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Abstract. In this paper, we investigate feasibility of employ-
ing Radial Basis Function (RBF) network into non-coherent
detection process, for detection of targets embedded in sea
clutter of unknown statistics. We particularly have in mind
Croatian part of Adriatic Sea, the local sea whose clutter
statistic properties are not available in open literature. Per-
formance of the detection process employing proposed RBF
network is tested with simulated clutter samples based on
real sea clutter data. These data were collected under sea
state conditions that represent two thirds of the total wave
heights in Adriatic and are chosen to represent unknown
clutter statistics due to the fact that no single probability
density function equally well fits amplitude distribution of
the range bins under test. It is demonstrated that, compared
to the traditional [zlog(z)] method, RBF network with just
four components and lognormal basis function, yields oper-
ating characteristics that better match designed ones.
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1. Introduction
Today, there is a growing need to increase a coastline

safety by monitoring gaps of inadequate coverage of the prin-
ciple radars for the illegal vessels, dim and highly maneuver-
ing by assumption, embedded in extensive sea clutter. In
Croatia, there is intention to fill these gaps with lightweight
and Commercial Off-The-Shelf (COTS) radar sensors, in-
stalled on Unmanned Surface Vehicles (USV). These sensors
are mostly impulse radars, with mechanical scanning antenna
and logarithmic receiver, operating in X-frequency band and
outputting only measured intensity of returned echoes. Thus,
mitigation of clutter effect is commonly performed after enve-
lope detection usually applying threshold that relies on clutter
amplitude samples. To apply this process in a full scale, accu-
rate clutter amplitude statistics should be known, but usually,
samples are used to estimate parameters of assumed (or prior)

model. Traditionally, this model is compound Gaussian pro-
cess of the fast time varying component and the slow time
varying texture with gamma distributed intensity (or radar
cross section) [1]. While the fast varying component is due
to scattering from the small capillary waves (wavelength on
the order of centimeter or less, with surface tension as restora-
tion force, generated by a local wind near the surface), the
slow time varying component is due to reflection from the
larger gravity waves (sea or swell), with the wavelength on
the order of meter or above. These waves, whose restoration
force is gravity, are generated by a stable wind, distant in the
case of swell and local in the case of sea. But in some cases,
measured amplitude of the sea returns shows larger distribu-
tion tail than expected by the model of gamma distributed
texture intensity. To fit data better, other distributions of tex-
ture intensity were introduced, such as inverse gamma [2], [3]
and inverse Gaussian [4]. These distributions account for the
so-called spiky returns, events primarily associated with the
breaking waves [5], which affect tail, giving rise to a higher
probability of false detection.

The development presented in this paper mostly con-
cerns the Adriatic Sea which is small and enclosed sea.
Therefore, it can be assumed that the clutter statistics will
be significantly different in comparison to the one commonly
observed for the ocean. For the Adriatic it is specific that
surface wind waves are limited by fetch and wind duration,
so it is mostly immature sea and waves are for this rea-
son steeper, with shorter wavelength than their counterparts
in ocean. Moreover, existence of more than 1300 islands
greatly affects local wind and wave characteristics and sea
depths can not be neglected in the most of the basin. Dur-
ing winter, dominant winds are bura (italian bora), north-
northwest to east-northeast wind and jugo (sirocco family),
east-southeast to south-southeast wind. Bura blows trans-
versely over the Dinaric Mountains which shape its focus
points. Usual wind speeds are up to 20ms−1 but can ex-
ceed 50ms−1. Development of bura wind waves is limited
by relatively narrow fetch across the Adriatic, so the maxi-
mumwave heights are expected in range from 6.2m to 7.2m.
Opposed to waves generated by bura, waves generated by
jugo are higher and longer and already formed enter through
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Otranto Strait, causing more developed sea state. In stormy
conditions, wind speed of jugo can reach 30ms−1 and maxi-
mum recorded wave height during this wind was 10.8m [6].

To the best of author’s knowledge, measured clutter data
and its statistics, particularly of Croatian part of the basin, do
not exist in open literature. While one can expect that, qual-
itatively, behavior of the sea clutter returns follow statistics
of measured data for fully developed sea, e.g. one can expect
that shape parameter of amplitude distribution (which deter-
mines spikiness of the sea returns), is getting lower as radar
resolution increases or grazing angle decreases, is lower for
horizontal polarization and depends more on wind than on
sea direction and slightly increases with increasing surface
roughness (or increased sea state) [7], quantitative manifes-
tation, i.e. statistics of returns depending on the sea state,
significant wave height, wind speed, etc., are not known. For
example, sea condition during measurements reported in [8],
taken under short fetch condition (approximately 10 km), can
be thought as similar to Adriatic. In mentioned work, vertical
polarization clutter data, recorded outside Toulon (France),
in the Mediterranean, and in Taranto bay (southern Italy),
were analyzed and compared to measurements and models
derived for the fully developed ocean. For some trials it was
found that model with inverse gamma distributed texture in-
tensity better fits measured data than the one with gamma
distribution. In contrast to measurements conducted under
fully developed ocean as reported in [9], it follows that under
similar wind conditions, shape parameter of the fitted distri-
bution is not showing dependence on azimuth angle and is
generally higher.

