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Abstract. In this paper is shown, how delay properties
of the edges of a network with stochastic properties can be
estimated cooperatively by individual nodes that retain the
delay profiles of the entire network. The proposed algo-
rithm adopts null-space projection-based consensus among
agents to find individual entries from a set of arbitrary sum-
cumulative entities associated with graph edges (e.g., delays
associated with edges) based on sums over the network paths.
The local estimates of delay profile are estimated using Least
Squares (LS). A modified, tailored, iterative consensus algo-
rithm is then employed to distribute information among the
neighbors. The distributed network tomography is compared
to the conventional centralized solution and also to iterative
solvers based on Cimmino, CAV, and Landweber methods
applied in a distributed manner.
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1. Introduction
Network tomography [1], [2] is a broad area of methods

determining the network characteristics (delays, edge traffic,
node processing, etc.) from a set of observable quantities that
are sum of local (edge or node) properties (see [3] for com-
prehensive collection of applications and tools). Large and
dense networks with highly dynamic and stochastic node and
edge behavior (e.g., the link connectivity, processing load at
the node, etc.) present a significant challenge. A centralized
solution based on the collection of all measurements from
all nodes toward a fusion to solve a set of linear equations
has unmanageable extensive signaling overhead. Distributed
node-based solutions would be preferable and guarantees to
each node to infer the properties of the entire network even
if they are not directly observable by each node. These facts
motivate our work. The main objective of this paper is to
provide such a distributed and node-based algorithm. These
fundamental principles make the solution robust and resistant
to malfunctions.

Given the size of the inverse problem, one aspect of
network tomography problems is to include the projection
mechanism to match the null spaces of the solutions [4].
An exhaustive work on distributed solving of sets of linear
equations is in [5], but these are only deterministic settings.
In [6], the authors address decentralized consensus in dis-
tributed networks, however, the model described therein is
not stochastic as in our case. In [7] is presented a solution to
a problem of parameter estimation in time-varying network
topology using a consensus algorithm. However, the system
model therein is different, as well as the approach of the solu-
tion, which is based on the sub-gradient method. The authors
of [8] considered a problem of distributed optimization on
a graph using the consensus algorithm, where the objective
function was a sum of convex-functions. Further work on the
topic of multi-agent optimization may be found in [11].

The problem of consensus estimation on time variable
networks was also addressed in [9] and [10], but, again,
therein the model does not take into account stochastic prop-
erties of the measured quantity and variable is the topology.
For recent review work focused on utilization in wireless
sensor networks, see [12].

The authors of [13] presented the concept of predict-
ing overall network metrics from measuring only a subset
of the paths in the network graph, addressing the issue of
huge measurement overhead with a motivation of statistical
kriging. Their framework is based on the analysis of matrix
carrying possible paths in the graph, referred there as a rout-
ing matrix, which is also fundamental to our work but does
not consider the distributed solution. Based on this is in [14]
developed a kriged Kalman filter approach that on-line se-
lects the paths to estimate delays and presented results on
real-world data.

In large networks with a high number of edges, any
estimate of the property of individual edges of the entire net-
work would make the signaling diverge if made it centrally.
The distributed method confines the estimates to the inter-
actions among neighboring connected nodes. More specif-
ically, let the nth node collect a set of cumulative entities
un =

∑
m∈En Tm over the set of edgesEn, whereTm = τm+wm
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is a general property at mth edge, with deterministic (τm) and
zero-mean stochastic (wm) part. The goal is to let each node
to infer individually the whole set {τm}Mm=1 from the cumula-
tive values un obtained at nth node over the randomly chosen
set of paths En with the help of a distributed cooperation with
other nodes.

