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Abstract. In this paper, a two dimensional underdeter-
mined direction of arrival estimation (DOA) of quasi-sta-
tionary signals using a parallel nested array structure is 
investigated. The quasi-stationary signals have the statisti-
cal property that they remain locally static over one frame 
but exhibit differences from one time frame to others. The 
special time domain property enables us to perform under-
determined direction-of-arrival estimation in time domain. 
By exploiting the temporary diversity of the quasi-station-
ary signals and effective difference coarray virtual array 
aperture provided inherently in the parallel nested array, 
more degrees of freedom can be used to resolve DOA esti-
mation. The Khatri-Rao operation for the cross covariance 
matrix of the subarrays received data is adopted to convert 
the 2-D DOA estimation problem into two separate one-
dimensional DOA estimation problems. Then, a subspace-
based estimation of signal parameters via rotational invar-
iance technique and a sparsity-based sparse Bayesian 
learning are proposed to realize the according one-dimen-
sional DOA estimation. And the estimated azimuth and 
elevation angles can be properly automatically paired. 
Simulation results are carried out to demonstrate the effec-
tiveness of the proposed algorithms for the 2-D under-
determined DOA estimation.  
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1. Introduction 
The direction-of-arrival (DOA) estimation problem 

plays an important role in array signal processing and has 
wide applications in radar, sonar, mobile communications 
[1–3], etc. The quasi-stationary signals (QSS) are one of 
most of important signals frequently encountered in the 
microphone array speech processing and electroencephalo-
gram. And, in an airport, the DOA estimation of the quasi-
stationary characteristic can also be used to prevent colli-

sions between the aircrafts and birds. Thus, due to these 
application backgrounds, it is very meaningful to acquire 
the accurate direction parameters of the QSS. The one-
dimensional DOA estimations of the QSS are detailed 
analyzed in [4–8]. But the researches about the two-dimen-
sional DOA estimation of the QSS are few. In [9], [10], 
tensor modeling and Khatri-Rao subspace based method 
are proposed to deal with the 2D DOA estimation problem 
by using the L-shaped array. However, these proposed 
methods do not give the detailed analysis after the Khatri-
Rao operation about the array steering matrix and the dif-
ference coarray domain of the L-shaped array cannot be 
obtained. A number of two-dimensional (elevation angle 
and azimuth angle) high-resolution algorithms using uni-
form array geometry structures (such as the rectangle array, 
the circular array, L-shaped array and parallel linear array) 
have been proposed to realize the 2D DOA estimation in 
[11–14]. But traditionally uniform array geometry struc-
tures suffer from limited degree of freedom and some algo-
rithms need the extra angle pair matching process. For 
example, the maximum number of the estimated signals 
using propagator method [15] is limited to half of the 
sensors. 

In order to acquire accurate DOA estimation when the 
number of sources exceeds the number of sensors, exploit-
ing non-uniform sparse arrays to achieve a larger array 
aperture without increasing the number of sensors has been 
a preferred choice in recent years [16–23]. By utilizing the 
second-order statistics of the received signal, non-uniform 
arrays can construct virtual difference co-array with larger 
aperture to improve the DOFs. Among these, the introduc-
tion and analysis of the nested array and the coprime array 
have attracted significant attention due to their ability to 
estimate the direction-of-arrival (DOA) of more sources 
than the number of physical sensors. A nested array com-
prising two uniformly sampling subarrays has many 
advantages compared to other popular non-uniform arrays, 
such as minimum redundancy arrays (MRA) [23] , mini-
mum hole arrays (MHA) [24] and coprime arrays [17–18], 
[21–22]. For a given number of physical sensors, MRAs 
and MHAs need use exhaustive search to find the optimal 
sensors position. Besides, finding the suitable covariance 
matrix corresponding to a large array requires a rather 
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complicated time-consuming iterative process. And the 
difference coarray domain of coprime array contains some 
missing elements, thus, cannot exploit all of the DOFs for 
DOA estimation. Unlike the coprime array, the DOFs and 
the number of unique and consecutive difference coarray 
sensors of nested array can be obtained with the exact 
expression under the condition of fixed sensors. 

