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Abstract. In this paper, a hyperbolic tangent variable 
step-size convex combination of the least mean square 
(HTVSCLMS) algorithm is proposed and analyzed. The 
compromise between the convergence speed and the 
steady-state error for two filters in a convex combination 
of the least mean square (CLMS) algorithm is avoided by 
this study. In the proposed algorithm, the big step-size 
filter is replaced by a filter whose iteration step-size is 
a modified function based on hyperbolic tangent function. 
Thus, hyperbolic tangent nonlinear relationship between 
step-size and error is constructed. Simultaneously, the 
small step-size filter remains unchanged but fixed. There-
fore, the slow convergence speed and the weak anti-inter-
ference ability of fixed step-size CLMS were conquered. 
Simulation results show that the HTVSCLMS algorithm, 
compared with CLMS algorithm and variable step-size 
CLMS (VSCLMS) algorithm, not only has superior capa-
bility of tracking in the presence of noise and in a stable 
and even non-stable environment but also can maintain 
a better convergence. 

Keywords 
Least mean square (LMS) filters, convex combina-
tion, variable step-size, hyperbolic tangent function 

1. Introduction 
The step-size of the filter plays a significant role in 

the convergence process of the least mean square (LMS) 
algorithm [1], [2]. It not only controls the convergence 
speed of the initial stage but also determines the steady-
state performance of the convergence stage. The bigger the 
step-size, the faster is the convergence speed and the 
smaller is the steady-state error. The compromise between 
convergence speed and steady-state error would be usually 
made to choose the step-size of LMS filter in order to im-
prove performance; however, it cannot take advantage of 
the best performance of the filter. 

In order to avoid different requirements of the step-
size factor for satisfying convergence speed and steady-
state error in a single filter [3], [4], CLMS adaptive algo-

rithm based on parallel computing is proposed [5], [6]. 
CLMS algorithm parallels independent LMS filters with 
different step-size. The convergence speed could be im-
proved by the big step-size filter; the steady-state perfor-
mance could be insured by the small step-size filter. Thus, 
the CLMS algorithm can decrease steady-state error as 
a basis for improving the convergence speed. However, 
parallel computation with different step-size usually re-
quests precise algorithm parameters [7], which is not suita-
ble for a filter system to maintain good steady-state perfor-
mance in a noisy environment. Meanwhile, the CLMS 
algorithm has an unavoidable deficiency because of the 
fixed step-size in a time-varying or non-stable environment.  

Motivated by this, we propose to introduce variable 
step-size adjustment in the CLMS algorithm, and change 
an independent fixed step-size LMS filter to a variable 
step-size LMS filter that can rapidly converge based on 
mean square error (MSE). Thus, it can effectively acceler-
ate convergence speed and improve tracking performance 
of the original algorithm. Simultaneously, the other filter is 
set to be a small step-size LMS filter in order to ensure 
steady-state performance and reduce system misalignment. 
Besides, this method can also coordinate the characteristics 
of the variable step-size filter that step-size factor is sus-
ceptible to noise interference in a steady-state environment, 
and improve algorithm performance comprehensively 
while maintaining the advantages of original CLMS algo-
rithm. 

2. CLMS Algorithm 
Usually, combination approaches can improve perfor-

mance of adaptive filter [8]. As shown in Fig. 1, the scheme 
of the CLMS algorithm includes two independent LMS 
filters, combined into a preferred approximator in parallel 
convex [5]. Weight vectors of two filters are adjusted by 
the joint coefficient λ(n); therefore, each filter can play its 
own advantages. 

The equivalent output obtained by this scheme of 
CLMS is 

  eq 1 2( ) ( ) ( ) 1 ( ) ( )y n n y n n y n     (1) 
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Fig. 1. Convex structure scheme of the CLMS algorithm. 

where y1(n) and y2(n) (i.e., yi(n) = wi
T(n)u(n), i =1, 2, wi(n) 

being weight vectors of LMS filters and u(n) being their 
common input vector) are outputs of two transversal LMS 
filters at iteration time n. When λ(n) is assigned the proper 
value between zero and one at each iteration, then CLMS 
obtains the best performance of two filters. It can be de-
fined that λ(n) is adjusted by a sigmoid function with the 
variable a(n) as 

  ( ) sgm[ ( )] 1 / 1 exp[ ( )]n a n a n     . (2) 

