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Abstract. Intra-voxel incoherent motion (IVIM) imaging 
can characterize diffusion and perfusion of tissues. Tradi-
tionally, the least-square method has been used to deter-
mine IVIM parameters consisting of pure diffusion coeffi-
cient (D), pseudo-diffusion coefficient (D*) and the micro-
vascular volume fraction (f). This paper proposes an accu-
rate estimation method for IVIM parameters in human 
brain tissues using θ-teaching-learning-based-optimization 
(θ-TLBO). θ-TLBO as an evolutionary algorithm provides 
high quality solutions for parameter estimations in curve 
fitting problems. Evaluation of the proposed method was 
performed on simulated data with different levels of noise 
and experimental data. The estimated parameters were 
compared with the results of TLBO and three conventional 
algorithms: Segmented-Unconstrained (“SU”), Seg-
mented-Constrained (“SC”) and “Full”. The results show 
that the proposed θ-TLBO has higher accuracy, precision 
and robustness than other methods in estimating parame-
ters of simulated and experimental data in human brain 
images especially in low SNR images according to analysis 
of variance (ANOVA), coefficient of variation (CV), rela-
tive bias and relative root mean square errors. 

Keywords 
Human brain, Intra-Voxel Incoherent Motion (IVIM), 
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1. Introduction 
Diffusion-weighted magnetic resonance imaging 

(DW-MRI) is a method to measure microscopic motion 
associated with diffusion of water molecules and a fast 
diffusion component associated with microcirculation of 
blood in the capillary network (perfusion). Sensitivity to 
diffusion which is known as the ‘b-value’ will be changed 
by changing the strength and duration of the diffusion 
gradients in the acquisition process. When the b-value is 

low, micro-perfusion causes rapid signal decay. Le Bihan 
et al. [1] proposed the bi-exponential intra-voxel incoher-
ent motion (IVIM) model (1) to separate these two move-
ments which are called diffusion and perfusion. This model 
is characterized by three parameters: the pure diffusion 
coefficient (D), pseudo-diffusion coefficient (D*) related to 
the incoherent microcirculation and the micro-vascular 
volume fraction (f). 

   *
0( ) ( exp( ( )) (1 ) exp( ))S b S f b D D f bD           (1) 

where S(b) and S0 are the signal intensities in DW-MRI 
with diffusion sensitivity of b and 0, respectively, meas-
ured in each individual voxel. 

The IVIM parameters are calculated for each voxel by 
fitting the intensity decay of DW-MRI images in different 
b-values to the bi-exponential IVIM model which is con-
sidered as an optimization problem. Some researchers have 
shown that the fitting algorithm may have impact on the 
obtained results [2–5]. In recent years, several studies have 
been conducted to propose IVIM curve fitting methods. 
Least-square minimization methods such as Levenberg–
Marquardt (LM) algorithm have been widely used for 
fitting IVIM signal data [4], [6–10]. Barbieri et al. [3] com-
pared variability, precision and accuracy of six common 
fitting algorithms for IVIM parameters estimation in upper 
abdominal organs which included LM (“Full”) algorithm, 
Trust-Region (TR) algorithm, Fixed-D algorithm, Seg-
mented-Unconstrained (“SU”) algorithm, Segmented-Con-
strained (“SC”) algorithm and Bayesian-probability based 
algorithm. They reported the variability between the men-
tioned algorithms in all abdominal regions. Young Cho et 
al. [11] have compared two common fitting algorithms 
named “Full” and “SU” algorithms and showed that the 
second one has higher precision and accuracy in compari-
son with “Full” in breast cancer. A similar study was de-
voted by Suo et al. [6] to assess the performance of three 
curve-fitting methods based on the LM algorithm for breast 
cancer. They reported that IVIM parameters obtained using 
different methods are different depending on the calcula-
tion methods. They concluded that the “SU” algorithm was 
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more valid compared with the other two algorithms. Re-
cently, Jalnefjord et al. [4] compared four fitting methods 
for estimating D and f parameters in tumor and healthy 
liver tissues including segmented IVIM fitting, least-
squares fitting and Bayesian fitting using marginal poste-
rior modes or posterior means. They concluded that the 
segmented approach gives better results by considering 
numerical complexity and computational time. 