The recent proposed sparse arrays have a very bril-
liant application prospect due to their degrees of freedom 
enhancement capability. However, these array aperture 
expansion capabilities are mainly limited to the 1-D case. 
In order to realize the 2D DOA estimation when the num-
ber of impinging sources is more than the number of physi-
cal sensors, the parallel coprime array structure is investi-
gated in [25–27]. But similar to the analysis above, the 
coprime array cannot eliminate the effect of the “holes” in 
the difference coarray domain both for 1-D DOA estima-
tion and 2-D DOA estimation. And the above mentioned 
methods based on parallel coprime array structure cannot 
deal with the 2-D DOA estimation of the quasi-stationary 
signals as the cross-covariance matrix of subarray signals 
behaves like a multiple measurement vector model. Thus, 
in this paper, an effective 2-D DOA estimation method 
based on parallel nested array structure is proposed and the 
proposed method can make full use of the freedoms of the 
difference coarray in the cross-covariance matrix. Then, 
a multiple measurement vector model can be constructed 
by using the time diversity of the quasi-stationary signals. 
Finally, a subspace-based estimation of signal parameters 
via rotational invariance technique (ESPRIT) algorithm 
and a sparsity-based sparse Bayesian learning (SBL) algo-
rithm are derived to realize the 2-D DOAs estimation. The 
proposed method can convert the 2-D DOA estimation 
problem into two separate one-dimensional DOA estima-
tion problems, which is quite attractive for decoupled 2-D 
DOA estimation. Both the proposed ESPRIT algorithm and 
SBL algorithm can realize the 2-D underdetermined DOA 
estimation for the quasi-stationary signals. And we also 
compare the estimated performance for the ESPRIT algo-
rithm and SBL algorithm under different situations. Simu-
lation results verified the effectiveness and superiority of 
the proposed methods in terms of detectable ability, estima-
tion accuracy, and resolution ability. 

The rest of this paper is organized as follows. Section 
2 introduces the system model of the parallel nested arrays. 
In Sec. 3, the subspace-based ESPRIT algorithm and spar-
sity-based SBL algorithm are proposed to deal with the 
multiple measurement vector model of the quasi-stationary 
signals. Simulation results are provided in Sec. 4 and Sec-
tion 5 concludes this paper. 

Notations: Throughout the paper, we use the lower-
case (uppercase) boldface symbols to represent vectors 
(matrices). (·)*,(·)T, and (·)H denote conjugate, transpose, 
and conjugate transpose, respectively. Re(·) denotes the 
real part. The symbols  ,   and   denote Khatri-Rao 
product, Kronecker product, and Hadamard product, re-
spectively. E(·), vec(·) and angle(·) denote statistical 

expectation, vectorization, and phase angle operator, 
respectively. IM and ΠM are M  M identity matrix and 
reverse identity matrix (90° rotation of IM), respectively. 
0M  M is a M  M zero matrix. The notation diag(a) stands 
for constructing a diagonal matrix with the elements a on 
its diagonal. 

2. The Model of Parallel Nested Array 
The planform of the parallel nested array is illumi-

nated in Fig. 1, the parallel nested array consisting of two 
parallel-arranged sparse uniform linear arrays in the xy 
plane, with a half-wavelength distance between them. The 
first subarray along the y-axis is a dense uniform linear 
array with inter-element spacing λ/2. The second subarray 
with M elements is a sparse uniform linear array with inter-
element spacing λM/2. Therefore, the positions of the par-
allel nested array can be denoted as 

1 1 2 2S { 2 | 0 1} { 2 | 0 1}m m M m m M        .(1) 

Assume that K narrowband far-field uncorrelated 
quasi-stationary signals (QSS) impinge on the parallel 
nested array from (k, k), k = 1,2,…,K, where k and k 
denote the elevation angle and azimuth angle . To simplify 
the representation, we redefine (k, k) to denote the 2D 
angle, where k denotes the angle between the incident 
direction and y-axis, and k is the angle between the inci-
dent direction and x-axis, for all k = 1,2,…,K. Thus, the 
relationship between (k, k) and (k, k) can be denoted as 

 cos( ) sin( )sin( )k k k   , (2) 

 cos( ) sin( )cos( ).k k k    (3) 

Then, the received data vectors corresponding to the 
two subarrays can be expressed as 

 1 1 1 1
1

( ) ( ) ( ) ( ) ( ),
K

k k
k

t s t t t


  x a A s n  (4) 

 2 2 2 2
1

( ) ( ) ( ) ( ) ( )
K

k k
k

t s t t t


  x a A Φs n  (5) 
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Fig. 1. Planform of the parallel nested array. 
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are the steering vectors corresponding to angles (k, k) for 
k = 1,2,…,K. A1= [a1(1), a1(2),…,a1(K)] and A2 = 
[a2(1), a2(2),…,a2(K)] are the manifold steering matrices 
corresponding to the first subarray and second subarray, 
respectively.  = () = diag(exp(–jcos1), exp(–jcos2), 
,…, exp(–jcosK)), denotes a diagonal matrix correspond-
ing to angle k, k = 1,2,…,K. The noise n1(t) and n2(t) are 
the additive white Gaussian noise with mean zeros and co-
variance matrix 1

2IM and 2
2IM, respectively. And the noises 

are assumed to be independent to each other and uncorre-
lated with the signals. 

