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Abstract. In this paper, the mathematical modeling of 
memristor via Takacs model of hysteresis is presented 
along with a modification of this model tailored to describe 
the asymmetric hysteresis loop and first order reversal 
curves. In particular, it is shown that there is a class of 
differential equations of the Duhem model of hysteresis 
where every member of the class could play a role of the 
state equation of memristor. Within this class of Duhem 
differential equations, there are two distinct subclasses: 
one corresponding to the Takacs model and the other one 
corresponding to the state equations of the memristor 
model with the Biolek window function of various degrees 
p. These two subclasses have a non-empty intersection, 
which contains the state equation of the memristor model 
with the Biolek window function for p = 1. To demonstrate 
the proposed approach, three examples are presented. 

Keywords 
Hysteresis loop, Takacs model, pinched hysteresis 
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1. Introduction 
The hysteresis is a nonlinear phenomenon, which 

emerges in numerous fields, including physics, electronics, 
materials sciences, biology, mechanics, economy, etc. [1]. 
It was first observed in ferromagnetic materials, and later 
in smart materials such as piezoelectric materials, electro-
active polymers, magnetostrictive materials, shape memory 
alloys, etc. [2].  

Due to the long history of the subject and the omni-
presence of hysteresis phenomena, there exist a considera-
ble number of models and published books on the model-
ing of hysteresis [3]–[12]. The main advantage of mathe-
matical modeling is in its ability to describe experimental 
data via analytical expressions, which in turn provides 
a simplified and more efficient analysis of systems exhib-
iting hysteretic behavior. There is no model of hysteresis 

loop (HL) capable to grasp all necessary features of the 
object to be modeled [12].  

Mathematical models of HL usually involve functions 
such as exponential [13], polynomial [14], [15], and ra-
tional [16]–[19], then functions represented via Fourier 
series [20], Langevin [21], [22], Frolich [19], Brillouin 
function [21], and modified Brillouin function [23], hyper-
bolic tangent [24], and arcus tangent function [19], [21], 
[25]–[28]. Takacs model [29], [11] is based on the linear 
combination of the hyperbolic tangent and linear function. 
This model describes hysteresis loop with a small number 
of parameters and can provide a good fit to experimentally 
obtained data. Various modifications of Takacs model 
involving Langevin function, arcus tangent, sine of arcus 
tangent or Frolich function were considered in [21]. Modi-
fications that involve logistic function, algebraic sigmoidal 
function or Gompertz function are reported in [30]. Apart 
from the models based on mathematical functions, hystere-
sis can be also described by differential equations (e.g. 
Duhem model [5]). 

The appearance of pinched hysteresis loop (PHL) in 
the voltage-current plane is one of the fingerprints of 
memristive behavior [31], [32], [33]. A comprehensive 
overview of fingerprints and the history of the subject are 
presented in [34]. Odd-symmetric self-crossing PHL is 
recognized as the signature of ideal memristor [35]. For 
various degrees of degeneracies, the classification of PHLs 
on self-crossing and touching has been further refined in 
[36]. Dependence of the type of PHL on the frequency 
content of the state variable is analyzed in [37]. Under the 
assumption that constant charge can be delivered to an 
ideal memristor within the half-period, the influence of the 
frequency of sinusoidal excitation on the area of PHL is 
analyzed in [38]. Apart from memristor, memcapacitor and 
meminductor, the other nonlinear elements in Chua’s table 
also exhibit PHLs in the appropriate planes, as shown in 
[39]. Non-memristive elements having PHLs in the volt-
age-current plane are considered in [40]. Physical interpre-
tation of lobe area (LA) of PHL is discussed in [41]. The 
computation of LA via the time-domain integration in the 
voltage-current plane has been studied in [42], [43] and
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[44]. Also, the computation of LA from the memristance 
vs. state map of the ideal and ideal generic memristors is 
considered in [45]. 

A simple integrator-multiplier model of PHL has been 
introduced in [46]. Theory of Lissajous figures were ap-
plied to the creation of PHL and experimentally verified in 
[47]. A graphical modeling of PHL that exhibits finger-
prints of a memristor is presented in [48]. 

Mathematical model for the major and minor PHLs of 
memdiode (diode with memory) is proposed in [49] and 
then modified in [50] by introducing the rate-dependent 
state variable. In both models, the branches of hysteron are 
logistic curves, expressed via exponential functions. The 
simple relation that exists between the exponential and 
hyperbolic tangent function implies that the branches of 
logistic hysteron can also be expressed via the tangent 
hyperbolic function. 

Hyperbolic-type memristor with memductance ex-
pressed via the hyperbolic tangent function of state varia-
ble is proposed in [51]. Although not explicitly reported, 
HL appears in the memductance-flux plane of this type of 
memristor. (As usual, by flux/charge we meant the time 
integral of voltage/current.) Similarly, HL in the memduct-
ance-flux plane of TaOx  memristor can be observed in 

simulations with the model described in [52]. 