In this paper, performance of a non-coherent detection
process employing non-parametric clutter model is investi-
gated. Non-parametric model is built from the clutter sam-
ples only, without inclusion of any prior information about
clutter. This is particularly important when the clutter statis-
tics is unknown and target is dim. Anymodelmismatch in this
case certainly leads to degradation of detection performance.
Also, a non-parametric clutter model plays significant role in
track-before-detect approach [10], where clutter (and target)
statistics should be accurately evaluated for the fair tracker
performance. So, aim of this paper is to investigate whether
the change of paradigm from the prior clutter model (that may
not approximate real clutter statistics well and thus cause pro-
cessing losses) to non-parametric model (built entirely from
the clutter samples), is feasible in non-coherent detection pro-
cess. Such model should not be limited to stationary clutter
only and should override shortcomings of model mismatch.
In particular, target tracking method employing such model
should be robust, in a sense that, compared to a traditional
method that relies on prior clutter model, its performance
should not be significantly worse when prior model (in tradi-
tional method) describes real clutter manifestation well, but
should be significantly better when it does not. To build such
model, we take advantage of the universal approximation
property of neural networks, particularly RBF network [11],
applied to the specific problem of density estimation.

There are numerous examples of using neural networks
in density estimation. In context of radar application, for
example in [12], RBF network was used to estimate clut-
ter and target amplitude probability densities online. The
primary reason of using RBF instead of Kernel Density Es-
timation (KDE) network in latter case lies in the fact that
KDE often results in "bumpy" estimation, especially at the
distribution tail which is not acceptable, as the tail is impor-
tant in deriving detection threshold. Increasing width of the
kernel function, which acts as the regularization parameter,
smooths the estimate, but important information contained in
the distribution tail is lost. In [13], neural network, based on
recorded data, was used to estimate parameters of the Ricean
Inverse Gaussian (RiIG) amplitude distribution (which can
not be obtained in a closed form) and estimates were further
used to set detection threshold assuming this particular clutter
model. Neural network was also successfully used to reduce
clutter in a conventional non-coherent radar system [14].

Similar recent approaches applied in detection process
can be found in [15], where detection of small objects, dis-
tributed over few resolution cells and embedded in clutter,
was based on estimation of the clutter amplitude probability
density, employing KDE method [16]. Another example of
using KDE network in detection process can be found in [17],
where network, employing different kernels, was trained of-
fline with real clutter data. Other examples of employing
neural network in detection process include approaches of
learning clutter statistics from the measured data online, or
training to the various expected statistics offline, e.g. [18],
where RBF network, based on available clutter data, was
used to model nonlinear dynamics of the sea clutter by con-
sidering it as a chaotic system. In [19], RBF and Multi Layer
Perceptron (MLP) networks were used, trained with different
K-distribution shape parameters and Signal to Clutter Ratios
(SCR), believed to be a good description of expected clut-
ter and signal statistics. In [20], sea-ice clutter data were
analyzed and used to train neural network with the result
that such trained network, applied in coherent detection of
non-fluctuating target echo embedded inWeibull sea-ice clut-
ter, demonstrated enhanced detection and robustness com-
pared to a conventional approximation of optimum Neyman-
Pearson likelihood ratio detector. Amplitude statistics of the
returned echoes and their temporal correlations were used in
shore-based and non-coherent surveillance radar for detec-
tion of land areas and their exclusion from monitoring. MLP
neural network was employed for classification of the each
resolution bin echo as return from either land or sea [21].
Amplitude statistics of land and sea returns were modeled as
Weibull andK-distributed, respectively. Interesting approach
in non-coherent detection of a dim and sea surface target is
given in [22], where detection of such a target was enhanced
by employing Convolutional Neural Network (CNN). Net-
work was trained by sequence of two dimensional images
(range bin versus pulse number), in which position of a dim
target echo was labeled. Thus trained network extracts essen-
tial features of sea clutter and target echo, making detection
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probability higher than in conventional Constant False Alarm
Rate (CFAR) methods. In [23], detection of specific target
among group, in background of sea clutter, was performed on
the recognition basis, applying neural network and support
vector machine with RBF kernel on high-resolution range
profile. Network and support vector machine were trained
with generated target range profiles and generally, support
vector machine showed higher recognition rates under low
signal to clutter ratios. In [24], detection of target with
unknown Doppler shift, embedded in sea clutter, was im-
proved (in comparison to conventional Doppler-preprocessed
CFAR), by application of MLP neural network, trained with
generated clutter patterns. Application of MLP neural net-
work reduced clutter power variation and thus maintained
fixed threshold value applied to conventional non-coherent
CFAR detector. Advantage of this approach is that it has no
restrictions on input clutter statistics. Conducted experiment
on real sea clutter data showed, in comparison to conventional
Doppler-preprocessed CFAR detector, better match to the de-
signed false detection probability, thus, this approach is better
approximation to Neyman-Pearson likelihood ratio detector.

In contrast to methods described in preceding para-
graph, in this paper we use online learning of the clutter
statistics. Similar to [15], the proposed method is not re-
stricted to clutter statistics and does not require offline train-
ing or prior clutter model as in [19–21] or clutter samples
as in [18, 22–24]. In a more wider context of application
of the proposed detection scheme in target tracking process,
this is due to application of external association mechanism
that separates set of samples into target echo and set of sea
clutter echos, like in [12], where Viterbi based association
scheme acts as target from clutter separator. This scheme is
particularly suitable when targets are not dense, i.e. there is
no overlapping of tracking gates between tracked targets.