The wide-sense stationary characteristic of QSS 
within a frame can be expressed as 

 2 2[| ( ) | ] , [( 1) , 1]k pkE s t t p L pL      (8) 

where L denotes the frame length and p denotes the frame 
index. Equation (8) means that the second-order statistic is 
static within a frame but time-varying in different frames. 
Before acquiring the cross-covariance matrix between the 
first subarray and the second subarray, we firstly use 
a permutation matrix ΠM to (4) 

 
1 1 1 1

1 1

( ) ( ) ( ) ( )

( ) ( ).

z M M M

z M

t t t t

t t

  

 

x Π x Π A s Π n

A s Π n
  (9) 

By using this permutation operation, the virtual steer-
ing matrix corresponding to vectorization of the cross co-
variance matrix of the two subarrays has no overlapped 
elements and it can achieve M2 degree of freedoms. Then, 
the cross-covariance matrix between x1z(t) and x2(t) within 
the p-th frame can be expressed as  

12

H H H
1 2 1 2E[ ( ) ( )] [( 1) , 1]z z pt t t p L pL     xR x x A R Φ A  (10) 

where Rp = diag(p1
2, p2

2,…, pK
2) is the diagonal signal 

covariance matrix within the p-th frame. By adopting the 
cross covariance matrix in (10), the effect of noise can be 
eliminated due to temporal uncorrelated characteristic.  

In practice, the exactly local cross-covariance matrix 
Rx12

 in (10) cannot be obtained due to the finite number of 
snapshots. Thus, the local sample cross-covariance matrix 
is estimated using the L available snapshots in each frame, 
which can be expressed as 

 
12

1
H

1 2
( 1)

1
( ) ( ).

mL

z
t m L

t t
L



 

 xR x x  (11) 

By vectorizing the matrix R̂x12
, we can obtain the fol-

lowing M2 1 measurement vector 

 12

H H
1 2

2 1

vec( ) vec( )

( )

p z p

z p p


 

 

xy R A R Φ A

A A b Ab
  (12) 

where 

 
1 2

H

j cos j cos j cos2 2 2 T
1 2

diag( )

[ e , e ,..., e ] .K

p p

p p pK
         





b R Φ
 (13) 

The vector yp can be regarded as a new received data 
vector and bp can be regarded as the virtual impinging 

sources. 
2

2 1 1 2[ ( ), ( ),..., ( )] CM K
z K     A A A a a a  is 

the new virtual direction matrix whose elements can be 
denoted as 

 
j( 1) cos j( 2) cos

j cos j ( 1) cos T

( ) [e ,e ,

...,1,e ,...,e ] .

k k

k k

M M
k

M M

   

   

  

  

a
 (14) 

Thus, the total number of the degrees of freedom is 
M2, enabling to estimate more impinging sources than the 
number of sensors. The QSS has the statistical property 
that it remains locally static over one frame but exhibits 
difference from one frame to others. By stacking the cross 
covariance matrices of all P frames and the corresponding 
vectorization forms can be expressed as 

 1 2[ , ,..., ]P Y y y y AB   (15) 

where B = [b1, b2,…,bP] denotes the new signal matrix, 
which is formed by the second-order statistics correspond-
ing to different frames. 

3. The Proposed Methods  
In this section, we first introduce the subspace based-

ESPRIT algorithm and then demonstrate the sparsity-based 
SBL algorithm for the 2-D underdetermined DOA estima-
tion of the quasi-stationary signals  

3.1 The Real-valued ESPRIT Algorithm  

In this subsection, a real-valued ESPRIT algorithm is 
proposed. Compared to the complex data multiplication 
operation, the real data can save about a quarter of the 
computational complexity. The complex value received 
data vectors of the array can be transformed to real data by 
using a unitary matrix. Define the unitary matrix as follows 

 

j1
if is even,

j2

0 j
1

0 2 0 if is odd.
2

0 j

M M

M M

M M

M M

M

M

  
   
   

 
 
   

I I

Π Π

I IQ

Π Π

 (16) 

Due to the multiple measurement vector model in 
(15), we can efficiently construct a new virtual covariance 
matrix as follows  
 H / PYYR YY   (17) 

where the frame number P behaviors like the sampling 
snapshot. However, as the number of frames is limited in 
practice, the obtained covariance matrix in (17) is 
Hermitian but generally not persymmetric. Thus, the 
persymmetric Hermitian covariance matrix can be obtained 
as follows 
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 2 2

*1
( )

2 M M
 z YY YYR Π R Π R . (18) 

By using a unitary transformation on the covariance 
matrix zR , a real-valued matrix can be obtained 

 

2 2

2 2

H

H *

H * H

H * H

H

1
( )

2
1

( )
2
1

(( ) )
2

Re( )

M M

M M

 



 

 

 



r z

YY YY

YY YY

YY YY

YY

R Q R Q

Q Π R Π R Q

Q Π R Π Q Q R Q

Q R Q Q R Q

Q R Q

  (19) 

where QHΠM 2 = QT, ΠM 2 Q= Q* are used from the third 
row to the fourth row. The eigenvalue decomposition of 
the real-valued covariance matrix Rr can be denoted as 

 s s s n n nrR E D E + E D E   (20) 

where Es is the signal subspace matrix that corresponds to 
the K largest eigenvalues. Similarly, En is the noise sub-
space matrix corresponding to the remaining eigenvectors. 
Ds and Dn denote the eigenvalue matrix whose diagonal 
entries are the eigenvalues in the descending order. 