In addition, HL has been reported for spintronic 
memristor in memristance-flux plane [53], for ferroelectric 
memristor (along with the so-called reversal curves) in 
memristance-voltage plane [54], and for quantum point 
contact memristor in resistance-voltage plane [55].  

HLs are measured for spintronic synapses for ANNs 
in memristance-current plane [56], [57]. Both real and 
imaginary parts of the admittance of RRAM devices de-
scribed in [58], [59] exhibit hysteretic behavior with the 
change of the driving voltage. The coexistence of hyster-
etic memristive and memcapacitive behavior is analyzed in 
[60], [61]. Gas discharge lamps are the subclass of memris-
tors having non-crossing PHLs [31] and inverse hysteresis 
in the flux-charge plane [62].  

In this paper, we relate the classical hysteresis theory 
(Takacs and Duhem models) to the mathematical modeling 
of memristor. According to our best knowledge, the first 
usage of the Takacs model of hysteresis in mathematical 
modeling of memristor is proposed here. We also propose 
the modified Takacs model, in order to be able to describe 
asymmetric HL and corresponding first order reversal 
curves. We also provide two examples of the usage of 
Takacs model in fitting experimentally obtained data of 
some of fabricated memristors. Additionally, we show that 
the differential equation corresponding to the Takacs 
model belongs to a class of differential equations in the 
Duhem model of hysteresis. In particular, we show that 
a class of differential equations in the Duhem model can be 
used as state equations of memristors. Moreover, we show 
that the state equation of the memristor model with Biolek 

window function [63] also belongs to that class of Duhem 
differential equations. Accordingly, hysteresis appears in 
the state-charge plane for the current-controlled memristor 
and it is rate-independent. In the special case when p = 1 in 
the Biolek window, we show that the steady state solution 
of the state equation can be expressed in terms of the 
Takacs model.  

The rest of the paper is organized as follows: Takacs 
model of HL is briefly described in Sec. 2. In Sec. 3, clas-
sical Takacs model is extended to the case of asymmetric 
HL with the first order reversal curves. In Sec. 4, it is 
shown that a class of differential equations of Duhem 
model of hysteresis could be used as the state equation of 
memristor. It is also shown that the state equation of the 
memristor model with the Biolek window function, as well 
as the differential equation corresponding to the Takacs 
model, both belong to the considered class of differential 
equations of Duhem model. Three examples, including 
spintronic memristor [53], ferroelectric memristor [54] and 
memristor model with the Biolek window function [63] are 
presented in Sec. 5. Conclusions are provided in Sec. 6. 

2. Takacs Model of Hysteresis 
This section provides a brief description of the Takacs 

model (also called T(x) model) of HL [11], enabling us to 
model major and minor HLs, inverse hysteresis, first-order 
and higher-orders reversal curves, demagnetization spiral, 
etc. 

Takacs model is based on the T(x) function, which is 
a linear combination of a hyperbolic tangent and a linear 
function: 

 0 0 0( ) tanh .T x B C x A x    (1) 

In order to describe branches of the symmetric HL, the 
hyperbolic part of T(x) is shifted in horizontal direction (to 
the right and left by a0) and in vertical direction (up and 
down by b1), see Fig. 1. The ascending branch f+ for the 
increasing values of x  is described by 

  0 0 0 0 1( ) tanh ( ) ,f x B C x a A x b      (2) 

whereas the descending branch f– for the decreasing values 
of x  is described by 

  0 0 0 0 1( ) tanh ( ) .f x B C x a A x b      (3) 

The branches have two common points at the tips of HL 
(see Fig. 1). Since hyperbolic tangent is an odd function, 
we can assume, without the loss of generality, that  

 0 0.B   (4) 

For periodic driving signal x = x(t), with zero mean and  
–Xm  x  Xm, the tips occur at x = Xm. Symmetric HL  
is closed when f+(Xm) = f–(Xm). This relation can be solved 
for b1:  
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Fig. 1. Examples of T(x), f+(x) and f–(x) functions for A0 = 0, 

B0 = 4, C0 = 1, a0 = 1.5, Xm = 2. 

    0
1 0 m 0 0 m 0tanh ( ) tanh ( ) .

2

B
b C X a C X a       (5) 

In the context of magnetic materials, parameter A0 in (2) 
and (3) is related to reversible magnetization, and can be 
used to “skew” the HL. In what follows, coefficient A0 is 
set to zero. For A0 = 0, the horizontal asymptotes of f+(x) 
and f–(x) are B0 + b1 and B0 – b1, respectively. Notice that 
HL can be easily shifted up or down by adding the same 
constant to both f+ and f–. 

Setting A0 to zero in (2)–(3) and solving the resultant 
equations for x provide the branches of the inverse 
hysteresis: 

 1
0

0 0

1
( ) artanh ,

f b
x f a

C B


   (6) 

 1
0

0 0

1
( ) artanh

f b
x f a

C B


   (7) 

where artanh() denotes the inverse hyperbolic tangent 
function. Examples of HLs and corresponding inverse HLs 
are presented in Fig. 2(a) and Fig. 2(b), respectively. 