Actually, it needs to consider that both w1(n) and w2(n) 
are independently adapted with individual LMS rules. 
Equivalent weight vector of the scheme can be represented 
as 
  eq 1 2( ) ( ) ( ) 1 ( ) ( )n n n n n   w w w . (3) 

In order to update joint coefficient λ(n), the steepest 
descent method should be used to optimize the equivalent 
error of combination filters, i.e., e2

eq(n) = [d(n) – yeq(n)]2 
[9], where d(n) stands for the desired signal. Due to the 
introduction of an intermediate variable a(n) shown in (2), 
the updating equation for a(n) can be obtained by 

 
2

eq ( )
( 1) ( )

2 ( )
a

e n
a n a n

a n

 
  


 (4) 

where μa is a constant tending to be larger. Thus, the con-
vex combination structure tends to have a faster conver-
gence speed compared to the filter with faster convergence 
speed. Due to the good robustness of LMS algorithm, a(n) 
obtains the good robustness as well. Thus, CLMS algo-
rithm has good stability. 

According to the principle of CLMS, the working 
process includes two stages. At the initial filtering stage, 
the filter with big step-size functions to make weq(n) =w1(n) 
(λ(n) = 1), and the algorithm rapidly converges. At the 
stable filtering stage, the filter with small step-size func-
tions to make weq(n) = w2(n) (λ(n) = 0), reducing the 
steady-state error of the algorithm. 

Although the performance could be improved by 
using two fixed step-size LMS filters in the convex struc-
ture, the CLMS algorithm does not achieve the ideal effect 

of the signal filtering process in the strong noise environ-
ment. In order to improve the defects, we put forward an 
improved algorithm named as HTVSCLMS algorithm to 
reduce fixed step-size CLMS algorithm’s dependence on 
joint coefficient. 

3. Proposed HTVSCLMS Algorithm 

3.1 Algorithm Description 

Yu [10] proposed the VSCLMS algorithm that is 
a variable step-size algorithm. It takes variable function 
based on sigmoid function as the step-size of fast conver-
gence LMS filter. The variable function is expressed as 

 2
( ) 1 exp( ( ) )n e n      

 (5) 

where  and  are constants. e(n) is an equivalent error of 
convex filters. Then, VSCLMS algorithm can ensure fast 
convergence and obtains a small steady-state error. 

Under the idea of variable step-size, the HTVSCLMS 
algorithm is proposed in this paper. In this algorithm, the 
variable function of hyperbolic tangent function is taken as 
the step-size of fast convergence LMS filter. The variable 
function of HTVSCLMS algorithm is expressed as 

 ( ) tanh( ( ) )
m

n e n   . (6) 

In (6),  controls the span of step-size and  controls the 
changing shape of step-size, while m controls the smooth-
ness of step-size round minimum zero. 

The relation curve of (5) and (6) with the same pa-
rameters is shown in Fig. 2. It is easy to see that the chang-
ing rule of step-size function in HTVSCLMS is similar to 
that in VSCLMS. μ(n) would adjust itself according to the 
variation of e(n). At the initial filtering stage, the error is 
often big and a big step-size is required. The step-size can 
be set to the maximum convergence value of the algorithm. 
At the stable filtering stage, the error gradually decreases, 
and the step-size can be set to a smaller value gradually.  

 
Fig. 2. Relation curve of step-size functions with parameters 

 = 0.8,  = 5 and m = 2. 
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The proposed HTVSCLMS algorithm 

Initialization: 1 2(0) (0) w w 0 , (0) 0a  , 2 , a ,  ,  , m ; 

For each iteration time n  
1. Outputs of two LMS filters, 

T( ) ( ) ( )i iy n n n w u , i =1, 2, 

2. Equivalent output of CLMS, 
 eq 1 2( ) ( ) ( ) 1 ( ) ( )y n n y n n y n    , 

or T
eq eq( ) ( ) ( )y n n n w u  ( (0) eqw 0 ), 

3. Errors of two LMS filters, 
( ) ( ) ( )i ie n d n y n  , i =1, 2, 

4. Equivalent error of CLMS, 

eq eq( ) ( ) ( )e n d n y n  , 

5. Updating parameter ( )a n , 
2

eq ( )
( 1) ( )

2 ( )
a

e n
a n a n

a n

 
  


, 

6. The joint coefficient, 
( 1) sgm[ ( 1)]n a n    , 

7. The step-size of fast convergence LMS filter, 

1 eq( 1) tanh( ( ) )
m

n e n    , 

8. The weight vectors 

1 1 1 1( 1) ( ) 2 ( 1) ( ) ( )n n n e n n   w w u , 

2 2 2 2( 1) ( ) 2 ( ) ( )n n e n n  w w u , 

 eq 1 2( ) ( ) ( ) 1 ( ) ( )n n n n n   w w w . 

end 

Tab. 1. The proposed HTVSCLMS algorithm. 