According to (18) and (19), the new direction vector 
matrix corresponding to Rr can be denoted as 

 HΩ Q A   (21) 

and the relationship between the signal subspace Es and Ω 
can be denoted as  

 s E ΩT   (22) 

where T is a nonsingular matrix. 

From (15), we can find the virtual direction matrix A  
is a vandermonde matrix, thus the steering vector a(k) 
satisfies  

 1 1 2 1exp( j cos ) ( ) ( )k k k    J a J a   (23) 

where 
J1 = [I(M2 – 1)  (M2 – 1) 0(M2 – 1)  1] and J2 = [0(M2 – 1)  1 I(M2 – 1)  (M2 – 1)] 
are the selection matrices. Then according to [28], the 
relationship in (23) can be transformed to the real-valued 
form 

 1 2K ΩΦ K Ω   (24) 

where 
 2 2 2 2

H
1 1 11 1

( + ) ,
M M M M 

K Q J Π J Π Q   (25) 

 2 2 2 2

H
2 1 11 1

j( )
M M M M 

 K Q J Π J Π Q ,  (26) 

and  
 1diag(tan( cos / 2),..., tan( cos / 2)).K   Φ  (27) 

From (22), (24), (25), (26) and (27), we can find that 

 1 s 2 sK E Ψ K E   (28) 

where 1Ψ T ΦT .  (29) 

From (28), Ψ  can be obtained by least square 

 1 s 2 s( )Ψ K E K E .  (30) 

Thus, the eigenvalues of Ψ will be the diagonal 
elements of Φ . Denote the eigenvalue of Ψ  as uk, 
k = 1,2,…,K. Then k  can be estimated via 

 ˆ arcsin( 2arctan( ) / )k ku   .  (31) 

If ̂k, k = 1,2,…,K are obtained, the K P matrix B 
can be estimated by using the least squares fitting method 
based on the linear model in (15) 

 H 1 H( )B A A A Y .  (32) 

Finally, k can be obtained as follows 

 ˆ arccos(angle( ( ,1)) ), 1,2,...,k k k K  B  (33) 

where B(k,1) denotes the k-th element of the first column 
in B. In order to improve the performance, all columns of 
the matrix B can be used to estimate k and average all the 
P solutions.  

3.2 The Sparse-based Sparse Bayesian 
Learning Algorithm 

In this subsection, a sparse-based sparse Bayesian 
learning algorithm is proposed to improve the 2-D DOA 
estimation performance for the quasi-stationary signals. 
According to (15), the multiple measurement vector model 
can rewritten as 

 


   Y Y ε AB ε   (34) 

where ε reflects the effect of the noise due to the finite 
number of frames. The signal matrix Ŷ can be sparsely 
represented over the entire discretized angular grids as 

 
 

 Y A X Ε   (35) 

where Â is overcomplete dictionary with steering vectors 
ã(g) over all possible grids g, g = 1,2,…,G with G >> K. 
It is important to note that true angle parameter k, 
k = 1,2,…,K is indicated by the positions of the nonzero 
entries in matrix X which is jointly row sparse, i.e. all col-
umns of X are sparse and share the same support. 

According to [29–31], a white complex Gaussian 
prior is placed on the error matrix E 

 1
0 01

( | ) ( ( ) | 0, )
P

p
p CN e t  


 Ε I   (36) 

where  0 denotes the noise precision and a Gramma hyper-
prior which is a conjugate prior of corresponding to the 
Gaussian distribution is placed on  0. 
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 0 0( ; , ) ( | , )p c d c d    (37) 

where 1 1
0 0 0( | , ) [ ( )] exp{ }c cc d c d d        with () 

being Gamma function. And the hyperparameter c, d is set as 
a small value such that c, d  0 as in [29], [30]. The prior 
distribution of Ŷ can be expressed as 

 1
0 01

( | , , ) ( ( ) | ( ), )
P

g p
p CN y p p  

  



 Y X A x I . (38) 

Assume that the entries in jointly sparse matrix X are 
drawn from the product of the following zero-mean com-
plex Gaussian distributions: A zero-mean complex Gauss-
ian prior and a Gamma prior are placed on the jointly 
sparse matrix X. The two-stage hierarchical prior can be 
denoted as: 

 ( ; ) ( ; ) ( | )dp p p  X X δ δ δ   (39) 

where 

 
1

( ; ) ( ( ) | 0, )
P

p
p CN p


 X δ x Λ ,  (40) 

 
1

( | ) ( |1, )
G

gg
p   


  δ ,  (41) 

and 0  , Gδ  , diag( )Λ δ . 

It can be seen that all columns of X are independent 
and share the same distribution because of the group sparse 
property. According to [30], the real and image parts of 
each column satisfy Laplace distribution and exhibit the 
same strong peak at the origin. Thus, the two-stage hierar-
chical prior is suitable to guarantee the sparsity of X.  