Main contributions of this paper are the analysis of
non-parametric clutter model accuracy and the performance
of proposed non-coherent detector employing such model.
Accuracy is derived based on theoretical probability distri-
bution fit on data from illustrative real clutter example and
performance is derived based on distribution’s parameters of
such fit.

This paper is organized as follows. In the next sec-
tion, we briefly introduce RBF network as density estima-
tor. We use such form of neural network to approximate
unknown clutter amplitude distribution and employ it in non-
coherent detection process. In the first part of Sec. 3, we in-
troduce real sea clutter data from themedium resolution IPIX
radar [25], [26] and use it as an illustrative example for testing
proposed detection scheme. In the reminder of Sec. 3, per-
formance comparison between employment of RBF network
as non-parametric model and traditional [zlog(z)] estima-
tor [27], [28] in detection process is presented. Finally, con-
cluding remarks and outline of future work is given in Sec. 4.

2. RBF Network as Density Estimator
As already mentioned in the Introduction, unknown

clutter density is estimated entirely from the samples and
represented in functional form by a sum of some basis den-
sities (or components). Using such an approximation is al-
lowed as any bounded continuous probability density can be
approximated by a finite sum of component densities, to any
degree of accuracy [29], which is consistent with the univer-
sal approximation property of RBF network [11] as density
estimation can be viewed as a special case of function ap-
proximation. One of the advantages of RBF network over
non-parametric method, such as KDE, is the possibility of
compacting information by grouping samples with similar
statistics into same group. By putting density estimation into
classification framework like in [30], parameters of the net-
work can be determined by a maximum likelihood approach,
which can be thought as a self-organizing method.

In [31], two main issues related to density estimation
using sum of component densities were addressed. First was
the quality of approximation, i.e. how well a certain class of
basis densities can approximate unknown density, and sec-
ond one was the quality of estimation, i.e. dependence of
estimator performance on data set size. From [31], it follows
that, given data size and a certain class of basis densities
with a method of estimating their parameters, the total ex-
pected estimation error is bounded with a term related to
adequacy of basis functions to approximate unknown density
and a term related to the impact of fixed data size on the es-
timator. This can be expressed using expectation of squared
Hellinger distance d2

H between true density p and its maxi-
mum likelihood approximation f̂ θn (constituted from the sum
of n basis densities), as in [31],

E
(
d2

H

(
p, f̂ θn

))
≤ ε +O

(
C
n

)
+O

( m
N

)
(1)

where accuracy measure ε depends on class F of basis densi-
ties constituting f̂ θn , positive constant C depends on both the
true density and the class F , m depends on maximum likeli-
hood estimator performance and N is the number of samples
used to evaluate f̂ θn . In contrast to commonly used Kullback-
Leibler divergence as distance measure between true density
and its approximation, squared Hellinger distance [31]

d2
H (p, f ) =

∫ (√
p(x) −

√
f (x)

)2
dx, 0 ≤ d2

H ≤ 1, (2)

satisfies triangular inequality, thus allowing separation of er-
ror terms in (1).

From the classification point of view, each one of the
n basis densities can be thought as representative of some
class ω, hence, for some l−dimensional input x, general ap-
proximation f θn is given as

f θn (x) =
n∑
i=1

fσ (x |ωi; θi) P(ωi) (3)
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where basis density fσ is radially symmetric and unimodal
function, parametrization of generic low-bounded density f ,

fσ (x) ≡ σ−l f
(
‖x − µ‖

σ

)
(4)

where ‖ · ‖ is Euclidian norm, µ vector of centers and σ
scaling. In (3), probability P(ωi) is the prior probability of
ith class occurrence, and hence,

∑n
i=1 P(ωi) = 1. Total set

of parameters is given as θ = {{P (ωi)} , {θi} , i = 1, . . . ,n},
where θi = (µi, σi). Since same scaling σ is used across all
dimensions, a prewhitening of data is required if the number
of dimensions l > 1.

Given input set of samplesX =
{
xj, j = 1, . . . ,N

}
, log-

arithmic likelihood is defined as

` (θ | X) =
1
N

N∑
j=1

log
(

f θn (xj)
)
. (5)

Maximization of (5) with respect to parameters θ,

θ̂N = argmax
θ

(
` (θ | X)

)
(6)

yields f̂ θn as maximum likelihood approximation of true den-
sity p.

Equation (3) is model of RBF network and its parame-
ters can be determined by solving (6) which is done efficiently
if we treat this problem in classification framework. Since
samples as learning data are not labeled, a set of random
variables Z =

{
zj, j = 1, . . . ,N

}
is introduced, where each

vector zj =
(
zj1, . . . , zjn

)
indicateswhich sample is generated

bywhich component (zji has value either 0 or 1). Thus,Z can
be treated asmissing data in Expectation-Maximization (EM)
algorithm and (5) can be rewritten as [32]

` (θ | X,Z) =
1
N

N∑
j=1

n∑
i=1

zji log
(
fσ

(
xj | zj ; θ

)
P(zj ; θ)

)
(7)

and solved by iteration. As shown in [33], at kth step, expec-
tation becomes

Q (θ | θk) = E
(
` (θ | X,Z) | X,θk

)
, (8)

and the parameter θk+1 obtained by maximization is

θk+1 = argmax
θ

(
Q (θ | θk)

)
. (9)

The values obtained from (8) and (9) are values for the next
iteration step. For generic Gaussian basis density

f (x) =
1

(2π)l/2
exp

(
−
x2

2

)
, (10)

from (4) follows

fσ(x) =
1

(2π)l/2 σl
exp

(
−
‖x − µ‖2

2σ2

)
, (11)

and EM algorithm ensures global convergence since generic
density (10) belongs to class of exponential functions [31].
Expectation step performs E