The largest HL that can be achieved in the system or 
material is by definition the major HL (see e.g. [11]). 
When the driving signal x(t) is interrupted and reversed, 
the direction of f(x) is also reversed, see Fig. 3. Corre-
sponding return path is often called the first order reversal 
curve (FORC) (see e.g. [11]). 

Furthermore, when the driving signal is stopped and 
reversed at Xr on the ascending branch, –Xm < Xr < Xm, and 

 
Fig. 2. (a) HLs and (b) corresponding inverse HLs, B0 = 2.5, 

a0 = 1, C0 = 1.2, Xm  {2.5, 1.5, 1, 0.5}.  

 
Fig. 3. (a) Major HL for B0 = 2, a0 = 1, C0 = 2, Xm = 2 and  

(b) corresponding FORCs reversing at Xr  {1.4, 1.2, 
1, 0.8, 0.6, 0.4}.  

returned to –Xm (negative saturation), the corresponding 
return path fr–(x) can be described by [11] 

  r down 0 0 down( ) tanh ( ) .f x B C x a c     (8) 

The ascending branch (2) and down-going return path (8) 
have two common points: one corresponding to x = Xr and 
the other to x = –Xm. Therefore, 

 r r r m r m( ) ( ), ( ) ( ).f X f X f X f X        (9) 

System (9) can be solved for Bdown and cdown:  

 
down 0 down down 0 1, ( )B B c B B b

   
 


   


 (10) 

where b1 is given by (5) and  

  
   
   

0 m 0 0 r 0

0 r 0 0 m 0

tanh ( ) , tanh ( ) ,

tanh ( ) , tanh ( ) .

C X a C X a

C X a C X a

 

 

    

    
 (11) 

Dually, when the point of reversal is on the descend-
ing branch, the up-going return path fr+(x) can be described 
by 
   r up 0 0 up( ) tanh .f x B C x a c     (12) 

The descending branch (3) and up-going return path (12) 
have two common points: one corresponding to x = Xr and 
the other to x = Xm. By duality, unknown parameters can 
be obtained from (10)–(11) by replacing Bdown with Bup, 
cdown with cup, Xm with –Xm and Xr with –Xr. 

3. Asymmetric HL 
To model asymmetric major HL and corresponding 

FORCs we provide here a modification of the Takacs 
model. This type of asymmetric HL and corresponding 
FORCs are reported in [54] for ferroelectric memristors 
and in [60] for multilayered metal-oxide structures.  

Asymmetric major HL can be modeled via a modified 
version of the Takacs model by using two sets of parame-
ters: {C0+, a0+, B0+, b1

as} parameters for the ascending 
branch and {C0–, a0–, B0–, b1

as} parameters for the de-
scending branch: 

  as as
+ 0 0 0 1( ) tanh ( ) ,f x B C x a b      (13) 

  as as
0 0 0 1( ) tanh ( ) .f x B C x a b       (14) 
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For the periodic driving signal x = x(t), with zero dc com-
ponent and –Xm  x  Xm, the tips of HL occur for x =  Xm, 
implying that  

 as as as as
m m m m( ) ( ), ( ) ( ). f X f X f X f X        (15) 

System of equations (15) can be solved for B0– and b1
as  

 as
0 0 1 0 0

1
, ( )

2
B B b B B

   
    


  


 (16) 

where 

   
   

0 m 0 0 m 0

0 m 0 0 m 0

tanh ( ) , tanh ( ) ,

tanh ( ) , tanh ( ) .

C X a C X a

C X a C X a

 

 
   

   

    

    
 (17) 

When the driving signal is stopped and reversed at Xr 
on the ascending branch of asymmetric HL, –Xm < Xr < Xm, 
and returned to –Xm, the corresponding return path can be 
described by 

  as as as
r down 0 0 down( ) tanh ( ) .f x B C x a c      (18) 

Since the ascending branch (13) and return path (18) have 
two common points at x = –Xm and x = Xr, it follows that  

 as as as as
r r r + m r m( ) ( ), ( ) ( ).f X f X f X f X       (19) 

Substitution of (13) and (18) into (19) provides the system 
of equations, which can be solved for as

downB  and as
down ,c  

 as as as as
down 0 down down 0 1, ( )B B c B B b

   
 


 



   


 (20) 

where b1
as is given by (16),   and   by (17), and 

     0 r 0 0 r 0tanh ( ) , tanh ( ) .C X a C X a           (21) 

An example of asymmetric major HL along with 
FORCs is presented in Fig. 4. 