By combining (36)–(41), the corresponding joint 
probability density function can be denoted as 

 0 0 0( , , , ) ( | , , ) ( | ) ( ) ( )p p p p p  
 

X Y δ Y X δ X δ δ . (42) 

According to (41), we can find that the posterior 
distribution p(XŶ,  0,

 ) can be expressed as a complex 
Gaussian distribution  

 0
1

( | , , ) ( ( ) | ( ), )
P

p
p CN p p




 X Y δ x μ Σ   (43) 

where 

 
H

0( ) ( ), 1,2,...,p p p P
 

 μ ΣA Y ,  (44) 

 
H

1 1
0( ) .

 
  Σ A A Λ   (45) 

In order to calculate the hyperparameters 0 and , 
an MAP estimator that maximizes p(0,

 Ŷ) is adopted. It 
can be easily observed that to maximize p(0,

 Ŷ) is equiva-
lent to maximize the joint PDF p(Ŷ, 0,

 ) = p(0,
 Ŷ) p(Ŷ). 

since p(Ŷ) is independent of the hyperparameters. An ex-
pectation-maximization (EM) algorithm is implemented 
that treats X as a hidden variable and turns to maximizing 
E{p(X, Ŷ, 0,

 )}, where p(X, Ŷ, 0,
 ) is given in (42) and 

E{}denotes an expectation. 

Denote  
H

0(1), (2),..., ( )P 
 

  μ μ μ ΣA Y , 
_

PX X , 
_

P


Y Y , 
_

PΞ Ξ  and 
_

P  . 

Following a similar procedure as in [31], it is easy to obtain 
the following updates of  0 and  
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0 _ _

2

1

{|| || }F

c
M

P
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E
P

 




 Y A X
,  (46) 

 

_ _
2

new 2
_

1 4 {|| || } 1

2

g

g

E




 


X
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where 
_ _ _ _

2 2 1
0 1

{|| || } || ||
G

F F gg
E  

 



    Y A X Y AΞ   

with 11g g gg    Σ ，
_ _

2 2
2 2{|| || } || ||

g g

ggE  X Ξ Σ . From 

(44)–(47), we can find that the Σ and ( )pμ  are a function 

of hyperparameters  0 and , and vice versa. The iterative 
algorithm is repeated until some convergence criterion is 
satisfied or the maximum number of iterations is reached. 

Once k are estimated, the corresponding k can also 
be obtained according to (32) and (33) for k = 1,2,…,K. 

3.3 The Complexity Analysis  

The computational complexity of the proposed 
subspace-based ESPRIT algorithm mainly contains the 
construction of the covariance matrix, the singular value 
decomposition and least square. Thus, the computational 
burden for the proposed ESPRIT algorithm is 
o(M2LP + M6 + 2K3 + 2K2M2 + KM2P). The proposed 
sparse Bayesian learning algorithm mainly focuses on the 
construction of the covariance matrix, the iteration 
operations and least square. Thus, the total computational 
complexity is o(M2LP + M2G2 + K3 + 2K2M2 + KM2P), 
where  denotes the number of iterations. 

4. Simulation Results  
In the first experiment, we demonstrate the underde-

termined spatial spectrum estimation performance of the 
proposed methods. We consider a parallel nested array 
with M = 4, the planform of the nested parallel array is 
demonstrated in Fig. 1. We assume K = 10 narrowband 
uncorrelated impinging sources that are uniformly distrib-
uted between [40°, 45°] and [135°, 140°]. The frame length 
L is taken to 400 and a total of P = 30 frames are used. The 
signal-to-noise ratio (SNR) is set to 10 dB and the prede-
fined spatial sampling grids for the sparse Bayesian learn-
ing (SBL) algorithm are from 0° to 180° with the sampling 
interval being 1°. The underdetermined spatial spectrum 
estimations for the proposed methods are shown in Fig. 2. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2.  The underdetermined spatial spectrum estimation for 
QSS. (a) The estimated  using ESPRIT. (b) The esti-
mated  using ESPRIT. (c) The estimated  using 
SBL. (d) The estimated  using SBL. 

From Fig. 2, we can find that both the proposed 
ESPRIT and SBL algorithm can resolve the DOAs when 
the number of impinging sources is larger than the sensors.  

 
Fig. 3.  RMSE performance comparison versus the SNR. 

But, from Fig. 2(b) and Fig. 2(d), we can find the perfor-
mance of the ESPRIT algorithm is poorer compared to the 
SBL algorithm. And from Fig. 2(a) and Fig. 2(c) and 
Fig. 2(b) and Fig. 2 (d), we can find the performance of 
estimated k is better than the estimated k for k = 1,2,…,K. 