(
zji | xj,θk

)
, resulting in poste-

rior probability that ith component has generated jth sample,
or, following [32],

Pk+1
(
ωi | xj

)
=

Pk (ωi)σ
−l
i,k

exp
(
−
‖x j−µi ,k ‖

2

2σ2
i ,k

)
∑n
ι=1 Pk (ωi)σ

−l
ι,k

exp
(
−
‖x j−µι ,k ‖2

2σ2
ι ,k

) (12)

where i = 1, . . . ,n and j = 1, . . . ,N . By applying maximiza-
tion and using (12), the centers are given as

µi,k+1 =

∑N
j=1 xjPk+1

(
ωi | xj

)∑N
j=1 Pk+1

(
ωi | xj

) , (13)

and scaling as

σ2
i,k+1 =

∑N
j=1 Pk+1

(
ωi | xj

)
‖xj − µi,k+1‖

2∑N
j=1 Pk+1

(
ωi | xj

) . (14)

Finally, posterior probability of class ωi for the next iteration
step k + 1 is given as

Pk+1 (ωi) =
1
N

N∑
j=1

Pk+1
(
ωj | xj

)
. (15)

Steps (12)–(15) are repeated until the logarithmic likelihood

` (θ | X) =
1
N

N∑
j=1

log

(
n∑
i=1

P (ωi)

(2π)l/2 σl
i

exp

(
−
‖xj − µi ‖

2

2σ2
i

) )
(16)

converges to its maximum.

3. Practical Example
As already reported in [2], in the case of excessive spiky

returns there is evident difference in distribution tail among
different texture intensity models. Consider a compound
Gaussian process [1]. If texture intensity ζ is modeled with
gamma distribution

pΓ(ζ) =
ζν−1(

β
2

)ν
Γ(ν)

exp
(
−

2ζ
β

)
, (17)

and fast fluctuating component with complex Gaussian
process, with unity variance for in- and quadrature-phase
components, resultant clutter model is the well-known
K-distribution

pK(x) =
4xν

β
ν+1

2 Γ(ν)
Kν−1

(
2x
√
β

)
(18)

where ν and β are shape and scale parameters, respectively.
In (18), Γ is gamma function and Kν is modified Bessel
function of the second kind [34]. Texture intensity for ampli-
tude distribution with higher tail than K-distribution is often
modeled with inverse gamma distribution as

pΓ−1 (ζ) =
ζ−ν−1(
β
2

)ν
Γ(ν)

exp
(
−

2
βζ

)
(19)



RADIOENGINEERING, VOL. 29, NO. 1, APRIL 2020 219

where ν and β are again shape and scale parameters respec-
tively. Here, the resulting clutter model is given as

p√GP(x) =
xβΓ(ν + 1)

2
(
β
4 x2 + 1

)ν+1
Γ(ν)

, (20)

for which its intensity distribution p
(
y = x2) is known as

Pareto Type II distribution.

Example shown in Fig. 1, using real sea clutter data from
the medium resolution IPIX radar [25], [26], under condition
of sea states 3–4 and 4–5, illustrates the dependence of dis-
tribution tail on sea state and polarization. This example is
chosen deliberately as these states were reported to occur at
43% (state 3–4) and 17% (state 4–5) of time in Adriatic basin,
which is about two thirds of the total wave heights in Adriatic
(ignoring sea states 0 and 1–2 which produce insignificant
clutter returns) [35]. It is assumed that spikiness of this lo-
cal sea will not be higher than presented with this example.
While model p√GP refers to sea state 3–4, model pK refers
to sea state 4–5. Parameters of the depicted distributions are
given in Tab. 1 and were estimated using maximum likeli-
hood approach (in the case of pK) [36], and using [zlog(z)]
method (for the p√GP) [27], neglecting thermal noise in both
cases, which is valid, considering radar resolution of 0.9° in
azimuth and 30m in range.

It should be noted that there is particular reason that
motivated us in choosing this data as example. It is the fact
that no single probability density function equally well fits
amplitude distribution of the range bins under test. Thus, it
is suitable to employ RBF form of neural network to approx-
imate unknown clutter amplitude distribution. This complex
behavior of clutter is in agreement with [8], as already dis-
cussed in the Introduction.

Set of numerical trials, conducted as extension of [12]
but not yet published, reveals that probability of track loss of
a dim and maneuvering surface target making a 0.5g U-turn,
is below 2 × 10−1 for false detection probability lower than
1.5 × 10−1, shape parameter of K-distributed clutter ν = 10
(which is nearly Rayleigh clutter) and single-hit detection
probability of 8 × 10−1. With false detection probability
lower than 2 × 10−2, track loss reaches its plateau region
of about 3 × 10−2. For the more heavy-tailed K-distributed
clutter (ν = 0.5), probability of track loss below 2 × 10−1 is
achievedwith false detection probability lower than 1.3×10−1

and probability of track loss lower than 3 × 10−2 is achieved
with false detection probability lower than 5 × 10−2. There-
fore, in this paper we are focused on range of false detection
probabilities from 10−3 to 10−1. Furthermore, through re-
maining of this paper, it is assumed that clutter samples are
collected employing Viterbi association scheme, described
in [12] (for the more details see [37]), which acts as a tar-
get from clutter discriminator. Thus, under assumption of
perfectly correct associations, clutter samples are not cor-
rupted with target echo. Echoes from land are excluded from
processing by means of a digital terrain map.