Therefore, the steady-state error of the algorithm can be 
maintained at a smaller value. μ(n) would have a large 
shock to affect the stability of the filtering system because 
the MSE of variable step-size algorithm is easy to be pol-
luted. Thus, the other filter of convex combination struc-
ture needs to be set as a small step-size μ2 to conquer the 
deficiency of a variable step-size algorithm. 

From the above, the proposed HTVSCLMS algorithm 
is summarized in Tab. 1. 

3.2 Analysis of Computational Complexity 

Except of convergence speed and steady-state perfor-
mance, computational complexity is also the key factor 
influencing the application of an algorithm. In this paper, 
the computational complexity of the HTVSCLMS algo-
rithm is compared with that of CLMS and VSCLMS. 
Exponent calculation is equal to one time multiplication 
operation [11] in step 6 and 7 of Tab. 1, so HTVSCLMS 
algorithm requires two time addition, m time multiplication 
and one time division when updating step- size for each 
iteration time. Besides, it requires one time addition, one 
time multiplication, and one time division to update the 
joint coefficient. HTVSCLMS algorithm has the same 
computational process except for updating step-size com-
pared with VSCLMS, which requires one time addition and 
two time multiplication. For the CLMS algorithm, it is not 
required to update step-size. We assume that the length of 
each filter is N in convex combination. According to the 
operation steps of different algorithms, the computational 
complexity of one iteration time is presented in Tab. 2. 
 

Algorithm Addition Multiplication Division 
CLMS 4N + 8 4N + 11 1 

VSCLMS 4N + 9 4N + 13 1 
HTVSCLMS 4N + 10 4N + 11 + m  2 

Tab. 2. The computational complexity of different algorithms 
in one iteration time. 

Compared with CLMS and VSCLMS, the computa-
tional complexity of the HTVSCLMS algorithm slightly 
increases. The extra computing time brought by the in-
crease in computation can be eliminated by using parallel 
computing [12], resulting in improving the convergence 
speed. Besides, m must be small. 

3.3 Steady-state Performance 

In this subsection, we analyze the performance of the 
HTVSCLMS algorithm. We make the following assump-
tions and notations [6]: 

 d(n) and u(n) are related in a linear attenuation model 

 T
0ˆ( ) ( ) ( )d n n e n w u  (7) 

where ŵ is the weight vector of an unknown system 
with length N and e0(n) is independent modeling of 
observed noise with mean zero and variance σ0

2. 

 w1(0), w2(n), and a(0) are independent of {d(n), u(n), 
e0(n)} for all n. 

 E[d(n)] = 0, E[u(n)] = 0 and E[u(n)uT(n)] = R. 

For the convenience of discussion, the component 
filters and their combination are defined as follows: 

 Weight error vectors: 

 
eq

ˆ( ) ( )

ˆ( ) ( )
i in n

n n

 
 

ε w w

ε w w
, i =1, 2. (8) 

 A-priori errors: 

 
T

,
T

( ) ( ) ( )

( ) ( ) ( )
a i i

a

e n n n

e n n n



ε u

ε u
, i =1, 2. (9) 

 A-posteriori errors: 

 
T

,
T

( ) ( 1) ( )

( ) ( 1) ( )
p i i

p

e n n n

e n n n

 
 
ε u

ε u
, i =1, 2. (10) 

Generally, the excess mean-square error (EMSE) is 
used to measure the performance of filter, which is 
described as the excess error over the minimum mean-
square error (σ0

2) of filter [3]. Iteration time n goes to   
when analyzing steady-state performance. It should be 
noted that eeq(n) and ei(n) have the relationship as 

 , 0

eq 0

( ) ( ) ( )

( ) ( ) ( )
i a i

a

e n e n e n

e n e n e n

 
 

, i =1, 2. (11) 