Note, that in the sequel, the edge delay property was
selected for a purpose of clearness and also many other real-
world choices are available, such as channel coefficients esti-
mation. Using the edge network delay profiles as a distributed
network tomography example, the goal is to let every node
solve part of the whole inverse problem to estimate the edges
delaysTm from a set of cumulative values un notwithstanding
the rank-deficiency of the linear system by every node based
on the randomly chosen path En. E.g., power-saving and
additional relaxing of the signaling overhead are reasons to
use only a subset En of all the paths. Further, the network
does not behave deterministically and edge properties (de-
lays) are random and change in every single observation of
the edge property.

Contribution of the paper is a distributed network to-
mography from cumulative stochastic values that solves a set
of undetermined systems that is numerically shown to con-
verge to the edge-properties estimated by a centralized sys-
tem. We also compare the solution with other methods stated
in [15], such as Cimmino method [16], Component Av-
eraging [17] and Landweber method [18], that are known
to be used in tomography tasks. Even if the exemplary
application is for edge delays, the algorithm is generally
applicable for any cumulative stochastic quantities. More
complex tasks to be addressed are, e.g., channel estimation,
synchronization, etc.

The rest of this paper is organized as follows. Sec-
tion 2 states the problem, defines the system model and in-
troduces notation. Section 3 contains a detailed description
of the proposed algorithm. Section 4 evaluates the properties
of the algorithm, numerically demonstrates its convergence,
and compares the results with selected reference methods.
Section 5 contains the paper conclusion.

2. System Model

2.1 Network
Let a network be modeled as a graph with N nodes

where all the M edges are sequentially numbered by
m ∈ {1,M}, the delay Tm ∈ R

+
0 is the stochastic edge prop-

erty due to propagation and node-dependent processing [1].
At rth observation epoch (r ∈ N), it is Tm(r) = τm + wm(r),
where the zero-mean stochastic fluctuation wm(r) is the de-
lay jitter that is assumed as independent and identically dis-
tributed (IID) and the edge delay τm is constant over all
observation epochs.

The goal is to get the estimates τ̂n,m for all
m ∈ {1, . . . ,M} to be available by each network node
n ∈ {1, . . . ,N} and, after a number of node-to-neighbors
epochs is large enough, it should hold τ̂m = τ̂n,m, ∀n. The
ensemble τ = [τ1, . . . , τM ]

T is the network delay profile. The
distributed algorithm is iterative and reaches a consensus as
the number of epochs r → ∞. However, the algorithm runs
for a selected finite number of epochs R to reach the consen-
sus on the estimate τ̂ of the vector τ and, when the consensus
is reached, all the nodes achieve the final estimates τ̄n(R). To
simplify, we adopted a Gaussian IID sets Tm(r) ∼ N(τm, σ2

w)

with τm � σw .

2.2 Observation Model
Within any epoch r , each node randomly floods the net-

work with probe excitations (e.g., a modification of "ping"
when considering the Internet protocol) over randomly cho-
sen set of target nodes. In our particular case of delay pro-
file estimation, these probes are designed to accumulate the
delays of all the edges as a single value, i.e., a simple sum.
(Note, for other edge properties, the collecting operation shall
be different, such as a sumof logarithms of the channel gains.)

As a consequence, each node receives at rth observa-
tion period a random set of K observations frommany source
nodes over many (and possibly overlapping) paths. The re-
ceived observation must contain only an identification of the
edges overwhich the probe traveled and total cumulated delay
over that path.

The nth node receives K observations at the rth obser-
vation epoch

un(r) =
[
u(1)n (r), . . . ,u

(K)
n (r)

]T
. (1)

In the different observation epochs, the number of the
received observations K in node n need not be the same, but
for the sake of simplicity, we assume it to be constant. The
kth observed cumulated delay at node n is associated with
the path over the set of edges, denoted for nth node as E(k)n (r).
This information is obtained from the list of traversed edges
in the received probe ("ping"):

u(k)n (r) =
∑

m∈E
(k)
n (r)

Tm(r) =
∑

m∈E
(k)
n (r)

(τm + wm(r)) . (2)

Let the (K × M) matrix Hn(r) be the path-indexing at
nth node and rth epoch such that the kth row and the mth
column entry Hn,km(r) ∈ {0,1} indicates the presence of the
mth edge on the E(k)n (r) path

Hn,km(r) =

{
1; if m ∈ E(k)n (r),
0; elsewhere.