(a) Horizontal polarization, sea state 3–4

(b) Vertical polarization, sea state 4–5

Fig. 1. Difference in distribution tail and polarization when tex-
ture intensity of clutter is modeled with gamma distribu-
tion, resulting with density pK (18), and inverse gamma
distribution, resulting with density p√GP (20).

Sea state
Distribution model

pK (18) p√GP (20)
Shape, ν Scale, β Shape, ν Scale, β

3–4 (Fig. 1a) 0.38 0.00109 1.02 49678.19
4–5 (Fig. 1b) 1.0 0.00620 1.53 1067.66

Tab. 1. Estimated parameters of different sea clutter distribu-
tions depicted in Fig. 1. Parameters of better curve fit
are emphasized.

3.1 Network Design
In the reminder of this subsection, we will determine

the number of RBF network components. The number of
network components depends on the desired accuracy, which
depends on the number of samples that are in turn deter-
mined by the resolution of the radar system and any prior
knowledge about spatial and temporal correlation of the clut-
ter. Inspired by the example shown in Fig. 1, we use its
data as input samples, with the parameters given in Tab. 1.
As we do not have any prior knowledge about constant C
and estimator performance concentrated in m (1), we will
attempt to numerically derive the dependence of expectation
of squared Hellinger distance (1) on (a): number of samples,
given the fixed number of components and (b): on number
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of components, given the fixed number of samples. This is
performed in both amplitude and logarithmic domain, where
under term "amplitude domain", wemean that the ith mixture
component in (3) is given with Gaussian basis density

fσ (x |ωi,θi) =
1

σi

√
2π

exp

(
−
(x − µi)2

2σ2
i

)
, (21)

and under term "logarithmic domain", the ith mixture com-
ponent is given as lognormal basis density

fσ (x |ωi; θi) =
1

xσi

√
2π

exp

(
−

(
log

(
x
)
− µi

)2

2σ2
i

)
(22)

which is Gaussian under transformation y = log(x). Param-
eters of the network were estimated using EM approach as
described in Sec. 2, by iterating through steps (12)–(15) until
convergence criterion was satisfied.

Difference among approximation classes is illustrated
in Fig. 2. By analyzing (1), it can be seen that expectation of
squared Hellinger distance decreases as the number of sam-
ples increases, but regarding number of components, it is not
obvious that increasing their number would eventually lead
to smaller approximation error. This is illustrated in Fig. 2b
as saturation region which occurs for larger values of n. Gen-
erally speaking, for the considered type of clutter, the RBF
network in logarithmic domain shows better approximation
performance and saturation occurs for n = 4 components
with N = 1024 samples. Figure 3 shows that the same can
be expected for smaller number of samples.

Important property of detector is dependency of ex-
act false detection probability (that results from the applied
method) on designed one. How number of samples influ-
ences this property for proposed detector is summarized in
Tab. 2 and Tab. 3 for few key values and is also illustrated
in Fig. 4, which shows one typical realization of density es-
timation in logarithmic domain. It can be visualized from
threshold values that, for less spiky clutter (Fig. 4a), proba-
bilities of false detection using larger number of samples are
lower than designed and using smaller number of samples,
are closer to designed. For more spiky clutter (Fig. 4b), op-
posite is true. Here, exact false detection probability is given
as P̂FA =

∫ ∞
T θn

f̂ θn (x) dx, and designed one as

PFA =

∫ ∞

T

p(x) dx (23)

where p(x) is true clutter distribution, f̂ θn (x) is its approx-
imation and T,Tθn are corresponding threshold values. For
application of proposed detector, scenario of more spiky clut-
ter is more important than scenario of less spiky one, hence,
through the rest of the paper, we will concentrate on larger
number of samples.

(a) Fixed number of components

(b) Fixed number of samples

Fig. 2. Dependence of expectation of squared Hellinger distance
on (a), number of samples N with n = 8 components and
(b), number of components n with N = 1024 samples.
Averaged over 100 runs.

Fig. 3. Dependence of expectation of squared Hellinger distance
on number of components n with N = 256 samples,
averaged over 100 runs.
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(a) Approximation of pK

(b) Approximation of p√GP
Fig. 4. Comparison of various distributions approximation for

single run and lognormal basis density. Threshold value
corresponding to design false detection probability PFA
is shown as squares and dots, respectively.

Design PFA
Exact PFA for distribution model pK (18)
N = 256 N = 1024

10−4 7.5 × 10−5 4.3 × 10−5

10−3 9.6 × 10−4 7.5 × 10−4

10−2 1.1 × 10−2 9.9 × 10−3

10−1 1.0 × 10−1 1.0 × 10−1

Tab. 2. Exact false detection probabilities for pK distribution
and two different numbers of samples N . Number of
components is n = 4. Lognormal basis density.

Design PFA
Exact PFA for distribution model p√GP (20)
N = 256 N = 1024

10−4 8.4 × 10−4 3.8 × 10−4

10−3 2.4 × 10−3 1.5 × 10−3

10−2 1.2 × 10−2 9.7 × 10−3

10−1 1.0 × 10−1 1.0 × 10−1

Tab. 3. Exact false detection probabilities for p√GP distribution
and two different numbers of samples N . Number of
components is n = 4. Lognormal basis density.

