 3.7393e–3 1.5490e–4 

Tab. 2. Numerical variance of resonance frequencies for a cavity with an uncertain thickness. 

 
Fig. 6. Errorbar of resonant frequency for LSEy modes with 

random material height using DGTD method and 
analysis method. 

formula of the resonance frequencies in (9). Table 1 and 
Table 2 indicate statistic of the resonance frequencies cal-
culated by the DGTD method and sampling of the analysis 
solution. As expected a good agreement between the smart-
mesh DGTD approach and the exact method is seen. Fig-
ure 6 shows the error bar of resonant frequency for LSEy 
mode. In contrast of the smart-mesh DGTD and analysis 
method’s results, it demonstrates the accuracy of the smart-
mesh DGTD approach. Moreover, Figure 6 illustrates the 
higher order modes of the partially loaded cavity are af-
fected more obviously by the uncertainty in the material 
height.  

4.3 Uncertain Local Rough Interface 

In this section, we assume an uncertainty in the mate-
rial interface in Region II. These uncertainties may be 
induced by fabrication tolerances. Firstly, we set the mate-
rial interface is smooth, i.e., h = 0. Then, using any mesh 
generator, a coarse grid is generated for our computational 
set, as shown in Fig. 7. In this trial, the 2D unstructured 
triangular mesh is made from 143 nodes and constitutes 
258 elements. The smooth material interface is modelled 
by some line segments from the finite element mesh. Those 
line segments are represented by the points of the coordi-
nates x. Further assume that the vertex x can be moved 
randomly by a quantity  to take a new position x = x + . 

For the partially filled cavity with uncertain micro-
scale rough interface, it should be noted that when the 
vertexes defining the smooth interface are moved randomly, 

 
Fig. 7. One sample of a coarse grid with the smooth material 

interface for the partially dielectric-filled cavity. 

the triangles sitting on the material interface are unable to 
distort the mesh too much. That is, the two vertexes close 
to each other have a closer random variable . This can be 
easily controlled by the standard deviation (Std) of the 
random variable . In addition, Std can control the rough-
ness of the material interface. For our trials, one case,  is 
set to a normal random variable with zero mean and 0.01 
Std; another  is set to a uniform random variable on the 
interval [0.5, 0.5] with zero mean and 0.0115 Std given 
by 

 
= , for normal variable,

100
0.5

= , for uniform variable.
25



 
 (11) 

For the sake of simplicity, a part of the rough 
interface is assumed to be uncertain, i.e., the region of 
x  0.25. Other parameters are fixed as a = 2, b = 2, h = 
b/4, 0 = 1, d = 2.56, and 0 = d = 1. 

Traditionally, for a problem with the microscale 
rough interface, a new mesh is usually required for each 
considered target. To obtain the accuracy statistical proper-
ties of uncertain rough interface, a larger number of sam-
ples for the similar computational set are required. For 
a DGTD simulation, each one studied sample needs one 
mesh. Obviously, it is a too waste of computational re-
sources to generate repeatedly grid for the similar target. 
Using our smart-mesh procedure, one just needs to gener-
ate a coarse mesh only once for a special computational 
set, for instance, h = 0. Only the positions of few selected 
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Fig. 8. Errorbar of resonant frequency for LSEy modes with 

rough interface represented by normal and uniform 
random variables. 

nodes are changed automatically, the number of nodes and 
elements remains same. Figure 8 shows the error bar of 
resonant frequency for LSEy mode with different rough 
material interface. In contrast of the normal and uniform 
random variable, it demonstrates the greater Std leads to 
the worse resonant frequency. Moreover, it illustrates the 
first three modes are affected more obviously by the uncer-
tain rough material interface. 

5. Conclusions 
In order to flexibly and efficiently model a complex 

object with arbitrary shapes or uncertain parameters, 
a smart-mesh strategy integrated into the nodal-based 
DGTD method is proposed in this paper. Taking ad-
vantages of the smallest Euclidean distance to adjust adap-
tively the locations of nodes defined on unstructured trian-
gular elements, one can achieve a smart geometric model-
ing of arbitrary complex shapes with microscale uncertain-
ties in real-time DGTD simulations. The benefit in this 
procedure is that the number of nodes and elements re-
mains same, and only the positions of few selected nodes 
are changed automatically to build a required interface. 
The test cases with both microscale uncertain material 
height and random rough interface demonstrated that the 
proposed strategy can obtain a good numerical accuracy 
compared with the analytical method. Moreover, they also 
show that the uncertainties in material interface affect the 
resonant frequency mostly in some first modes. With fur-
ther development, the smart-grid strategy is expected to 
provide a powerful tool for solving multi-dimensional 
complex EM problems involving random behaviors. 
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