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Abstract. In recent years designing newmultistable chaotic
oscillators has been of noticeable interest. A multistable sys-
tem is a double-edged sword which can have many benefits
in some applications while in some other situations they can
be even dangerous. In this paper, we introduce a new mul-
tistable two-dimensional oscillator. The forced version of
this new oscillator can exhibit chaotic solutions which makes
it much more exciting. Also, another scarce feature of this
system is the complex basins of attraction for the infinite co-
existing attractors. Some initial conditions can escape the
whirlpools of nearby attractors and settle down in faraway
destinations. The dynamical properties of this new system
are investigated by the help of equilibria analysis, bifurca-
tion diagram, Lyapunov exponents’ spectrum, and the plot of
basins of attraction. The feasibility of the proposed system is
also verified through circuit implementation.

Keywords
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1. Introduction
Multistability is a critical phenomenon in dynamical

systems [1]. Sometimes multistability is undesirable. That is
the case when it is essential for us to have the system in one
specific attractor, but due to even small changes in parame-
ters or external disturbance, the system’s state exits from that
attractor and fall into another coexisting attractor. On the
other hand, it allows adaptability in the system’s administra-
tionwithoutmodifying parameters. It would be possible with
the appropriate control tactics to induce switching between
different coexisting states [1], [2].

Recently there has been growing attention in finding
chaotic systems with special qualities. Systems with no equi-
librium [3], [4], with stable equilibria [5], [6], with curves
of equilibria [7–9], with surface of equilibria [10–12], with
multi-scroll attractors [13], with hidden attractors [14], [15],
with amplitude control [16], [17], with simplest form , having
hyperchaos [18–20], having fractional order form [21–23],
with topological horseshoes [24], [25], and with extreme
multistability [26–29], are examples of them. Another ma-
jor category of chaotic systems includes periodically-forced
nonlinear oscillators [30]. Almost all conventional chaotic
systems are systems with a finite number of fixed points [30].
Recent researches have laid a platform to formulate systems
with an infinite number of equilibrium points [31], [32] Local
features of such equilibrium points may or may not influence
the global response of the chaotic system. A very recent
category of chaotic systems are systems with mega-stability.
Mega-stability is the coexistence of a countable infinity of
nested attractors in a dynamical system [33]. In [34], mega-
stability found in a quasi-periodically forced system exhibit-
ing. A new mega-stable nonlinear oscillator with infinite
islands of self-excited and hidden attractors reported in [35].
A new oscillator with infinite coexisting asymmetric attrac-
tors introduced in [31]. Some other such examples have been
proposed recently [36–39].

In this paper, based on the systems in [40] we propose
a revised oscillator with an infinite number of coexisting limit
cycles. Interestingly, the forced version of this new oscillator
can display chaotic solutions. In this oscillator, many of the
initial limit cycles vanish while some new limit cycles and
strange attractors are born (depending on the parameters).
Also, another infrequent feature of this system is the com-
plex basins of attraction for the infinite coexisting attractors.
Some initial conditions can avoid the whirlpools of nearby at-
tractors and settle down in faraway destinations. In the next
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section, the new oscillator is introduced and investigated.
In Sec. 3, the forced version of this oscillator is presented,
and its dynamical properties are examined by the help of
the bifurcation diagram, Lyapunov exponents’ spectrum, and
the plot of basins of attraction. Also with a circuit imple-
mentation, its feasibility for possible engineering application
is displayed in Sec. 4. Finally, discussion and conclusion
are given in Sec. 5. It should be noted that we have used
MATLAB for all the simulations. Attractors detected manu-
ally by trial and error. Limit cycles were distinguished from
chaotic attractors by the help of Lyapunov exponents, using
Wolf algorithm [41].

2. The New Oscillator
Consider system (1),

Ûx = y,
Ûy = − cos (ax) + by cos (x) . (1)

This system is a modification of system (2) [40]:

Ûx = y,
Ûy = −x + y cos (x) . (2)

The number of equilibrium points in system (1) is infi-
nite. They are located in ( (2k−1)π

2a ,0) where k is an arbitrary
integer number.

Considering a = 0.3 and b = −0.1 (these values have
been selected to find chaotic solutions in the forced version
of system (1), which will be discussed in next sections), we
focus on system (3):

Ûx = y,
Ûy = − cos (0.3x) − 0.1y cos (x) . (3)

The Jacobian of the above system in its equilibria is:

J =
[

0 1
0.3 sin (0.3x) + 0.1y sin (x) −0.1 cos (x)

]
(x,y)=

(
5(2k−1)π

3 ,0
)

−−−−−−−−−−−−−−→
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2

)
−0.1 cos

(
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3
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3
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.

(4)

So, the eigenvalues will be:

|λI − J | = 0→�������
λ −1

−0.3(−1)k+1 λ + 0.1 cos
(

5(2k−1)π
3

)
������� = 0→

λ2 + 0.1 cos
(
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3
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±
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(5)

Thus, any equilibrium in which both Real(λ1,2) < 0 is
stable. Otherwise the equilibrium is unstable.

Figure 1 is a plot of trajectories in system (3) for 51 dif-
ferent initial conditions located on the x-axis (from x = −50
to x = +50 with steps equal to 2). The stable equilibrium
points are shown by blue circles, while unstable equilibrium
points are given by red crosses. Each trajectory is plotted
for 1000 seconds. The first 800 seconds of each trajectory is
plotted with green dots, showing the transient parts of trajec-
tories. The last 200 seconds of each trajectory is plotted with
thick black lines, showing the steady state of that trajectory.