Although the LM algorithm has a good performance 
for nonlinear least-squares curve-fitting problems, it is 
sensitive to initialization [12]. In other words, the algo-
rithm may converge to the global minimum only if the 
initial guess is close to the final solution; otherwise, the 
algorithm only is able to find the local minimum.  

Recently, evolutionary algorithms (EA) inspired by 
the biological evolution have gained much focus in solving 
optimization problems. These algorithms often start with 
generating an initial population within a given search 
space. Then, the fitness function is computed for this gen-
erated population individually to determine the quality of 
solution. After that, mutation of the population takes place. 
The best individual has a higher chance for reproduction in 
order to optimize solutions. This process is iteratively re-
peated until a termination criterion is satisfied. Since these 
algorithms generate high quality solutions for difficult 
problems, they have been widely applied to solve scientific 
and engineering problems. The EAs have reasonable cal-
culation time and easy implementation, robustness and 
require little information about the problem being solved 
[13]. 

The teaching-learning-based optimization (TLBO) al-
gorithm proposed by Rao et al. [14] is an evolutionary 
algorithm that does not require any algorithm-specific 
parameter except the common control parameters. This 
algorithm is based on the teaching and learning mechanism 
in a class in which learning is achieved either by the 
teacher’s teaching (known as teacher phase) or by interac-
tion between learners (known as learner phase). Therefore, 
the procedure of the TLBO has two phases: i) the teacher 
phase and ii) the learner phase. The θ-TLBO algorithm is 
a modified version of the TLBO algorithm which is pre-
sented by Niknam et al. [15]. In this algorithm, the phase 
angles are allocated to the design variables contrary to use 
of design variables themselves in the TLBO optimization 
process. Since the feasible searching space is more com-
pact than the TLBO algorithm, the searching process is 
more precise and the convergence time is shorter especially 
in problems with large searching space [15]. 

The purpose of this study is to propose a method on 
the basis of the θ-TLBO algorithm to estimate the IVIM 
parameters in human brain tissue. The proposed method is 
evaluated using simulated data with different noise levels 
and experimental DW-MRI data from selected region of 
interest (ROI) in the brain. The estimated parameters were 
compared with those obtained using “SU”, “SC” and 
“Full” algorithms as well as applying TLBO algorithm. 

2. Background 
Levenberg-Marquardt algorithm: The Levenberg-

Marquardt algorithm [16], [17] is a standard technique for 
solving nonlinear least-squares problems and has been 
widely used for parameters estimation in the context of 
IVIM analysis [3, 5, 6, 18, 19]. Curve-fitting with LM 
algorithm interpolates between the Gauss-Newton algo-
rithm and the method of gradient descent. The algorithm 
iteratively reduces the sum of the squares of the errors 
between the bi-exponential IVIM function and the meas-
ured data points in each voxel. The minimization is started 
by providing an initial guess for the parameters. Since the 
LM algorithm can have many local minima, it is not guar-
anteed that algorithm converges to global minima in the 
parameter space if the initial guess is far from it [20]. 

Segmented-Unconstrained algorithm: In this algo-
rithm, by assuming small contribution of the pseudo-diffu-
sion term in the high b-values (b > 200 s/mm2), its effect 
was neglected and diffusion (D) was obtained by fitting the 
simplified mono-exponential equation: 

 
int( ) exp( )S b S bD    (2) 

where Sint is the value in that S0 would satisfy if there is not 
any pseudo-diffusion phenomenon in the underlying tissue. 
Then, the f parameter was estimated as follows: 
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by owing D and f parameters, D* was fitted using (1) over 
all b-values applying the LM algorithm with least-squares 
minimization. Since the D* parameter is greater than D (at 
least 10 times), the initial guess for D* in the LM algorithm 
was considered ten times greater than estimated D [3], [6]. 

Segmented-Constrained algorithm: As in the seg-
mented-unconstrained algorithm, the diffusion D was esti-
mated by mono-exponential (2). Then, D* and f were ob-
tained using the LM algorithm. In this algorithm, the initial 
value of f parameter was determined according to (3) and 
the initial value of the D* parameter was taken like the 
“SU” algorithm. 

Full algorithm: In the “Full” algorithm, three IVIM 
parameters were estimated using the LM algorithm in each 
voxel simultaneously based on (1). The values obtained 
from (2) and (3) were considered as the initialization val-
ues of D and f parameters, respectively. The initial value 
for D* was considered ten times greater than D. 