In the second experiment, the underdetermined 
RMSE performance as a function of SNR for the proposed 
ESPRIT algorithm and the SBL algorithm is illuminated in 
Fig. 3. The RMSE is defined as 

 2 2
2

1 1

RMSE | | | |
I K

ik k ik
i k

   
 

 

      (48) 

where (̂ ik, β
^
ik) is the estimated DOA of (k, βk) for the  

i-th Monte Carlo trial, i = 1,2,…,I. And the RMSE is ob-
tained by using I = 200 independent trials in all simula-
tions. We consider K = 10 narrowband uncorrelated 
impinging sources that are uniformly distributed between 
[40°, 45°] and [135°, 140°]. In Fig. 3, the SNR increases 
from –6 to 10 with a step of 2 and the frame length L and 
frame number P are fixed at 400 and 30, respectively. 

The results shown in Fig. 3 indicate that the RMSE of 
the sparsity based SBL algorithm has the better perfor-
mance than the ESPRIT algorithm. And the RMSE of  is 
smaller compared to the RMSE of  for both SBL algo-
rithm and ESPRIT algorithm.  

In the third experiment, we consider the RMSE per-
formance versus different frame length and frame number 
for the SBL algorithm and ESPRTI algorithm. In Fig. 4(a), 
the frame number increases from 10 to 50 with a step of 4 
and the frame length is fixed at 400 for all different frame 
numbers. The results shown in Fig. 4(a) indicate that the 
performance of the proposed ESPRIT algorithm is sensi-
tive to the variation of the frame number. In Fig. 4(b), the 
number of frame length increases from 100 to 1000 with 
a step of 100 and the frame number is fixed at 30 for all 
different frame lengths. The results shown in Fig. 4(b) 
indicate that the performance of the RMSE decreases when 
the frame length increases. There exists a relatively large 
error for ESPRIT algorithm when frame number P < 18 
due to the error existed in covariance calculated in (16), 
and the RMSE performance of  using least squares fitting 
algorithm still has relatively poor performance compared to 
the RMSE of  using the proposed methods. 
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(a) 

 
(b) 

Fig. 4.  RMSE performance comparison versus the frame 
length and frame number. 

In the last experiment, we compare the angular super-
resolution capability of the different algorithms mentioned 
above, the frame number P is fixed at 30 and the frame 
length is 400. The SNR is fixed at 10 dB and the 2-D DOA 
(1,β1) of the first impinging source is (30°,40°). Two close 
sources are considered, the second 2-D DOA (2,β2) is 
(1 +

 , β1 +
 β) where both  and β varies from 1° to 

10° with a step of 1°. We define that  and β are correctly 
resolved when they satisfy 1 – ̂ 1  1.5°,  
2 – ̂ 2  1.5°, and β1 – β^

1  1.5°, β2 – β^
2  1.5°. Two 

hundred Monte-Carlo trials are conducted for each  and 
β to acquire the resolution probability versus  
illuminated in Fig. 5. We find that when   2°, both 
proposed methods can achieve a high angular resolution 
for  while the spacing angle are needed more than 4° for β 
to achieve a better angular resolution. 

5. Conclusion 
In this paper, a parallel nested array is designed to 

deal with the underdetermined 2D DOA estimation of the 
quasi-stationary signals. By exploiting the parallel nested 
array configuration, a large number of degrees of freedom 
can be obtained from the difference co-array domain with 
the aid of the cross-covariance matrix. And, two efficient 
algorithms are proposed to convert the 2D DOA estimation 
into two 1D problem and the estimated elevation and azi-
muth angles are automatically paired in the underdetermined 

 

Fig. 5.  Resolution probability vs.  with (P,L) = (30,400) and 
SNR fixed at 10 dB. 

case. Both the proposed ESPRIT algorithm and SBL 
algorithm can exhibit excellent estimation performance in 
term of achievable DOFs, estimation accuracy and spatial 
resolution. Besides, the proposed sparsity-based Bayesian 
learning method has better angle estimation performance 
and higher spatial resolution compared with the proposed 
subspace based method. 

Acknowledgments 

This work was supported in part by the National 
Natural Science Foundations of China (Grant No. 
61701507, 61890542 and 61571451).  

References 

[1] WANG, A., LIU, L., ZHANG, J. Low complexity direction of 
arrival (DOA) estimation for 2D massive MIMO systems. In IEEE 
Globecom Workshops. Anaheim (CA, USA), 2012, p. 703–707. 
DOI: 10.1109/GLOCOMW.2012.6477660 

[2] WAN, L., HAN, G., SHU, L., et al. The application of DOA 
estimation approach in patient tracking systems with high patient 
density. IEEE Transactions on Industrial Informatics, 2016, 
vol. 12, no. 6, p. 2353–2364. DOI: 10.1109/TII.2016.2569416 

[3] CHEN, H., HOU, C., LIU, W., et al. Efficient two-dimensional 
direction-of-arrival estimation for a mixture of circular and 
noncircular sources. IEEE Sensors Journal, 2016, vol. 16, no. 8, 
p. 2527–2536. DOI: 10.1109/JSEN.2016.2517128 

[4] MA, W. K., HSIEH, T. H., CHI, C. Y. Underdetermined DOA 
estimation of quasi-stationary signals with unknown spatial noise 
covariance: a Khatri-Rao subspace approach. IEEE Transactions 
on Signal Processing, 2010, vol. 58, no. 4, p. 2168–2180. DOI: 
10.1109/TSP.2009.2034935 