(3)
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The cumulated delay observation is thus

un(r) = Hn(r)T(r) = Hn(r) (τ + w(r)) (4)

where T(r) = [T1(r), . . . ,TM (r)]T is the vector of all ran-
dom edge delays with wn(r) = [w1(r), . . . ,wM (r)]T. Even if
the number of observations K is very large (say K → ∞),
the path-indexing matrix Hn(r) from nth node is typically
row-rank deficient as there might be some edges never being
sensed by the randomly selected paths {E(k)n (r)}Kk=1. Con-
cretely, an abstraction of the "ping" protocol could be used
to generate these probes. After arrival to each node, the
payload shall be incremented with the edge delay value and
the traversed edge label noted. It can be understood from
the later description, that the number of nodes performing
the measurement can be relaxed. A fraction of nodes could
generate the probes in each epoch, as well as all of them.

3. Distributed Consensus Tomography
Each node employs a measurement procedure having

the measurements un(r) and the path-indexing matrix Hn(r).
The goal is for each nth node to reach a consensus on the
estimate τ̂ of the complete network delay profile τ. This esti-
mation task is after a set of consensus-like iterations that are
made complex by some peculiarities of the network tomog-
raphy problem at hand: (1) each node observes only a limited
subset of the edges via its measurements ("ping") and possi-
bly only a small part of the entire network (i.e., likely some
edges are being observed only by a subset of nodes); (2) the
mth edge is affected by a random jitter wm(r), thus intro-
ducing a random error in cumulative measurements; (3) all
edges need to be measured, hereby we assume a connected
network and the existence of a unique (consensus) solution
of τ̂. In other words, the execution of a sufficient number of
the epochs guarantees that all paths are randomly selected by
any criteria external to the network tomography algorithm.

The network delay profile τ̂ follows from the global
consensus estimator that is reached in two phases. First, we
perform a local estimate of the network delay profile, which
takes into account the very limited accessibility of the sensed
network edges. In other words, the local estimate is char-
acterized by the high degrees of freedom that are weakly
conditioned by a set of local observations that partially sense
a subset of edges, and path-indexingmatrixHn(r) is row-rank
deficient. This limitation is addressed by the second phase of
consensus iteration, where all nodes align the weakly condi-
tioned estimate of the path-indexing subspace by performing
a consensus on the null-space of the local observation model.

3.1 Measurement and Local Estimate
Figure 1 outlines the procedure that is detailed below to

clarify the steps and usage of variables. The first step ismea-
surement: each agent "pings" some subset of the remaining
agents, resulting in gathering un(r) and Hn(r).

Hn(0)
Un(0)

LS estimate
τ̂n(0)

τ̃n(r, 0)

P⊥
n (0)

Measurement
r = 0

Output r = 0

Consensus
r = 0

t = 1, ..., T − 1

τ̃n(0, T )

Hn(1)
Un(1)

LS estimate
τ̂n(1)

τ̃n(r, 0)

P⊥
n (1)

Output r = 1

Consensus
r = 1

t = 1, ..., T − 1

τ̃n(r, T )

Measurement
r = 1

τ̄n(0)

Combination
r = 1, t = 0

r = 2, ..., R − 1

τ̄n(1)

Hn(R)
Un(R)

LS estimate
τ̂n(R)

τ̃n(R, 0)

P⊥
n (R) Consensus

r = R
t = 1, ..., T − 1

τ̃n(R, T )

Measurement
r = R

Combination
r = R, t = 0

End
τ̂ = τ̄n(R)

τ̄n(R)

Output r = R

τ̄n(R− 1)

Combination
r = 0, t = 0

Projection

Projection

Projection

Fig. 1. Block diagram to demonstrate phases of the algorithm
and corresponding equations.