Therefore, the EMSE of component filters and their 
combination can be obtained as 
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2
ex, ,

2
ex

( ) lim [ ( )]

( ) lim [ ( )]

i a i
n

a
n

J E e n

J E e n




 

 
, i =1, 2. (12) 

In order to analyze the performance for a convex com-
bination, the cross-EMSE of the two filters is defined as 

 
ex,12 ,1 ,2( ) lim [ ( ) ( )]a a

n
J E e n e n


  . (13) 

According to (13) and Cauchy-Schwartz inequality, there 
is a conclusion that the cross-EMSE is never higher than 
the EMSE of the component filters, as shown in (14) 

 ex,12 ex,1 ex,2( ) max[ ( ), ( )]J J J    . (14) 

Besides, using the energy conservation equation [13] and 
assuming that u(n)2 is independent of ea,i(n) of individual 
filter at the steady-state stage, the EMSEs of the compo-
nent filters are formulated as 

 
2
0

ex,i

Tr( )
( )

2 Tr( )
i

i

J



 


R

R
, i =1, 2 (15) 

where there is a convergence condition that μi < 2/Tr(R), 
and μ1 actually stands for step-size function μ1(n). 

In order to derive a formula about the cross-EMSE, 
an equation [13] relating weight error vectors, a-priori 
errors and a-posteriori errors introduced has been intro-
duced, as illustrated in (16) 

, ,2 2

( ) ( )
( 1) ( ) ( ) ( )

( ) ( )
i a i i p i

n n
n e n n e n

n n
   

u u
ε ε

u u
, i =1, 2. (16) 

Multiplying (16) when i = 1 by (16) when i = 2, we can get 
a relation as 

 

,1 ,2T
1 2 2

,1 ,2T
1 2 2

( ) ( )
( 1) ( 1)

( )

( ) ( )
( ) ( ) .

( )

a a

p p

e n e n
n n

n

e n e n
n n

n

  

 

ε ε
u

ε ε
u

 (17) 

Notice that there is a fact in steady-state ( n  ) 

 T T
1 2 1 2[ ( 1) ( 1)] [ ( ) ( )]E n n E n n  ε ε ε ε . (18) 

Then, we get the following relation as 

 ,1 ,2,1 ,2

2 2

( ) ( )( ) ( )
[ ] [ ]

( ) ( )

p pa a e n e ne n e n
E E

n n


u u
. (19) 

Respectively, there is a relation about a-priori errors, a-
posteriori errors and errors of component filters for LMS 
filters [13] as 

 2
, ,( ) ( ) ( ) ( )a i p i i ie n e n n e n  u , i =1, 2. (20) 

Combining (19) and (20), we get 

 
2

2 1 1 2

1 ,2 1 2 ,1 2

[ ( ) ( ) ( ) ( )]

[ ( ) ( ) ( )] [ ( ) ( )].a a

E n n e n e n

E n e n e n E e n e n

 
  

u
 (21) 

For the HTVSCLMS algorithm, the variable step-size is 

expressed as 1( ) tanh( ( ) )
m

n e n   , which has a small 

limitation in an ideal state. It is assumed that 

1 0lim [ ( )]
n

E n 


 . Combining (11) and (21), we get 

 

2
0 2 ,1 ,2

0 ,1 ,2 0

0 2 ex,12

0 ,2 2 ,1 0

{ ( ) [ ( ) ( )

( )( ( ) ( )) ( )]}

( ) ( )

{[ ( ) ( ) ( )] ( )}.

a a

a a

a a

E n e n e n

e n e n e n e n

J

E n e n e n e n

 

 
 

  

  

 

u

 (22) 

In view of the independent of e0(n) with ea,i(n) and giving 

a definition of 0 2
12

0 2

2 


 
 , (22) is simplified to 

 2 212
ex,12 ,1 ,2 0( ) { [ ( ) ( ) ( )] Tr( )}

2 a aJ E n e n e n
   u R .(23) 

Similarly, in view of the independent of u(n)2 with ea,i(n), 
the cross-EMSE is finally obtained as 

 
2

12 0
ex,12

12

Tr( )
( )

2 Tr( )
J

 


 


R

R
. (24) 

There is a fact that μ0  μ12  μ2 for HTVSCLMS 
algorithm as well as VSCLMS; therefore, it can be 
concluded that Jex,1()  Jex,12()  Jex,2() in view of 
(15) and (24). But for CLMS, there is a conclusion that 
J’ex,1()  J’ex,12()   J’ex,2() [5]. Because the proposed 
algorithm doesn’t change the iteration rule of small step-
size LMS filter, so Jex,2() = J’ex,2(). Thus, we conclude 
that Jex,12()  J’ex,12() , that is, HTVSCLMS has better 
performance than CLMS. Besides, HTVSCLMS with some 
optimum parameters would also have a better performance 
than VSCLMS. 