When choosing number of samples, one must be aware
of temporal and spatial correlation of the clutter. As already
pointed out in [38], medium resolution radar with scanning
antenna (such as conventional radar systems for maritime
surveillance), results with texture temporal correlation of the
order of the time-on-target and spatial correlation of the order
of few tens of resolution range bins, provided that illuminated
area is not highly irregular. If we denote a set of L range bins,
fixed in azimuth j, as

Xj = {xi, i = 1, . . . , L} , (24)

Nρ neighboring bins are correlated. Through the remaining
of this subsection, we use the simplest form of correlation
coefficients ρi,ι, between range bins with indexes i and ι, both
at azimuth j, as

ρi,ι =

{
1, | i − ι | ≤ Nρ
0, | i − ι | > Nρ

. (25)

Using M such strips, the set of reference cells is finally given
as

X =
{
Xj, j = 1, . . . ,M

}
. (26)

Therefore, upper value between eight to sixteen such strips,
separated by radar resolution in azimuth, each with Nρ = 16
range bins, is usually adequate. If clutter is assumed station-
ary during several antenna scans, one can collect samples
from several antenna scans and thus increase the number of
samples. If F such scans are used and ifXi denotes the set of
samples at time i, the total set of samples X at current scan
k is given as

X =
{
Xk−i, i = 0, . . . ,F − 1 :

��Xk−i
�� = ML

}
(27)

where each Xk−i in (27) corresponds to set (26). In this
paper, we adopt samples from F = 4 to F = 8 successive
antenna scans, resulting in total of N = 1024 samples.

3.2 Operating Characteristics
For the purpose of mathematical tractability, optimum

Neyman-Pearson likelihood ratio test [39], in the case of non-
Gaussian clutter, is usually replaced with some other non-
optimum, but sufficient test statistic that depends solely on
assumed clutter model. However, under assumption of par-
ticular model, clutter can manifest differently due to model
mismatch, causing detection losses and eventual track fail-
ures as model mismatch results in either too much clutter ob-
servations, or in detection threshold that is estimated higher
than needed. In this work, we aim to approximate unknown
clutter density with the sum of arbitrary probability func-
tions whose statistics, and thus detection threshold, is known.
This is similar to the reference method where parameters of
the prior model are estimated from the clutter samples, and
from the statistics of prior model with such estimated pa-
rameters, detection threshold is derived, see e.g. [40] for the
K-distribution clutter model.
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Traditional approach in target detection is based on a bi-
nary hypothesis test, i.e. between two hypothesis H0 and H1
(H0 that target is not present and H1 that target is present),
one chooses H0 if the amplitude from the cell under test is
below some threshold, determined by Type I error (choosing
hypothesis H1 although H0 is true) and choosing hypothesis
H1 otherwise [39]. From the constraint of Type I error, which
is design parameter (in radar context, this is the probability of
false detection PFA, given as PFA =

∫ ∞
T

p(x) dx where p(x)
is the probability density for H0), in the framework of den-
sity estimation by RBF network, false detection probability
becomes

PFA =

∫ ∞

T θn

f̂ θn (x)dx =
n∑
i=1

∫ ∞

T θn

P(ωi) fσ (x |ωi; θi) dx,

(28)

from which one can derive the detection threshold Tθn .

In [41], detector for Pareto Type II clutter using sliding
window based approach in Bayesian framework was pro-
posed. Although true CFAR detector, it shows lower de-
tection performance in comparison to techniques based on
geometric transformation or ordered statistics that require
prior knowledge of shape parameter in the former and scale
parameter in the latter case [42]. Another drawback of the
CFAR detector proposed in [41] is the need for numerical
integration, in contrast to the method of moments which can
be used in geometrical transformation and ordered statistics
approach. Hence, for simplicity, in this paper we adopt tra-
ditional [zlog(z)] method as the reference method for shape
parameter estimation of both the Pareto Type II (this is den-
sity (20) under transformation y = x2), and the K-distributed
clutter (18), although it is difficult to capture statistics of such
low values of shape parameter as given in example in Fig. 1.

Simulation flowchart is shown in Fig. 5 and its parame-
ters, selected on the basis of emphasized parameters in Tab. 1,
are shown in Tab. 4. Simulation was performed using tool
for numerical computation Scilab [43], running on operat-
ing system openSUSE Leap 15.1 [44] and Intel "Ivy Bridge"
processor platform [45]. It was divided into seven stages:

1. Initialization with parameters as per Tab. 4.

2. Evaluation of reference threshold T and reference Sig-
nal to Clutter Ratio (SCR), depending on designed value
of false detection probability PFA and target detection
probability PD. Given set of designed false detection
probabilities as PFA =

{
PFA1,PFA2, . . .

}
, for each PFA

and given clutter distribution model p, threshold T is
calculated from (23), (18) and (20), as solution of

PFA =


2TνKν(2T/

√
β)

βν/2Γ(ν)
, p = pK

1 − Γ(ν+1)(βT 2+4)
ν
−4νΓ(ν+1)

νΓ(ν)(βT 2+4)
ν , p = p√GP

(29)
Next, onemust find signal strength S (target echo power)
or equivalently SCR such that, given threshold T as so-
lution of (29), probability detection equals designed

value PD. As expected sea targets are usually classified
by Swerling Case 1 model [46], detection probability,
in the case of gamma distributed texture intensity, is
given as

PD =
1(

β
2

)ν
Γ(ν)

∫ ∞

T

xdx

∫ ∞

0

ζν−2

1 + SCR
exp

(
−

2ζ
β
−

x2

2ζ (1 + SCR)

)
dζ .