θ-Teaching-Learning-Based Optimization (θ-
TLBO) algorithm: The TLBO algorithm is originally 
proposed by Rao et al. [14] and modified to θ-TLBO algo-
rithm by Niknam et al. [15]. It is a population-based itera-
tive algorithm that can simulate the teaching-learning pro-
cess in a given classroom. The algorithm searches for 
an optimized solution without using any function deriva-
tive. The most important property of this algorithm is that it 
does not have any adjusting tuning parameter and it only
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needs to control the usual parameters such as the popula-
tion size and the number of iterations [21]. 

In both TLBO and θ-TLBO algorithms, after gener-
ating the population randomly as X = [x1,x2,…,xn] within 
feasible range [xmin, xmax], the fitness function f(xi) is com-
puted for each individual xi. The optimization process in 
the TLBO algorithm is done on the design variables, while 
in the θ-TLBO algorithm, phase angles are assigned to the 
real value of the design variables and then the optimization 
process is performed on these phase angles. In θ-TLBO 
algorithm, all the design variables are mapped to θ-space 
and conversely as follows: 

 min max max min
i isin( )

2 2

x x x x
x      

 
. (4) 

With the bijective mapping and one-to-one relation-
ship between x and   in (4), they can easily map together. 
Then, the fitness function f(xi) is computed for each indi-
vidual population xi and the phase angle corresponding 
with the best solution is considered as the teacher (θteacher) 
and other populations are assumed as learners. In order to 
tend the population towards the global optimum and break 
the members out of a local optimum, the update phase of 
TLBO-based algorithms is divided into two steps: ‘Teacher 
Phase’ and ‘Learner Phase.’ This means that the learners 
may improve their knowledge either by learning directly 
from the teacher (teacher phase) or by reinforcing learning 
among themselves through influencing each other (learner 
phase). In θ-TLBO algorithm these two phases are formu-
lated as follows [15]: 

Teacher Phase: In this phase, each phase angle 
corresponding to the ith learners (θi) gain knowledge from 
the phase angle of the teacher (θteacher) and from the phase 
angle of the mean value of the class (θmean): 

  new, old, teacher F mean( )i i r T        (5) 

where θold,i, θteacher and θmean are mapping of individual xi, 
xteacher and xmean to phase angle, respectively. They are 
mapped to (-π/2, π/2). Also, TF and r are random factors 
which have been placed to make a diverse population. TF is 
a teaching factor which can be either 1 or 2, randomly and 
r is a random number in the interval range of 0 and 1. 

Learner phase: In this phase, another phase angle 
corresponding to the jth learner (θj) is selected randomly 
such that (j ≠ i) to exchange its knowledge with the phase 
angle corresponding to the ith learner (θi). If θj has more 
knowledge than θi, θi is moved toward θj; otherwise, it is 
moved away from θj according to (6): 
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 (6) 

After applying each phase, the fitness function is 
computed for each new individual xnew,i related to θnew,i. 
xold,i will be replaced only if xnew,i has a better fitness func-
tion than the xold,i. These two phases are iteratively contin-
ued until the termination criterion is satisfied. 

3. Materials and Methods 

3.1 Proposed Method 

In this paper, a curve fitting method based on the θ-
TLBO algorithm for estimating IVIM parameters from 
each voxel is proposed. Since low signal to noise ratio 
(SNR) is observed in DW-MRI images, a 3 × 3 Gaussian 
filter was applied on DW-MRI images to smooth them as 
a preprocessing step. Then f, D* and D parameters are esti-
mated using the θ-TLBO algorithm according to the gen-
eral constrained minimization problem as written in (7). 

  22
1 2

1 1

) ( ) ( ( )) Max 0 ( )
l m

a b
a b

F(X f X g X , h X 
 

         
   
    

  (7) 

where f(X) and F(X) are the fitness function and the objec-
tive function of the problem, respectively. The parameters l 
and m are the numbers of equality g(X) and inequality h(X) 
constraints of the problem, respectively. The optimal value 
of the fitness function f(X) subjected to constraints ga(X) 
and hb(X) is known as the best solution. In our optimization 
problem, the penalty coefficients λ1 and λ2 are considered 
zero because there is not any constraint in our problem. 
Hence: 
 )()( XfXF  . (8) 

In order to solve the IVIM curve fitting optimization 
problem, the θ-TLBO fitness function is defined as (9): 

 
1

( ) arg min
M

i i
i

f X f (X) s

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

 (9) 

where X=[x1,x2,…,xn] and xi=[Di Di
* fi]. The fi(X) and si are 

the observed signal and the expected signal at the specified 
b-values = bi, i = 1, … , M, respectively. The best solution 
of (9) is the estimation of f, D* and D. 