4. Simulation Results and Discussion 
In this section, we verify the performance of the pro-

posed HTVSCLMS algorithm for system identification 
through the Monte Carlo simulation. The tracking and 
steady-state performances of HTVSCLMS are compared 
with that of CLMS and VSCLMS in 200 Monte Carlo 
simulations, and we make an average. In the following 
experiments, the unknown system and the component 
filters have the same length of N = 8. The parameter of 
unknown system is set to ŵT =[0.8783, –0.5806, 0.6537,  
–0.3223, 0.6577, –0.0582, 0.2895, –0.2710]. When the 
iteration time reaches to 1000, ŵ is suddenly changed to 
ŵT = [0.6537, –0.3223, 0.6577, –0.0582, 0.2895, –0.2710, 
0.1278, –0.1508] to study the ability to react to changes. 
The input signal u(n) is zero-mean white Gaussian noise 
with variance σu

2 = 1, building input vector u(n) as 
uT(n) = [u(n), u(n – 1),…, u(n – 7)]. According to (7), e0(n) 
is zero-mean white Gaussian noise as well with variance 
σ0

2, independent of u(n). We consider two cases that 
σ0

2 = 0.01 and σ0
2 = 0.1, namely, SNR = 20 dB and 10 dB. 
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4.1 Simulation Analysis of HTVSCLMS with 
Different Parameters 

In this section, we discuss how the parameters in (6) 
influence the MSE performance of HTVSCLMS. SNR is 
set to 20 dB and ŵ is assumed to be stable until a sudden 
change occurs after 1000 iteration time. μ2 is set to 0.01 
referring to [10]. 

The MSE performance of HTVSCLMS with  = 0.8 
and m = 1 while  = 0.005, 0.04, 0.08, 0.12 is illustrated in 
Fig. 3. It is clear to see that the convergence speed of 
HTVSCLMS increases as  rises from 0.005 to 0.08; 
meanwhile, the steady-state error has some reduction. In 
fact, we find that the performance remains the same when 
 varies between 0.08 and 0.16 in the simulation; it cannot 
converge when  is bigger than 0.16. Therefore, the opti-
mal  is around 0.08 in the simulation; 0.08 is selected. 

In Fig. 4, the MSE performance of HTVSCLMS with 
 = 0.08 and m = 1 while  = 0.05, 0.4, 0.8, 1.2 is 
displayed. It can be seen that the convergence speed of 
HTVSCLMS increases when  rises from 0.05 to 0.8; 
meanwhile, the steady-state error has some reduction. 
When   is bigger than  0.8, the convergence speed  and the 

 

Fig. 3. Performance of HTVSCLMS changes when  is 
different. 

 

Fig. 4. Performance of HTVSCLMS changes when  is 
different. 

 
Fig. 5. Performance of HTVSCLMS changes when m is 

different. 

steady-state error have no obvious variation. Thus, the 
optimal  is around 0.8 in the simulation; 0.8 is selected. 

The MSE performance of HTVSCLMS with  = 0.08 
and  = 0.8 while m = 8, 4, 2, 1 is shown in Fig. 5. It can 
be found that the algorithm has the best performance with 
the fastest convergence speed and smallest steady-state 
error when m is 1, verifying the computational complexity 
discussion in Sec. 3.2. Therefore, the optimal m is 1 in the 
simulation; 1 is selected. 

4.2 Simulation Analysis of Different 
Algorithms in a Stable Environment  

In a stable environment, ŵ would not change. 
Referring to parameters in [5] and [10] and discussion in 
Sec. 4.1 and making some optimization in our simulations, 
relative optimal parameters are shown in Tab. 3. 