See Fig. 1, the epoch variable r is incrementedwith each
"Measurement" therein. The aim of this phase is to reach as
much path-diversity as possible, such that the routes between
source and destination node should be through as many dif-
ferent edges as possible. Themore edges, the better, and also,
the higher the number of different measurements shall imply
faster convergence. More measurements of identical paths
edges might be treated as a special case by simple averaging
to reduce the equivalent jitter variance. The model (4) can
be rewritten as

un(r) = Hn(r)τ + w′(r) (5)
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where w′(r) = Hn(r)w(r) is an equivalent local observa-
tion noise. Equation (4) is a poorly conditioned observation
model and the set of linear equations is underdetermined.
Since the problem is heavily row-rank deficient, the initial
estimator at each node should take that into account. One of
the options here is to use minimum-norm LS solution [19]
τ̂n(r) = HT

n(r)(Hn(r)HT
n(r))

−1un(r). Other options, such
as various constrained variants of LS, could be considered,
as well.

3.2 Consensus on Null-Space Projection
The goal is to cooperatively reach a global consensus

on those components of local estimator results that cannot
be solved locally for the underdetermined system of equa-
tions. These components lie in the null-space of the local
path-indexing matrices. A convenient approach described
in [20] is the Accelerated Projection-Based Consensus. For
the network tomography, the null-space projection matrix
corresponding to nth node shall be defined as

P⊥n (r) = I −HT
n(r)(Hn(r)HT

n(r))
−1Hn(r) (6)

where I is the identity matrix. The purpose of the orthogonal
projection here is to update the estimates in the node n during
the Consensus Phase only with data corresponding with the
edges that were poorly (or not at all) observed by the node.
These are in the null-space of the path-index matrix Hn(r).

The consensus iterations by each node are over the path-
index null-spaces. For each observation period r , we perform
a number of consensus update steps indexed by the variable t.
See "Consensus" in Fig. 1, t variable counts consensus itera-
tions. The consensus updates τ̃n(r, t) are

τ̃n(r, t +1) = τ̃n(r, t)+ εP⊥n (r)
©«
∑
j∈Nn

τ̃ j(r, t) − τ̃n(r, t)
|Nn |

ª®¬ (7)

where t ∈ {0,1, ...,T − 1}, Nn denotes the set of neighbors
of the nth node and ε is a selected loop gain, which choice
is described e.g. in [21]. Note, complete graph topology
need not be known in each node. After t = T − 1 consensus
updates within the rth period, one gets

τ̄n(r) = τ̃n(r,T) (8)

which highlights how themeasurements by all the other nodes
eased to reach the network delay estimate in the rth observa-
tion epoch.

The consensus update procedure at rth epoch takes into
consideration the results of previous measurement epochs.
The updates are initialized at t = 0 either by weighted com-
bination of the previous period result or by a simple local
estimate at r = 0. For t = 0, the weights are designed as
running average on consensus

τ̃n(r,0) =

{
τ̂n(0); for r = 0

1
1+r τ̂n(0) +

r
1+r τ̄n(r − 1); for r ∈ {1, ...,R}

(9)

where R is the total number of observation periods, denoted
"Combination" in Fig. 1. The final resulting null-space con-
sensus at the node n on all local estimates comprising all
observation periods is τ̄n(R). If the consensus is actually
reached, all nodes have the result

τ̂ = τ̄n(R), ∀n (10)

where vector τ̂ is the resulting global consensus estimate of
the network delay profile.