(30)
Equation (30) is solved numerically using the approach
given in [40]. In the case of inverse gamma texture
intensity distribution, detection probability is given as

PD =
1(

β
2

)ν
Γ(ν)

∫ ∞

T

xdx

∫ ∞

0

ζ−ν−2

1 + SCR
exp

(
−

2
βζ
−

x2

2ζ (1 + SCR)

)
dζ

(31)
which is solved using Gauss-Kronrod quadrature vari-
ant of Guassian quadrature method [47]. In this paper,
we have chosen SCR such that designed detection prob-
ability PD always equals 8×10−1. For the gammamodel
of texture intensity, mean clutter power equals νβ/2 and
for the inverse gamma model, it equals 4

β(ν−1) , condi-
tioned on ν > 1. Therefore, signal strength (or target
echo power) S, is related to SCR as

SCR =

{
2S
νβ , p = pK
Sβ(ν−1)

4 , p = p√GP
(32)

3. Generation of N clutter samples, respecting clutter dis-
tribution model p, correlation parameter Nρ and corre-
lation coefficient given with (25). Samples are given as

X =
{
Xi, i = 1, . . . ,N/Nρ

}
, (33)

Xi =
{
xι : xι ∼ N

(
0,

√
ζi

)
, ζi ∼ p, ι = 1, . . . ,Nρ

}
(34)

where N(µ,σ) is normal (or Gaussian) distribution
with mean µ and deviation σ and p is pΓ for the K-
distribution model (18) and pΓ−1 for model with the
inverse gamma texture (20).

4. Clutter density estimation. Using [zlog(z)] approach,
the shape parameter is estimated from intensity samples
Y =

{
yi | yi = x2

i , i = 1, . . . ,N
}
. For the K-distributed

clutter, neglecting thermal noise and using only one
pulse, the [zlog(z)] method gives [27],

1
ν̂
=
〈Y log (Y)〉
〈Y〉

− 〈log (Y)〉 − 1, (35)

and the scale parameter follows from the first moment
of intensity,

β̂ = 〈Y〉 ν̂−1. (36)
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If texture intensity is modeled as inverse gamma distri-
bution, the distribution of amplitude intensity y = x2

is known as Pareto Type II distribution, so [zlog(z)]
method estimates shape parameter according to [27],

1
ν̂ − 1

=
〈Y log (Y)〉
〈Y〉

− 〈log (Y)〉 − 1, ν̂ > 1, (37)

again neglecting effects of thermal noise and using just
one pulse. The above is valid for ν̂ > 1 and the scale
parameter follows from the first moment of intensity as,

β̂ =
4
〈Y〉
(ν̂ − 1) , ν̂ > 1. (38)

Parameters θ of the RBF network were estimated us-
ing EM method in logarithmic domain (see Sec.2 and
Sec.3.1), employing iteration steps (12) through (15).
Also, a squared Hellinger distance d2

H is outputted.

5. Detection thresholds. For the K-distribution (18),
detection threshold is determined by solving PFA =∫ ∞
TK

pK(x) dx with (35) and (36) as input parameters.
Detection threshold T√GP is the solution of equation
PFA =

∫ ∞
T√GP

p√GP(x) dx, employing (37) and (38) as
input parameters. Detection threshold Tθn for RBF net-
work is determined by solving (28).

6. Operating characteristics. If one applies thresholds Tθn ,
TK andT√GP (derived in Step 5) to true distributions (18)
and (20), exact false and detection probabilities can be
calculated for the scenario of less spiky and spiky clut-
ter, for known SCR and for thematched andmismatched
clutter model. This is done by defining threshold as
function of prior clutter distribution model,

g(T) =


TK, p = pK
T√GP, p = p√GP
Tθn , p = f θn

(39)

and substituting it instead of T in (29), (30) and (31).

7. In this stage, by means of sample averages of exact
false and detection probabilities, evaluated over J runs,
we compare performance of the RBF network with the
traditional method of equivalent distribution. Depict-
ing exact false and detection probabilities versus de-
signed ones, gives us idea about quality of approxi-
mation and feasibility of employing RBF network in
detection process of target embedded in clutter with
unknown statistics.

Parameter Description Value
n Number of component

densities
4

J Number of trials 100
N Number of samples 1024
Nρ Number of correlated

samples
1 or 16

PFA Set of design false
detection probabilities

10−4 − 2 × 10−1

PD Detection probability 8 × 10−1

p Clutter distribution model pK or p√GP
ν Clutter distribution’ shape 1.00 for pK and

1.02 for p√GP
β Clutter distribution’ scale 0.0062 for pK and

49678.2 for p√GP

Tab. 4. Simulation parameters.

Start

End

1

2

3

4

5

6

Timer start

Timer stop

7

Stage

Done

Next

Done

Next

Done

Next

Fig. 5. Simulation flowchart.
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(a) False detection probability (b) Detection probability

Fig. 6. Performance of [zlog(z)] detection scheme with RBF network in logarithmic domain when texture intensity is modeled as inverse gamma
distributed. This distribution corresponds to spiky clutter as shown in Fig. 1a.

(a) False detection probability (b) Detection probability

Fig. 7. Performance of [zlog(z)] detection scheme with RBF network in logarithmic domain when texture intensity is modeled as gamma
distributed. This distribution corresponds to less spiky clutter as shown in Fig. 1b.