Dually, when the point of reversal is on the 
descending branch of asymmetric HL, the up-going return 
path fr+(x) can be described by 

  as as as
r+ up 0 0 up( ) tanh ( ) .f x B C x a c     (22) 

Notice that the descending branch (14) and return 
path (22) have two common points corresponding to x = Xm 
and x = Xr, i.e. f–

as(Xm) = fr+
as(Xm) and f–

as(Xr) = fr+
as(Xr).  

 
Fig. 4. (a) Asymmetric major HL for B0+ = 2.1, C0+ = 1.5, 

a0+ = 1.2, C0– = 3, a0– = 0.8, Xm = 2 and (b) FORCs 
reversing at Xr  {1.4, 1.2, 1, 0.8, 0.6, 0.4}.  

From these relations, the unknown parameters as
upB  and as

upc  
can be easily determined.  

4. State Equations and Hysteresis 
In this section, we show that a class of differential 

equations of the Duhem model of hysteresis could play 
a role of state equations in the mathematical models of 
memristors. Since the Duhem model describes rate inde-
pendent hysteresis, it follows that memristors with state 
equations of Duhem type exhibit rate-independent hystere-
sis in the state-charge (state-flux) plane for current-con-
trolled (voltage-controlled) memristor. We also show that 
the state equation for memristor model with the Biolek 
window function belongs to the considered class of differ-
ential equations of Duhem model. Additionally, we 
demonstrate that the differential equation that corresponds 
to the Takacs model also belongs to the same class.  

Let us consider a class of differential equations of the 
Duhem model of hysteresis in x–U plane. The correspond-
ing equation is of the form  

 d
max(0, ) ( ) min(0, ) ( )

d

x
u g x u h x

t
   (23) 

where x stands for a variable, x(0) = x0 is the initial 
condition, and u is the first derivative of U with respect to 
time, i.e.  

 d
,

d

U
u

t
   (24) 

max/min denotes the maximum/minimum function, and 
g(x) and h(x) are continuous functions. We consider a class 
of Duhem equations (23) in which g and h are functions of 
the variable x only, and hence independent of U. Equations 
(23), (24) represent the Duhem model of hysteresis, which 
is rate-independent, e.g. [5].  

Both formation and disruption of filamentary like 
conductive channels across the insulating film is described 
by the differential equation of type (23) in [49]. In the 
model described by Equation (12) of [49], U corresponds 
to voltage and u to the first derivative of voltage, 
respectively. 

It is easy to show that (23) can be rewritten as 

  d
( ) ( ) ( ) ( )

d

x
H u g x H u h x u

t
    (25) 

where H() is the Heaviside step function: H(u) = 1 for 
u  0, and H(u) = 0 for u < 0. According to the Duhem 
model, hysteresis will appear in the x U  plane, where  

 d .U u t   (26) 

Additionally, (25) can be rewritten as 

 d
( , )

d

x
w x u u

t
  (27) 
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where  

 ( , ) ( ) ( ) ( ) ( ).w x u H u g x H u h x    (28) 

In the context of memristors, (27) is state equation in terms 
of x  (state variable) and u  (the first derivative of U ). In 
the same context, u  is the driving voltage or driving 
current. According to the Duhem model, the solution of 
(27)–(28) exhibits the rate-independent hysteresis in the 
x  charge plane for current-controlled memristors or 
x  flux plane for voltage-controlled memristors.  

Particularly, substitution of  

 2 2( ) (1 ), ( ) 1 (1 )p pg x k x h x k x        (29) 

where k  is constant and p  positive integer, along with 

u i  into (27), (28) leads to  

 
2

d
( , )

d p

x
kw x i i

t
  (30) 

where 

 2 2
2 ( , ) ( )(1 ) ( ) 1 (1 ) .p p

pw x i H i x H i x         (31) 

It is easy to show that w2p(x,i) for 0 1x   coincides with 
the Biolek window function introduced in [63]. Therefore, 
(30) is the state equation for the current-controlled memris-
tor with the Biolek window function. According to the 
Duhem model, hysteresis appears in the state-charge plane. 
A case study corresponding to the model of the current-
controlled memristor with the Biolek window function is 
presented in Sec. 5.3. 

In what follows we derive the differential equation 
that corresponds to the Takacs model of hysteresis. We 
show that this Takacs differential equation is of type (27) 
and therefore can also be used in the modeling of memris-
tors. For a particular choice of parameters, the Takacs 
differential equation coincides with the state equation of 
the Biolek model for 1,p   as it is presented in Sec. 5.3. 

Let us assume that the state variable with hysteresis, 
shifted in the horizontal direction by d0 and in the vertical 
direction by X0, is described by 

  
 

0 0 0 0 1 0

0 0 0 0 1 0

tanh ( ) , 0,

tanh ( ) , 0.

B C U a d b X u
x

B C U a d b X u

           
 (32) 

Recall that it can be assumed, without loss of generality, 
that B0 > 0. Since the co-domain of the tangent hyperbolic 
function of finite argument is an open interval ( 1, 1),  it 

follows from (32) that 

 0 0 1 0 0 1

0 0 1 0 0 1

, 0,

, 0.