4. Numerical Results and Discussion

4.1 Reference Solution and Complexity
To adequately compare our solution with other ap-

proaches, we opted to compare our numerical results with:
(1) centralized solution, where the fusion center obtains all
the observations, and (2) hybrid distributed solutions. The
metrics are: (1) the computational complexity, (2) the sig-
naling complexity and (3) the convergence. The centralized
reference solution is based as follows: all the N nodes per-
form within R epochs K measurements; then, all these KR
measurements are sent to one fusion center; the overdeter-
mined set of NKR linear equation is solved to estimate τ.

On the complexity, each node with K measurements
solves in distributed scenario K equations with computa-
tion complexity Oc(K3), reusing part of the LS solution
(compare (5) and (6)) computes the projection matrix with
complexity Oc(K2). During T exchanges each node re-
peats the consensus phase with Oc(T |Nn |M2) operations,
where Oc(M2) stands for the projection matrix multiplica-
tion. The computation complexity is for nth node in R epochs
R × (Oc(K3) + Oc(T |Nn |M2)) operations. The centralized
solution needs Oc((NRK)3) operations (the additional oper-
ations to solve possible duplicities in the set are neglected).
Further, in the distributed approach, the computation is dis-
tributed to all nodes, and this provides an additional benefit.

Concerning the amount of data to be transferred, in the
distributed algorithm, the nth node transmits to its neighbors
Nn its estimate τ̃ of M edge delays in R epochs and repeats
T consensus phases. This sums up to Os(T RM |Nn |) values
to be signaled. On the contrary, in the centralized case, one
needs to transfer all measurement results, which is K(M + 1)
values per each node forun(r) andHn(r). Once the estimate τ̂
is computed, it should be distributed back to all nodes, and
the overall signaling complexity is Os(K(M+1)R+M) trans-
fers per node. The comparison is more complex in this case,
and it varies in different scenarios (e.g., one could account
for the accumulation of messages due to the routing from
each node to the centralized processing node).

The analysis of the convergence of consensus in terms of
iterationsT needs to take into account the network connectiv-
ity as routinely employed in the consensus method and the re-
dundancy exploited by the repeated "ping" sensing iterations.
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Aproportion ofT and R, while keepingT R = const, can vary.
A trade-off appears between the gain resulting from new ob-
servations (when increasing R), represented by new inputs
of un(r) and Hn(r) and the rate of convergence inside one
epoch, related to the value of T . Of course, the dynamics of
the network and the delay jitter influence the results.

4.2 Reference Methods
The first method that we decided to use for comparison

is Component Averaging (CAV) described in [17]. The CAV
method was introduced as an iterative parallel technique suit-
able for large and sparse systems of linear equations, and this
makes it a useful reference option. Instead of orthogonal
projections with scalar weights, it uses oblique projections
and diagonal weighting matrices [17].

The second used, also projection-based method, is
known Cimmino method [22], introduced in [16]. The third
used, Landweber method [18], is also a common choice for
the tomography computations [17], and it is suitable for our
system model since it was designed to be used with noisy
measurements. As shown below, the Landweber method
performed the best in simulations. Stopping rules need to be
considered for these methods, e.g., limit the maximum num-
ber of iterations. Other methods are used for tomography
tasks, e.g., Kaczmarz, ART, SART and DROP [23], however,
we believe that the above three examples are satisfactory to
demonstrate the performance of the described algorithm [17].

There are multiple choices on how to design the refer-
ence solutions. Here the design is as follows: In the initial-
ization phase, each node computes the estimate based on its
local knowledge of un(1), Hn(1) with the CAV, Cimmino,
and Landweber methods, respectively. In the subsequent rth
epochs, the nth node shares its measurements, represented
by un(r) and Hn(r) with its neighbors Nn. Furthermore, the
nodes keep the history of their measurements. This can be
straightforwardly written with an artificial, identity observa-
tion matrix of size M , and the estimate from the previous
epoch r − 1 is taken instead of the vector of the measured
values. The reference solution is then obtained as a solution
of the extended set of linear equations. Such an extended set
then carries information about the actual measurement of the
given node, measurements of all its direct neighbors, and the
previous epochs. The numerical methods are then used to
solve these extended sets of equations.