It can be seen that six limit cycles and four stable equi-
libria coexist in the shown area (note that they are examples
of an infinite number of attractors around the x-axis). The
basin of attraction for these attractors can be seen in Fig. 2.

Fig. 1. Trajectories in system (3) for 51 initial conditions located
on the x-axis (from x = −50 to x = +50 with steps equal
to 2). The stable equilibrium points are shown by blue
circles, while unstable equilibrium points are displayed
by red crosses. The transient parts of trajectories are
shown by green dots. The attractors outside this frame
are not shown. The total of 10 attractors (6 limit cycles
and 4 stable equilibria can be observed in this plot). For
more details see the text.

Fig. 2. Basin of attraction plot for the 6 limit cycle attractors
and 4 stable equilibria shown in Fig.1. Initial conditions
in the white area go to attractors outside this frame. This
figure is obtained by a grid of 200 × 200 initial con-
ditions. The color of each smooth area belongs to the
attractor inside it.
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3. The Forced Chaotic Oscillator
By adding a periodic forcing function to system (3),

a new oscillator is introduced:

Ûx = y,
Ûy = − cos (0.3x) − 0.1y cos (x) + A sin (ωt) . (6)

We are interested in finding chaotic solutions in this sys-
tem. Different combinations of (A,ω) may result in chaotic
solutions. Selecting ω = 0.5, we choose A as the bifurcation
parameter. Figure 3 shows the bifurcation diagram and Fig-
ure 4 shows the Lyapunov exponents of system (6) versus A.
We can see that in A between zero and approximately 0.04,
the dynamical behavior of system (6) is attracting torus (two
zero and one negative Lyapunov exponents [30]). After that,
suddenly the solution is converging to a stable equilibrium
(one zero and two negative Lyapunov exponents). In the area
after A = 0.07 some chaotic solutions are born containing
periodic windows. Some period doubling route to chaos can
be observed in those areas.

Choosing A = 0.1 (and ω = 0.5) from the chaotic re-
gion, we continue our analysis. Figure 6 shows impressive
features of system (6). This is a plot of coexisting attractors
for the same initial conditions used in plotting Fig. 1. For
a better demonstration of this figure, we have zoomed some
parts of it and shown them in Fig. 7. Also, the time-series
and attractor for initial condition (1,1) are plotted in Fig. 5.
In Figs. 6 and 7, it can be observed that the initial limit cycles
are now replaced by some coexisting strange attractors and
new limit cycles. It is interesting that some new limit cycles
are the results of merging old limit cycles. Also, a unique
phenomenon can be detected in Fig. 6. Some initial condi-
tions are not get trapped in nearby attractors. Instead, they
travel far away and settle down in an unexpected attractor.

Fig. 3. Bifurcation diagram when changing parameter A in sys-
tem (6) with ω = 0.5. The initial conditions for every
value of A were (0, 0).

Fig. 4. TheLyapunov exponents’ spectrum, corresponding to the
bifurcation diagram in Fig. 3.

Fig. 5. a) Time-series and b) trajectory in system (6) for A = 0.1
and ω = 0.5 for the initial conditions (1, 1).
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Fig. 6. Trajectories in system (6) for A = 0.1 and ω = 0.5 for
the same initial conditions used in Fig.1.

Fig. 7. Some zoomed parts of Fig. 6.

4. Circuit Design
Previous researches have described general methods in

order to implementmathematicalmodels using voltage-mode
devices [42] and current-mode active elements [10]. It is pos-
sible to implement the forced chaotic oscillator (6) by using
a circuit [43–51] as designed in Fig. 8. Two voltages at
the capacitors (C1,C2) are X and Y . In Fig. 8, the value of
0.3X has been realized by two inverting amplifiers (U4,U5).
Integrated circuits U1–U6 are TL084 operational amplifiers.
It is noted that we have only presented the cosine transfer
functions as two-port lumped circuits in Fig. 8. In fact, the
cosine function in the circuit equations can be realized by us-
ing trigonometric function generator AD639 [52], [53]. For
the designed circuit, we have selected R1 = R2 = R = 10 kΩ,
R3 = R4 = R5 = 100 kΩ, R6 = 30,kΩ, C1 = C2 = C3 = C =
10 nF, and f = 0.795 kHz. PSpice trajectories in Fig. 9 show
the circuit’s chaos.

Fig. 8. The forced chaotic oscillator (6) emulated in a circuit.

Fig. 9. PSpice trajectories displayed in the circuit.
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5. Conclusion
Introducing rare dynamical oscillators with unusual

properties has been a hot topic in nonlinear dynamics re-
cently. In this paper, we designed and investigated a new
mega-stable oscillator. This new system had an infinite num-
ber of coexisting attractors (limit cycles and stable equilibria).
Adding a forcing term to this oscillator a new oscillator ob-
tained which was capable of showing very rich dynamical
solutions torus, chaos, and limit cycle. The initial conditions
in this system can escape neighboring attractors and settle
down in unexpected far destinations. The forced chaotic os-
cillator was emulated in a circuit. However, we think due
to saturation in the elements, it is difficult to obtain other
attractors in the circuit results.
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