Simulation results for the both Nρ = 1 and the Nρ = 16
correlated range bins are shown in Figs. 6 and 7 for the
scenario of spiky and less spiky clutter, respectively. Ex-
act false and detection probabilities are compared with the
design ones, for the method which employs RBF network
and for the [zlog(z)] method which is either matched to the
true distribution, or mismatched. While the index K empha-
sizes that the estimation of shape parameter is based on prior
K-distribution according to (35) and (36), the index

√
GP

emphasizes that estimation is based on prior Pareto Type II
distribution of intensity, where parameters are estimated from
(37) and (38). Results are based on average of 100 runs for
each false detection probability point, 1024 clutter samples
and lognormal basis density.

Results show that, even when the [zlog(z)] method
matches true inverse gamma texture intensity distribution,
there is significant deviation of exact false detection proba-
bilities from designed one. This impacts the probability of
detection, too. Furthermore, the effect of range bins correla-
tion is more pronounced in the case of spiky clutter, which
is manifested as increase of the false detection probability.
Although the match is not perfect, it should be noted that, in
the practical PFA range from 10−3 onward, the RBF network
better matches the designed PFA than the [zlog(z)] methods,
especially in the case of model mismatch. Drawback of this
method is its computational load (tCPU, refer to Stage 4 in
the Fig. 5). Without calculation of the squared Hellinger

distance and for the specified hardware and software config-
uration [43–45] (see Sec. 3.2), it takes on average 500ms for
the EM algorithm and 0.2 ms for the [zlog(z)] method which
is about 2500 times faster. This is due to more intense calcu-
lation in steps (12)–(15) than in (35)–(38) and iterative nature
of EM algorithm. On average, it takes about 100 iterations
to achieve convergence of logarithmic likelihood (16) to the
precision of 10−6.

The following discrepancy of [zlog(z)] method in the
case of inverse gamma texture intensity can be explainedwith
value of shape parameter that is very close to 1, what is the
limit of the estimator validity. To estimate this parameter
with better accuracy, larger data sample size is required (e.g.,
for 1024 samples, the estimated shape parameter is 1.301, for
4096 samples, 1.245, for 16384 samples, 1.201, and so on).
On the other hand, if one is able to solve for the shape param-
eter using fractal moments, i.e. m̂1 = 〈x〉 and m̂1/2 =

〈
x1/2〉,

and to solve the equation

m̂1

m̂2
1/2
=
Γ(ν̂)Γ

(
3
2

)
Γ

(
ν̂ − 1

2

)
(
Γ

(
5
4

)
Γ

(
ν̂ − 1

4

))2 (40)

numerically [36], more accurate values of shape parameter
would be estimated (i.e. the sample size 1024 gives 1.055,
while current method gives 1.301), but this imposes too high
computational demands for real-time application and is be-
yond the scope of this paper.
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3.3 Design Issue
It may happen that, for the given design false detection

probability and due to some excessive spike return as illus-
trated in Fig. 8, the estimated threshold value Tθn exceeds the
dynamic range of the receiver. For this particular example,
the designed false detection probability is 10−4 and the esti-
mated threshold value isTθn ≈ 21V, which corresponds to the
exact false detection probability ≈ 10−7. The RBF network
is evaluated in logarithmic domain using n = 4 components
and N = 1024 samples. One method to counteract this is-
sue could be censoring of the maximum sample value. For
this particular example, censoring gives Tθn = 0.6V, result-
ing with the exact PFA = 1.9 × 10−4 which is closer to the
designed value. This is explained with better approxima-
tion of the true distribution tail when the censored data are
employed. Nevertheless, the squared Hellinger distances are
approximately the same (prior censoring 0.0021 and after
censoring 0.0022). For this example, estimated probability
densities prior and after censoring are illustrated in Fig. 9.

0 200 400 600 800 1 000
10

-4

10
-3

10
-2

10
-1

10
0

10
1

sample number

clutter spike

Fig. 8. Excessive clutter spike at sample number 255 and distri-
bution p√GP (20).

Fig. 9. True (blue solid line) and estimated probability densities
prior (green dashed line) and after censoring (red dotted
line). Number of samples is N = 1024 and employed
RBF network has n = 4 components. Parameters of the
network were estimated using EMmethod in logarithmic
domain.

4. Conclusion
Although probability density estimation employing

RBF network is not a new concept, in this paper it is tested
in a new light of embedment in a non-coherent detection
process, in a scenario when the sea clutter statistics is un-
known. Performance analysis, conducted in Sec. 3.2, in-
dicates that employment of RBF network in such a clutter
yields receiver operating curves that are reasonably close to
designed ones, closer than the ones obtained by the tradi-
tional [zlog(z)] method which uses estimating parameters of
assumed (or prior) clutter model. It is also demonstrated
that RBF with lognormal basis function better approximates
spiky clutter than the one with the Gaussian function.

Future work will investigate the influence of the de-
scribed clutter modeling when used in process of maneuver-
ing target tracking and, in more challenging scenario, track-
ing a dim target using track-before-detect scheme. Such
method often relies on clutter likelihood to improve tracking
performance, as in [48] for the K-distribution prior model.
Based on the presented results and some preliminary tests, it
can be assumed that the employment of RBF network would
offer larger improvement in comparison to the prior model
in a scenario when the prior model does not match well the
true statistics of clutter. This will also be addressed in our
future work.
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