The MSE performance of different algorithms with 
two SNRs in a stable environment is illustrated in Fig. 6. It 
is clear to see that HTVSCLMS and VSCLMS have faster 
convergence speed compared to CLMS in two SNRs situa-
tions. This is because that CLMS cannot update the step-
size on the basis of error of convex combination filters and 
has a weak tracking updating ability. In the steady-state 
stage, HTVSCLMS inherits the good ability of small 
steady-state error of VSCLMS, better than that of CLMS. 
When the unknown system is suddenly changed after 1000 
iteration, all algorithms can quickly go to steady-state 
again and HTVSCLMS still has the best performance. 
Besides, in comparison with the case of SNR = 20 dB and 
SNR = 10 dB, the latter case has faster convergence speed, 
while it has a bigger steady-state error. 
 

Algorithm Parameters SNR = 20 dB SNR = 10 dB 
CLMS μ1, μ2, μa 0.1, 0.005, 200 0.1, 0.005, 200 

VSCLMS μ2, μa, ,  
0.01, 200, 0.08, 

0.8 
0.006, 200, 0.08, 

0.8 

HTVSCLMS μ2, μa, , , m 
0.01, 200, 0.08, 

0.8, 1 
0.025, 200, 0.08, 

0.8, 1 

Tab. 3. Parameters for different algorithms in a stable 
environment. 
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4.3 Simulation Analysis of Different 
Algorithms in a Non-stable Environment 

In a non-stable environment, ŵ would change when 
iterations advance. The model of a time-varying system is 
given as 

 ˆ ˆ( 1) ( ) ( )n n c n  w w  (25) 

where c(n) is zero-mean white Gaussian noise with vari-
ance σc

2 = 0.0001. Referring to parameters in a stable envi-
ronment and making some optimization, relative optimal 
parameters are shown in Tab. 4. In fact, only the parame-
ters of CLMS have little change, verifying that variable 
step-size algorithms have better adaptability in a non-stable 
environment. 

The MSE performance of different algorithms with 
two SNRs in non-stable environment is shown in Fig. 7. It 
can be found that HTVSCLMS has better convergence 
speed than that of the other two algorithms in non-stable 
environment as well. To a certain extent, CLMS has 
a slower convergence process because it adopts a limitation 
on the function boundary of the joint coefficient, leading to 
shaking in the asymptotic steady-state process. In the 
steady-state stage, HTVSCLMS has obviously smaller 
steady-state error compared with VSCLMS and CLMS.  

 
(a) SNR = 20 dB 

 
(b) SNR = 10 dB 

Fig. 6. Performance of different algorithms in a stable 
environment. 

 

Algorithm Parameters SNR = 20 dB SNR = 10 dB 
CLMS μ1, μ2, μa 0.01, 0.005, 200 0.01, 0.005, 200 

VSCLMS μ2, μa, ,  
0.01, 200, 0.08, 

0.8 
0.006, 200, 0.08, 

0.8 

HTVSCLMS μ2, μa, , , m 
0.01, 200, 0.08, 

0.8, 1 
0.025, 200, 0.08, 

0.8, 1 

Tab. 4. Parameters for different algorithms in a non-stable 
environment. 

 
(a) SNR = 20 dB 

 

(b) SNR = 10 dB 

Fig. 7. Performance of different algorithms in a non-stable 
environment. 

When the unknown system is suddenly changed, 
HTVSCLMS still has the best performance. Compared 
with Fig. 6, the steady-state errors are relatively bigger 
with the same case in a non-stable environment while it has 
no effect on the good ability of convex combination 
scheme. 

All in all, HTVSCLMS gets the smaller steady-state 
error and the faster convergence speed than those of 
VSCLMS and CLMS at the same iteration. Therefore, 
HTVSCLMS has excellent tracking and steady-state per-
formance, indicating its effectiveness. 

5. Conclusion 
In this paper, a new variable step-size CLMS algo-

rithm named HTVSCLMS has been proposed; its hyper-
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bolic tangent function is the step-size function of fast con-
vergence LMS filter in the convex combination scheme. 
The proposed algorithm has constructed hyperbolic tangent 
nonlinear relationship between step-size and steady-state 
error based on a variable step-size rule. It has obtained 
better convergence speed and steady-state performance by 
taking such advantages of CLMS filters itself. Besides, the 
MSE performance of different algorithms is compared in 
the stable and non-stable environment through simulation 
respectively. Results show that HTVSCLMS has better 
performance compared with VSCLMS and CLMS. 
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