[5] CAO, M., HUANG, L., QIAN, C., et al. Underdetermined DOA 
estimation of quasi-stationary signals via Khatri-Rao structure for 
uniform circular array. Signal Processing, 2015, vol. 106,  
p. 41–48. DOI: 10.1016/j.sigpro.2014.06.012 

[6] WANG, Y., HASHEMI-SAKHATSARI, A., TRINKLE, M., et al. 
Sparsity-aware DOA estimation of quasi-stationary signals using 
nested arrays. Signal Processing, 2018, vol. 144, p. 87–98. DOI: 
10.1016/j.sigpro.2017.09.029 



204 XIAOYI PAN, QIANPENG XIE, JIYUAN CHEN, ET AL., TWO-DIMENSIONAL UNDERDETERMINED DOA ESTIMATION … 

[7] WANG, B., WANG, W., GU. Y., et al. Underdetermined DOA 
estimation of quasi-stationary signals using a partly-calibrated 
array. Sensors, 2017, vol. 17, p. 1–14. DOI: 10.3390/s17040702 

[8] LI, J., ZHANG, X. Direction of arrival estimation of quasi-
stationary signals using unfold coprime array. IEEE Access, 2017, 
vol. 5, p. 6538–6545. DOI: 10.1109/ACCESS.2017.2695581 

[9] HU, J., LI, W., CHEN, Y. 2-D DOA estimation of quasi-stationary 
signals via tensor modeling. Applied Mechanics and Materials, 
2015, p. 458–462. DOI: 10.4028/www.scientific.net/AMM.743.458 

[10] PALANISAMY, P., KISHORE, C. 2-D DOA estimation of quasi-
stationary signals based on Khatri-Rao subspace approach. In 
IEEE International Conference on Recent Trends in Information 
Technology (ICRTIT). Chennai (India), 2011, p. 798–803. DOI: 
10.1109/ICRTIT.2011.5972295 

[11] DONG, Y., DONG, C., LIU, W., et al. 2-D DOA estimation for L-
shaped array with array aperture and snapshots extension 
techniques. IEEE Signal Processing Letters, 2017, vol. 24, no. 4, 
p. 495–499. DOI: 10.1109/LSP.2017.2676124 

[12] GOOSSENS, R., ROGIER, H. A hybrid UCA-RARE/Root-
MUSIC approach for 2-D direction of arrival estimation in uniform 
circular arrays in the presence of mutual coupling. IEEE 
Transactions on Antennas and Propagation, 2007, vol. 55, no. 3, 
p. 841–849. DOI: 10.1109/TAP.2007.891848 

[13] CHEN, H., HOU, C., WANG, Q., et al. Improved 
azimuth/elevation angle estimation algorithm for three-parallel 
uniform linear array. IEEE Antennas and Wireless Propagation 
Letters, 2015, vol. 14, p. 329–332. DOI: 
10.1109/LAWP.2014.2360419 

[14] SHI, J., HU. G., ZHANG, X., et al. Computationally efficient 2D 
DOA estimation with uniform rectangular array in low-grazing 
angle. Sensors, 2017, vol. 17, p. 1–13. DOI: 10.3390/s17030470 

[15] MARCOS, S., MARSAL, A., BENIDIE, M. The propagator 
method for source bearing estimation. Signal Processing, 1995, 
vol. 42, no. 2, p. 121–138. DOI: 10.1016/j.sigpro.0165-
1684(94)00122-G  

[16] PAL, P., VAIDYANATHAN, P. P. Nested arrays: A novel 
approach to array processing with enhanced degrees of freedom. 
IEEE Transactions on Signal Processing, 2010, vol. 58, no. 8, 
p. 4167–4181. DOI: 10.1109/TSP.2010.2049264 

[17] PAL, P., VAIDYANATHAN, P. P. Coprime sampling and the 
MUSIC algorithm. In 2011 Digital Signal Processing and Signal 
Processing Education Meeting (DSP/SPE). Sedona (AZ, USA), 
2011. DOI: 10.1109/DSP-SPE.2011.5739227 

[18] LIU, C., VAIDYANATHAN, P. P. Cramer-Rao bounds for 
coprime and other sparse arrays, which find more sources than 
sensors. Digital Signal Processing, 2016, vol. 61, p. 43–61. DOI: 
10.1016/j.dsp.2016.04.011 

[19] LIU, C., VAIDYANATHAN, P. P. Super nested arrays: linear 
sparse arrays with reduced mutual coupling-Part I: Fundamentals. 
IEEE Transactions on Signal Processing, 2016, vol. 64, no. 15, 
p. 3997–4012. DOI: 10.1109/TSP.2016.2558159 