X B b x X B b u

X B b x X B b u

      
      

 (33) 

Solving (33) we obtain the following range for the state 
variable with hysteresis described by (32), 

    0 0 1 0 0 1| | | | ,X B b x X B b       (34) 

providing that  
 0 1| | .B b  (35) 

Taking into account that the first derivative of 
hyperbolic tangent function satisfies the following identity 

 2d
tanh( ) 1 tanh ( ),

d
z z

z
   (36) 

the first derivative of (32) with respect to the time can be 
expressed as  

 
2 2
0 1 00
2 2

0 0 1 0

( ) , 0,d

d ( ) , 0.

B x b X ux C
u

t B B x b X u

    
 

   
 (37) 

This expression can be rewritten in the form (27)–(28) 
providing that 

 

2 20
0 1 0

0

2 20
0 1 0

0

( ) ( ) ,

( ) ( ) .

C
g x B x b X

B

C
h x B x b X

B

     

     

 (38) 

Expression (32) describes both the accommodation, as the 
transient part of the process, and closed HL as the corre-
sponding limit cycle. Thus, the steady state solution of (37), 
as a limit cycle, is independent of initial conditions [64].  

For the prescribed B0, C0, b1 and X0, the remaining 
parameters a0 and d0 of closed HL (32) can be determined 
from the coordinates of the tips (0, xmin) and (Umax,

 xmax), 
where min(U) = 0 and max(U) = Umax. Appendix contains 
the full account of the arguments for the derivation of the 
following relations  

 max min 02 ,x x X   (39) 

 0 max 1
0 0

0 0

1
artanh ,

X x b
d a

C B

 
   (40) 

 max 0 1
0 0

0 0

1
artanh ,

x X b
d a

C B

 
    (41) 

 
2 2 2 2

0 0 1
max

(1 )B B b
x

 


  
  (42) 

where  = tanh(C0Umax). The substitution of (42) into (40), 
(41), followed by the substitution of resulting relations into 

 
Fig. 5.  (a) Solution of (37) obtained numerically and  

(b) HL (32) for x0 = 0.5, u(t) = Umsin(2ft), Um = 1, 
f = 1 Hz, B0 = 2, b1 = –0.2, X0 = 1, and C0 = 104.  
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(32), provides the closed-form expression for the steady 
state solution of differential equation corresponding to the 
Takacs model. This result is also confirmed by the numeri-
cal simulations. The solution of the differential equation 
(37) for the prescribed initial condition, which includes 
transients and steady state, is presented in Fig. 5(a), while 
the steady state solution only is presented in Fig. 5(b).  

5. Examples of Modeling HL 
In this section, three examples of modeling HL are 

presented. Section 5.1 is related to spintronic memristor 
[53], Section 5.2 to ferroelectric memristor [54], and Sec-
tion 5.3 to the model of memristor with the Biolek window 
function [63].  

5.1 Spintronic Memristor 

HL for spintronic memristor in the memristance-flux 
plane is reported in [53]. The branches of HL are described 
by 

 H L
H

S

( )
1 exp ( )

R R
R R




 


  

    
 (43) 

where R+ is the branch corresponding to positive voltage 
(increasing flux), R – is the branch corresponding to nega-
tive voltage (decreasing flux), and flux is in the range 
  [0, 84] Vs. In the anti-parallel magnetic state, high and 
low resistances are RH = 375.9  and RL = 362.5 , re-
spectively, whereas in the parallel magnetic state, they are 
RH = 189.6  and RL = 178.9 , respectively. The remain-
ing parameters are obtained by fitting [53]: S

+ = 19.5 Vs, 
 += 4.3 V, S

– = 52.8 Vs, and  –= 5.3 V.  

Using the identity 

 
2

2
tanh( ) 1 ,

e 1x
x  


 (44) 

branches of (43) can be rewritten as 

 H L S H L( ) tanh .
2 2 2

R R R R
R








   
    (45) 

 

Fig. 6. HL of spintronic memristor, B0+ = B0– = 5.35 ,  
a0 = –16.65 Vs, d0 = 36.15 Vs, C0+ = –0.1163 V–1,  
C0– = –0.0943 V–1, b1 = 0, and R0 = 184.25 . 

On the other hand, asymmetric HL (Sec. 3), shifted 
horizontally by d0 and vertically by R0, can be described by 

 
 
 

0 0 0 0 1 0

0 0 0 0 1 0

tanh ( ) ,

tanh ( ) .

R B C a d b R

R B C a d b R

  

  

     

     
 (46) 

Comparison of (45) and (46) provides the following 
parameter values:  

 

0 0 H L

0 0

0 S S 0 S S

1 0 H L

1
( ),

2
1 1

, ,
2 2

1 1
( ), ( ),

2 2
1

0 , ( ).
2

B B R R

C C

a d

b R R R

 

 

  

   

  

   

     

   

 (47) 

Thus, model (43) can be rewritten in terms of modified 
Takacs model proposed in Sec. 3. In the case of classical 
hysteresis, the maximum/minimum input corresponds to 
the maximum/minimum output. In this example, the maxi-
mum resistance corresponds to the minimum flux and vice 
versa. This can be easily handled with both Takacs model 
and modified Takacs model by using negative values for 
parameters C0+ and C0–. HL described by (46)–(47) is pre-
sented in Fig. 6. 