The IVIM analysis was carried out on each pixel and 
then averaging was done on each ROI. Noise and turbulent 
cerebrospinal fluid flow in MRI images cause the estimated 
IVIM parameters to drop out of their physiological range. 
Hence IVIM parameters are investigated and values 
smaller than 0 for D, D* and f, bigger than 0.3 for f and 
0.05 for D* are considered insignificant; thus, they are 
excluded from the analysis [8]. 

3.2 Data Simulations 

In order to assess the estimation errors of the pro-
posed method, a simulated heterogeneous tumor map with 
100 × 100 pixels consisting of three regions with known 
ground truth were generated based on (1), S0 = 200 and 
b = 0,5,50,100,200,270,400,600,800 s/mm2. Three sets of 
following reference parameters were used for three regions 
in the ground truth maps: x1 = (0.15,0.01,0.001) for inner 
part, x2 = (0.25,0.02,0.002) for middle part and 
x3 = (0.35,0.03,0.003) for border part of maps [9].  
To achieve more realistic simulation data, the noise factor in 
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Fig. 1.  Simulated original and noisy heterogeneous tumor 

maps. (a) Simulated noise free image at b-value 50.  
(b) SNR = 50. (c) SNR = 25. (d) SNR = 16.67.  
(e) SNR = 12.5. 

DW-MRI was modeled. Since both real and imaginary 
parts of complex MRI images are degraded by white 
Gaussian noise with the same standard deviations (SD), the 
nature of the magnitude signal follows Rician distribution 
[22]: 

   2
2

2
1 )()()()( bnbnbSbr   (10) 

where r(b) is the magnitude of the noisy signal, S(b) is the 
noise-free signal at the specific b-value and n1(b), n2(b)are 
the uncorrelated Gaussian noise variables with zero mean 
and the same SD. The SDs were considered as: 2,4,6,…,16 
and the corresponding SNRs were: 100,50,33.33,…,12.5. 
Simulated noise free image at b-value=50 and related noisy 
images with different SNRs are shown in Fig. 1. 

3.3 MR Imaging 

DW-MRI was performed on a 1.5-T whole-body MRI 
scanner (Ingenia CX, Philips Healthcare, Best, The 
Netherlands) which is installed in Tabesh Medical Imaging 
Center, Shiraz, Iran, using a 66 mT/m gradient system and 
a 15-channel head-spine coil. DW-MRI was acquired with 
SENSE approach by single-shot spin-echo echo-planar 
imaging sequence and seven b-values, 
b = 0,50,100,200,400,600,800 s/mm2. Axial DW-MRI was 
obtained with slice thickness of 5 mm, inter-slice gap of 
1 mm, repetition time (TR) of 3.5 s, and 88 ms echo time 
(TE). The EPI factor was set to 75, field of view (FOV) 
was adjusted to 230 × 230 mm2, flip angle was 90, acqui-
sition matrix was 152 × 103 and receiver bandwidth to 
1610 Hz/pixel. Total imaging time was 93 s. Seventeen 
subjects (11 healthy and 6 tumor cases with the mean age 
of 38.1±10 years and 52.5±10.2 years, respectively) were 
participated in the present study and their oral consents 
were obtained. Voxels within the White Matter (WM) 
regions for healthy subjects and within the tumor tissue for 
tumor subjects on the axial sections of the images were 
sampled by a radiologist as the ROI. ROIs on tumor were 
drawn on most cellular parts of tumors including areas of 
necrosis and hemorrhage. 