[20] LIU, C., VAIDYANATHAN, P. P. Super nested arrays: linear 
sparse arrays with reduced mutual coupling-Part II: High-order 
extensions. IEEE Transactions on Signal Processing, 2016, 
vol. 64, no. 16, p. 4203–4217. DOI: 10.1109/TSP.2016.2558159 

[21] ZHAO, T., ELDAE, Y. C, NEHORAI, A. Direction of arrival 
estimation using co-prime arrays: A super resolution viewpoint. 
IEEE Transactions on Signal Processing, 2014, vol. 62, no. 21, 
p. 5565–5576. DOI: 10.1109/TSP.2014.2354316 

[22] QIN, S., ZHANG, Y. D., AMIN, M. G. Generalized coprime array 
configurations for direction-of-arrival estimation. IEEE Transac-
tions on Signal Processing, 2015, vol. 63, no. 6, p. 1377–1390. 
DOI: 10.1109/TSP.2015.2393838 

[23] MOFFET, A. Minimum-redundancy linear arrays. IEEE 
Transactions on Antennas and Propagation, 1968, vol. 16, no. 2, 
p. 172–175. DOI: 10.1109/TAP.1968.1139138 

[24] VERTATSCHITSCH, E., HAYKIN, S. Nonredundant arrays. 
Proceeding of the IEEE, 2005, vol. 74, no. 1, p. 217–217. DOI:  
10.1109/PROC.1986.13435 

[25] LI, J., JIANG, D., ZHANG, X. Sparse representation based two-
dimensional direction of arrival estimation using co-prime array. 
Multidimensional Systems and Signal Processing, 2018, vol. 29, 
no. 1, p. 35–47. DOI: 10.1007/s11045-016-0453-9 

[26] CHENG, Z., ZHAO, Y., LI, H., et al. Two-dimensional DOA 
estimation algorithm with co-prime array via sparse representation. 
Electronics Letters, 2015, vol. 51, no. 25, p. 2084–2086. DOI: 
10.1049/el.2015.0293 

[27] SUN, F., LAN, P., GAO, B., et al. An efficient dictionary learning-
based 2-D DOA estimation without pair matching for co-prime 
parallel arrays. IEEE Access, 2018, vol. 6, p. 8510–8518. DOI: 
10.1109/ACCESS.2018.2805168 

[28] HAARDT, M., NOSSEK, J. Unitary ESPRIT: How to obtain 
increased estimation accuracy with a reduced computational 
burden. IEEE Transactions on Signal Processing, 1995, vol. 43, 
no. 5, p. 1232–1242. DOI: 10.1109/78.382406 

[29] TRIPPING, M. E. Sparse Bayesian learning and the relevance 
vector machine. Journal of Machine Learning Research, 2001, 
vol. 1, no. 9, p. 211–244. DOI: 10.1162/15324430152748236 

[30] BABACAN, S. D., MOLINA, R., KATSAGGELOS, A. K. 
Bayesian compressive sensing using Laplace prior. IEEE 
Transactions on Image Processing, 2010, vol. 19, no. 1, p. 53–63. 
DOI: 10.1109/TIP.2009.2032894 

[31] YANG, Z., XIE, L., ZHANG, C. Off-grid direction-of-arrival 
estimation using sparse Bayesian inference. IEEE Transactions on 
Signal Processing, 2013, vol. 61, no. 1, p. 38–43. DOI: 
10.1109/TSP.2012.2222378 

About the Authors … 
Xiaoyi PAN was born in Anhui Province, China, in 1986. 
He received the M.S. degree and Ph.D. degree in Infor-
mation and Communication Engineering from the National 
University of Defense Technology, Changsha, China, in 
2009 and 2014, respectively. Currently, he is a Lecturer 
with the National University of Defense Technology. His 
fields of interest include inverse synthetic aperture radar 
imaging, feature extraction and electromagnetic environ-
ment effects. 

Qianpeng XIE (corresponding author) was born in Henan, 
China, in 1991. He received the B.S. and M.S. degrees 
from the National University of Defense Technology, He-
fei, China, in 2014 and 2016, respectively. He is currently 
pursuing the Ph.D. degree in the National University of 
Defense Technology. His research interests include array 
signal processing, radar signal processing, and electromag-
netic environment effects. 

Jiyuan CHEN was born in Yunnan Province, China, in 
1994. He received the Bachelor Degree in Electronic Engi-
neering from the National University of Defense Technol-
ogy, Changsha, China in 2017. Currently, he is a Post-
graduate student with the NUDT. His fields of interest 



RADIOENGINEERING, VOL. 29, NO. 1, APRIL 2020 205 

 

include inverse synthetic aperture radar imaging and 
electromagnetic environment effects. 

Shunping XIAO was born in Jiangxi, China, in 1964. He 
received the B.S. and Ph.D. degrees in Electronic Engineer-

ing from the National University of Defense Technology 
(NUDT), Changsha, China, in 1986 and 1995, respectively. 
He is currently a Professor with the NUDT. His research 
interests include radar target recognition and radar signal 
processing. Prof. Xiao is also a senior member of CIE. 

 