5.2 Ferroelectric Memristor 

Let us consider voltage-controlled ferroelectric 
memristor, with two orders of magnitude of OFF-to-ON 
resistance ratio and tunable intermediate states, as pre-
sented in [54]. The result of measurements in memristance-
voltage plane is depicted in Fig. 7(a).  

In this case study, we model the FORCs related to the 
multilevel resistance states displayed in Fig. 7(a). The 
FORCs begin on the ascending branch and end at the lower 
left corner, where memristance is equal to RON. We esti-
mate  RON  0.18 M.  The minimum voltage  Vmin  –6 V 

 
Fig. 7. (a) R – Vwrite of ferroelectric memristor (reprinted by 

permission from Ref. [54], Copyright (2012) Springer 
Nature, Nat. Mater.) and (b) model of FORCs. 
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and the maximum voltage Vmax  4.5 V, which can be read 
on the horizontal axis in Fig. 7(a), imply that the descend-
ing branch of major HL is missing. Thus, we adopt 
Vm = 6 V, and estimate that the set of reversal points on the 
ascending branch is Vr  {4.5, 4.05, 3.7, 3.55, 3.35, 3.2} V. 
Likewise, we assume that ROFF  68 M.  

Here, we use the model of asymmetric HL with 
corresponding FORCs as described in Sec. 3. Additionally, 
we shift the model vertically by R0. The ascending branch 
for increasing voltage can be written as  

   as
0 0 0 1 0tanh ( ) ,R B C v a b R        (48) 

and the descending branch as 

   as
0 0 0 1 0tanh ( ) .R B C v a b R        (49) 

Additionally, FORCs for decreasing voltage have the form 

  as as
r down 0 0 down 0tanh ( ) .R B C v a c R       (50) 

Parameter R0 is set to (ROFF + RON)/2, i.e. R0 = 34.08 M, 
while B0+ and B0– are calculated as (see (16)–(17)) 

 
0 OFF ON

0 OFF ON

( ) 34.026 MΩ,

( ) 33.814 MΩ.

B R R

B R R

 
   

 
   






  

  


  
  

 (51) 

Parameters C0+, a0+, C0–, and a0– are used for fitting the 
major HL. Their values are: C0+ = 1.45 V–1, a0+ = 4.25 V, 
C0– = 3.3 V–1, and a0– = 3 V. Parameter b1

as can be obtained 
by substituting Xm = Vm into (16). Furthermore, parameters 

as
downB  and as

downc  can be calculated from (20) using that 
Xm = Vm and Xr = Vr. The result of modeling is shown in 
Fig. 7(b). 

5.3 Memristor Model with Biolek Window 

As presented in Sec. 4, the solution of the state equa-
tion of the current-controlled memristor with the Biolek 
window function exhibits rate-independent hysteresis in 
the state-charge plane.  

In this subsection, we provide parameters for which 
the differential equation of the Takacs model (37) is 
reduced to the state equation with the Biolek window for 
p = 1. Since the steady state solution of (37) is given by 
(32), it immediately follows that the same set of parameters 
provides the closed-form expression for the steady state 
solution of the state equation with the Biolek window for 
p = 1. Additionally, we demonstrate that, for the steady 
state solution of state equation with the Biolek window for 
p  1, the maximum value xmax and the minimum value xmin 
of the state variable satisfy the relation xmax + xmin = 1. This 
relation can be used to estimate transient time as well as 
a numerical error in the course of finding the steady state 
solution.  

Since the memristance of the model with the Biolek 
window is represented as a linear function of state variable, 

 off off on( ) ( ) ,R x R R R x    (52) 

it is easy to validate that the existence of the hysteresis in 
the state-charge plane implies the existence of hysteresis in 
the memristance-charge plane. State variable vs. charge 
and memristance vs. charge for memristor model with the 
Biolek window for p  {1, 2, 10}, are presented in Fig. 8(a) 
and Fig. 8(b), respectively. Simulations were performed 
using the Runge-Kutta-Fehlberg 4(5) method. 

Notice that it has been recently proved that the 
memristor model with the Biolek window is characterized 
by a single stable fixed point [65], [66], meaning that the 
model is globally asymptotically stable.  

Fig. 9 presents HLs in the memristance-charge plane 
and corresponding PHLs for three different driving odd-
symmetric periodic current waveforms. For prescribed 
Qmax = max(Q) and given frequency f, the corresponding 
amplitudes for sinusoidal, triangular and rectangular cur-
rents are equal to Qmaxf, Qmax4f, and Qmax2f, respectively. 
HLs in the memristance-charge plane in Fig. 9(a) coincide 
for all three waveforms, which is in accordance with the 
fact that the Duhem model describes the rate-independent 
hysteresis. 