The advantage of this approach is a significant reduction
in the size of the set of equations compared to the centralized
approach. Calculations are distributed among all the nodes
to avoid the centralized approach. However, it is important
to note that the nodes need not reach the same solution of the
edge property, which could be critical in some applications.
This is inevitable without any form of consensus. Another
drawback is a significant overload caused by transmitting
the measurements between the neighbors. These are other
reasons why the proposed method is preferable.

Note, the implementation of the methods in our simula-
tions simultaneously uses the whole set of equations during
the iterations, which ensures that the specific organization of
the extended set is not essential.

4.3 Numerical Analysis
In this section, we present several results for various

scenarios. In the distributed method, in every epoch r
each node performs K measurements to obtain the estimate
τ̂n(r) = HT

n(r)(Hn(r)HT
n(r))

−1un(r), and processes T steps
of (7) to reach the final consensus phase. In centralized ap-
proach, at every epoch r the ensemble of equations are NKr
and augments by NK new sets at every subsequent epoch. To
illustrate the level of convergence over the epoch r in term of
root mean squared error per edge we use expression:

RMSE(r) = E

√√√

1
N

N∑
n=1

1
M

M∑
m=1
(τm − τ̂n,m)2

 (11)

where E[.] is numerically approximated by averaging of ρ
Monte Carlo runs of the algorithm with preserved settings
and topology, but different realizations of jitter and routing.
Also, the results computed by the centralized approach are
provided for reference (neglecting possible traffic delay for
measurement fusion).

Note, the simulation was implemented in MATLAB
software (R2019a), on a server equipped with Intel® Xeon®
CPUE5-2420 v2@2.20GHz and 48GB of RAM.MATLAB
implementation of the algorithm is provided in [24] and uti-
lizes software package [15]. No special MATLAB toolbox is
required. The implementation is computationally quite de-
manding, especially for larger topologies, because of all the
reference methods needed to be computed.

The first topology under test is a fully connected graph
with 10 nodes, as shown in Fig. 2. To demonstrate the con-
vergence, we provide the results for different values of mea-
surements K . The parameters of the topology are: ρ = 10,
T = 500, R = 7 and σ2

w = 40. This settings holds for all
the provided examples, with an exception of value of T, as
addressed explicitly, later. In Figs. 3 and 4, are shown re-
sults of RMSE according to (11) for K = 18 and K = 72,
respectively.

1

2

3

4

5

6

7
8

9

10

Fig. 2. Examined topology 1: Fully connected graph with
N = 10.
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Fig. 3. Comparison of methods for K = 18, N = 10,T = 500.

1 2 3 4 5 6 7

Algorithm epochs

0

20

40

60

80

100

120

140

R
M

S
E

 p
e
r 

e
d
g
e

RMSE per Edge in Epochs

Proposed

CAV

Landweber

Cimmino

Centralized

Fig. 4. Comparison of methods for K = 72, N = 10,T = 500.

In these figures, we can easily compare the performance
of the different approaches. For all the scenarios, the Central-
ized approach reached the fastest convergence behavior. This
is not surprising since it has access to all the measurements
of all the nodes at the same time, but this comes at the price
of enormous overhead to transmit the measurements to the
fusion center, and the size of the resulting set of equations is
enormous. The Cimmino method was used to solve it. Next,
the reference methods Cimmino, CAV, and Landweber per-
formed about the same in all scenarios and converged to the
solution determined by the centralized solution. Landweber
method seems to be the best, but the difference is merely neg-
ligible. In both settings, the proposed algorithm converges
to the centralized solution. We observe in Figs. 3 and 4, that
choice of K has a dramatic effect on the behavior of the con-
vergence. For K = 18 in Fig. 3, the convergence process was
very slow. When increased to K = 72, the performance of the
proposed algorithm is comparable to the centralized solution.