By comparison of (37) with (30), (31), we conclude 
that the substitution of B0 = 1, C0 = k, b1 = –1/2, X0 = 1/2 
and u = i into (37) provides the state equation with the 
Biolek window for p = 1:  

 
2

2

1 , 0,d

d 1 ( 1) , 0.

x ix
ki

t x i

  
 

  
 (53) 

 
Fig. 8. Steady state solutions of state equation for the current-

controlled memristor with the Biolek window for 
p  {1, 2, 10}, k = 104, i(t) = Im sin(2ft), Im = 1 mA, 
and f = 1 Hz, (a) state variable vs. charge and 
(b) memristance vs. charge. 

 
Fig. 9. Model with the Biolek window for p = 10, k = 104, 

Roff = 16 k, Ron = 100 , and three driving currents: 
sinusoidal, triangular and rectangular with the same 
Qmax = 1/ mC and f = 1 Hz. (a) HLs in the memrist-
ance-charge plane and (b) corresponding PHLs in the 
voltage-current plane. 
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Thus, the Takacs model of hysteresis is closely related to 
the model of memristor with the Biolek window function 
for p = 1.  

Furthermore, the substitution of B0 = 1, C0 = k,  
b1 = –1/2, X0 = 1/2, u = i and U = Q into (32) yields 

  
 

0 0

0 0

tanh ( ) , 0,

tanh ( ) 1, 0.

k Q a d i
x

k Q a d i

        
 (54) 

Substitution of the same values of parameters along with 
Umax = Qmax into (39)–(42) yields 

 max min 1,x x   (55) 

 
0 0 max

1
artanh(1 ),d a x

k
    (56) 

 
0 0 max

1
artanh( ),d a x

k
    (57) 

 
2

max

2 4 3

2
x

 


  
  (58) 

where  = tanh(kQmax). Substitution of (56)–(58) into (54) 
provides the steady state solution of the state equation with 
the Biolek window for p = 1. 

As an example, Fig. 10 presents both the numerical 
solution with transients (dotted line) and the steady state 
solution obtained analytically (solid line), for two different 
amplitudes of sinusoidal driving current. 

The solution of the state equation with the Biolek 
window for p > 1, which reads 

 
2

2

1 , 0,d

d 1 (1 ) , 0,

p

p

x ix
ki

t x i

  
 

  
 (59) 

cannot be expressed in the form (32). It is easy to observe 
that (59) can be rewritten as 

 
2

2

d
, 0,

1 1
d

d
, 0.

1 (1 )

p

p

x
i

x
i t

xk i
x

   
 

 

 (60) 

Let  
2 2

d
( ) .

1p p

x
W x

x


  (61) 

W2p(x) can be expressed in terms of Gauss Hypergeometric 
function, e.g. [67], as 

 2
2 2 1

1 1
( ) , 1, 1 ; .

2 2
p

pW x x F x
p p

 
   

 
 (62) 

Since (60) is a separable equation, taking into account 
(62), (61) and 0 d ,tQ i    the solution of (60) can be 

expressed as 

 2 0 0

2 0 0

( ) , 0,1
(1 ) , 0,
p

p

W x a d i
Q

W x a d ik

       
 (63) 

 
Fig. 10. Steady state solution (solid line) vs. numerical (dotted 

line) solution in the memristance-charge plane for the 
model with the Biolek window for p = 1, k = 104, 
Roff = 16 k, Ron = 100 , x0 = 0.5, i(t) = Im sin(2ft), 
f = 1 Hz: (a) Im = 1 mA, and (b) Im = 0.3 mA. 

where d0 and a0 are constants. Since the coordinates of the 
tips of HL are (Qmax, xmax) and (0, xmin), the corresponding 
set of equations can be obtained from (66)–(69) (see Ap-
pendix), by inserting B0 = 1, C0 = k, b1 = –1/2, X0 = 1/2, 
Umax = Qmax, and then replacing artanh(x) with W2p(x) and 
artanh(1 – x) with W2p(1 – x). The same steps as in Appen-
dix provide 

  
2 max 2 max 2 min 2 min( ) (1 ) (1 ) ( ).p p p pW x W x W x W x      (64) 

Taking into account that the first derivative of the auxiliary 
function aux

2 2 2( ) ( ) (1 )p p pW x W x W x    equals to 

 aux
2 2 2

d 1 1
( ) ,

d 1 1 (1 )p p p
W x

x x x
 

  
 (65) 

and using the same arguments as in Appendix, it can be 
demonstrated that (55) holds for the steady state solution 
and p > 1 in the Biolek window, as well.  