Further, the effect of the choice of the number of con-
sensus steps T is demonstrated. Figure 5 shows the value of
RMSE of the proposed algorithm during its individual steps
of the consensus phase for an insufficiently small number of
steps, specifically T = 50.
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Fig. 5. Visualization of individual steps of the algorithm for in-
sufficient number of consensus steps.
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Fig. 6. Comparison of methods for K = 18, N = 10,T = 50.
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Fig. 7. Examined topology 2: Dense network with N = 20.
Average degree of node is 15.

It is clearly seen that consensus was not reached within
individual epochs, and this severely affected the overall com-
parison of results in Fig. 6. Compare this with Fig. 3, which
differs only in the value of T .

Another results are provided for topology with N = 20
nodes, shown in Fig. 7. This graph is no longer fully con-
nected, but the topology is still very dense, and the average
degree of a node is 15. Analogical results as previously are
presented in Fig. 8 for K = 38 and in Fig. 9 for K = 95.
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Fig. 8. Comparison of methods for K = 38, N = 20,T = 500.
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Fig. 9. Comparison of methods for K = 95, N = 20,T = 500.
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Fig. 10. Visualization of individual steps of the algorithm.
These results were obtained during the previous exper-
iments for both topologies and all numbers of measure-
ments.

This time, the difference between the results for differ-
ent values of K is not that significant. However, we can still
clearly observe that an increased number of measurements
significantly boosts the performance of the proposed algo-
rithm. Comparing the different figures for different values

of K , we can see that with the increasing number of measure-
ments K, the achieved level of RMSE decreases faster. This is
clear since the sets of equations to be solved are better condi-
tioned, having more observations. However, the complexity
of the calculations rapidly increases, as described above.

Finally, the evaluation of RMSE during individual steps
of the consensus phases is shown in Fig. 10. For the purpose
of comparison, results for both topologies and all values of K
are shown together. These figures are useful to ensure that
the number of iterations T is sufficient and to map the rate of
consensus. Using these graphs, parameter T might be tuned
for a specific application. Adaptive modification of parame-
ter T could be designed based on the relative change of the
estimated value. Note, the peaks appear on the curve at the
moments of receiving new measurements. These were also
observed in, e.g., [6] and can be affected by parameterizing
of (9). Also, in this figure can be easily seen that the number
of measurements K has a very significant impact on the re-
sult. For both topologies, the difference of achieved results
for the different number of measurements is at this moment
easily comparable.

To summarize this section, we provided results for two
dense topologies, where the performance of the proposed
distributed algorithm was compared to described reference
solutions. While the centralized solution performed the best,
its severe disadvantages were previously addressed. A com-
parison with selected reference methods was also provided.
Firstly, it was shown how the number of measurements K
affects the performance of the individual methods. Specifi-
cally, a higher value of K significantly accelerates the con-
vergence. Secondly, we demonstrated how small value of
consensus steps T decreases performance. The convergence
of the proposed algorithm was successfully demonstrated.

5. Conclusion
In this paper, we presented a system model and a dis-

tributed algorithm to estimate a network delay profile with
stochastic properties. It is challenging, especially in large
and dense networks, to perform this task efficiently, avoid-
ing malicious signaling overhead, while keeping the required
estimate robust to inevitable stochastic properties of the real-
world networks. The distributed nature of the proposed
algorithm clearly overcomes this challenge. The funda-
mental core principle of the proposed method is to utilize
a projection-based consensus algorithm to distribute local
estimates over the network. This proposed solution was com-
pared with a centralized solution. It is clear that a centralized
solution forms a lower bound of performance since all mea-
surements are available. However, the signaling overhead
is its significant drawback. The proposed solution was also
compared with other reference solutions based on the con-
vention, iterative solvers. Numerical analysis showed that
our solution converges to the same results as the reference
solutions, and justifies its validity.
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