Since the Gauss Hypergeometric function 2F1 is ex-
pressed via an infinite series, its simulation is usually slow 
and it is recommendable to use an efficient algorithm for 
solving differential equations, instead. In such case, rela-
tion (55) can be used to verify whether the steady state 
solution is reached in numerical simulations and/or to esti-
mate the numerical errors of the solutions. 

6. Conclusion 
According to our best knowledge, this paper provides 

the first usage of the Takacs model of hysteresis in the 
mathematical modeling of memristor. A modified version 
of the Takacs model tailored to describe asymmetric HL 
and corresponding FORCs, which are observed in some 
experiments, is also proposed. 

In particular, it is presented that a class of differential 
equations of the Duhem model of hysteresis coincides with 
a class of state equations of memristors. In this context, 
hysteresis appears in the state-charge (state-flux) plane for 
current-controlled (voltage-controlled) memristors. It is 
also confirmed that the state equation of the memristor 
model with the Biolek window function, as well as the 
differential equation that corresponds to the Takacs model, 
both belong to the class of differential equations related to 
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the Duhem model. Since the Duhem model describes rate-
independent hysteresis, it follows that hysteresis in the 
appropriate planes of memristors is also rate-independent. 

Notice that in the Takacs model, the sigmoidal 
function other than the tangent hyperbolic function is also 
possible. 

We believe that the idea behind this paper can be 
extended to the modeling of memcapacitor, meminductor 
and other mem-devices that exhibit HLs in the appropriate 
planes. 

Appendix 

Here we provide the derivation of expressions  
(39)–(42) presented in Sec. 4. 

Substitution of the coordinates of the tips (Umax, xmax) 
and (0, xmin), into (32) yields the following system of 
equations: 

 min 0 1
0 0 0

0

( ) artanh ,
x X b

C d a
B

 
   (66) 

 0 min 1
0 0 0

0

( ) artanh ,
X x b

C d a
B

 
    (67) 

 max 0 1
0 max 0 0

0

( ) artanh ,
x X b

C U d a
B

 
    (68) 

 0 max 1
0 max 0 0

0

( ) artanh .
X x b

C U d a
B

 
     (69) 

Insertion of (66) into (68) and (67) into (69) leads to  

  max 0 1 min 0 1
0 max

0 0

artanh artanh ,
x X b x X b

C U
B B

   
   (70) 

  0 min 1 0 max 1
0 max

0 0

artanh artanh .
X x b X x b

C U
B B

   
   (71) 

Further, insertion of (70) into (71) yields  

 

max 0 1 0 max 1

0 0

0 min 1 min 0 1

0 0

artanh artanh

artanh artanh .

x X b X x b

B B

X x b x X b

B B

   


   
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 (72) 

In order to demonstrate that (39) is the only solution of 
(72) let us introduce an auxiliary function  

 aux 0 1 0 1
T

0 0

( ) artanh artanh .
x X b X x b

W x
B B

   
   (73) 

The first derivative of aux ( )TW x  with respect to x  reads 

 aux 0 0
T 2 2 2 2

0 0 1 0 0 1

d
( ) .

d ( ) ( )

B B
W x

x B x X b B X x b
 

     
 (74) 

It is easy to observe that the right hand side of (74) is equal 
to zero at x = X0. Furthermore, the sign of the right hand 
side is the same as the sign of b1 for x < X0 and opposite for 
X0 < x. Therefore, for b1 > 0 (b1 < 0) WT

aux(x) is monoton-
ically increasing (decreasing) for x < X0 and monotonically 
decreasing (increasing) for X0 < x. These facts further im-
ply that WT

aux(x) attains the same value for some mutually 
distinct x1 and x2, providing that x1 < X0  and X0 < x2. Fur-
thermore, the identity WT

aux(x) = WT
aux(2X0 – x) (see (73)) 

implies that x2 = 2X0 – x1. Consequently, (39) is the only 
solution of (72). 

Substitution of (39) into (66)–(67) yields (40)–(41). 

Taking into account (39), the right-hand side of (70) 
can be expressed in terms of xmax  only, 

  max 0 1 0 max 1
0 max

0 0

artanh artanh .
x X b X x b

C U
B B

   
   (75) 

Applying tanh() to the both sides of (75) and using the 
identity 

 tanh( ) tanh( )
tanh( ) ,

1 tanh( ) tanh( )

u v
u v

u v


 


 (76) 

we obtain 

 0 max 0
0 max 2 2 2

max 0 0 1

2 ( )
tanh( ) .

( )

B x X
C U

x X B b




  
 (77) 

Equation (77) is quadratic in terms of max 0( ) :x X  

 2 2 2
max 0 0 max 0 0 1( ) 2 ( ) ( ) 0x X B x X B b        (78) 

where  = tanh(C0Umax). Notice that Umax > 0 implies that 
0 <  < 1, which further implies that B0

2(1 – 2) + b1
22 is 

positive. Thus, (78) has two real solutions, one of which is 
given by (42). Since the other solution contradicts (34), it 
follows that (42) is the only acceptable solution. 
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