3.4 Statistical Analysis 

A repeated measures analysis of variance (ANOVA) 
with a Greenhouse-Geisser correction was conducted on all 
in vivo data to determine whether there is an overall differ-
ence between estimated parameter values obtained by dif-
ferent algorithms. Post hoc tests using the Bonferroni cor-
rection was applied to pairwise comparison between algo-

rithms. The accuracy of the fitting algorithms on simulated 
data was assessed by relative bias criteria. It is obtained by 
calculating the difference between the true IVIM parame-
ters and the estimated IVIM parameters from different 
fitting algorithms, normalized to the true value. The preci-
sion of the parameter estimation on simulated data was 
assessed by relative root mean squared (RRMS) error for 
each parameter and algorithm separately. It is calculated by 
dividing the root mean squared error by the true value and 
represented as a percentage. The variability of the obtained 
parameters for each patient in considered ROI was com-
puted by coefficient of variation (CV) for each fitting algo-
rithm. The statistical significance of the difference in the 
variability of the parameter estimates obtained by different 
fitting algorithms was examined using a two-tailed paired 
student’s t-test (p < 0.05). All algorithms have been im-
plemented in MATLAB (R2013a); also, SPSS statistics 
(IBM, v.22) has been applied for statistical analysis. 

4. Results 

4.1 Simulation Results 

In order to assess the accuracy and precision of the 
estimated parameters from different methods, computer 
simulations were conducted. In this study, eight synthetic 
noisy images based on a reference noise free heterogene-
ous tumor sample were generated using (1) and (10). The 
IVIM parametric maps from simulated data were estimated 
using the proposed θ-TLBO-based method, TLBO-based 
and three other algorithms: “SU”, “SC” and “Full”. Fig-
ure 2 illustrates the ground truth maps and the estimated 
IVIM parametric maps using different algorithms in the 
simulated image with SNR = 20. The differences between 
the true IVIM parameters (ground truth) and the estimated 
values using relative bias and RRMS were computed for 
each parameter and each considered fitting algorithm 
(Fig. 3). Figures 3a–c show the accuracy of the estimators 
by relative bias values for the simulations in different 
SNRs for D, D* and f parameters, respectively. The results 
show that the estimated D and f values obtained by the 
proposed θ-TLBO method were more accurate than other 
algorithms in different noise levels, especially in low 
SNRs. All fitting algorithms underestimated the D param-
eter and overestimated the D* and f parameters. Although 
in lower SNRs the accuracy of all algorithms was de-
creased, the proposed θ-TLBO method was more robust to 
noise than other algorithms in all parameters estimation. 
Regarding accuracy, the D* parameter obtained by the 
“Full” algorithm has more significant bias than other algo-
rithms. Figures 3d–f show the RRMS error for estimated 
parameters from simulated images as a function of SNR. 
As shown, both θ-TLBO and TLBO-based methods proved 
to be robust against noise. Although in high SNRs “SU” 
and “SC” algorithms have better performance than θ-
TLBO, however, in lower SNRs the TLBO-based algo-
rithms were more precise than other ones. Quantitatively, 
the proposed  θ-TLBO  method  reduces the overall  RRMS 
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Fig. 2.  An example of estimated parametric maps obtained 
from simulated data with SNR = 20. The first row 
shows the ground truth of parametric maps (D, D* and 
f). Rows two to six show parametric maps obtained 
using the proposed θ-TLBO method, TLBO, “SU”, 
“SC” and “Full” algorithms, respectively. Visually, θ-
TLBO method estimates more similar parametric maps 
to the ground truth maps than other algorithms. All 
images are presented in the same gray-value range. 

of the D parameter about 15%, of the D* parameter about 
40% and of the f parameter about 20% as compared to 
“SU” and “SC” algorithms in SNR = 12.5, respectively. 

Also, according to both criteria outlined in Fig. 3, the 
D parameter has the least variability and the most 
reliability than D* and f parameters. 

4.2 In-vivo DW-MRI Experiment Results 

In order to demonstrate the accuracy of the proposed 
θ-TLBO method for IVIM parameter estimation from each 
voxel of in vivo DW-MRI data, we assessed the estimated 
parameters from voxels within the WM of healthy subjects 
and within the brain tumor (Tab. 1). As shown, the esti-
mated D* parameter using all the algorithms has higher SD 
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 Mean ± SD Mean ± SD Mean ± SD 
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θ-TLBO 0.67±0.02 16.56±1.42 11.61±0.30 

TLBO 0.66±0.02 17.24±3.14 10.62±1.15 

SU 0.71±0.02 25.74±5.57 5.11±0.46 

SC 0.71±0.02 19.70±4.76 6.36±0.44 

Full 0.62±0.02 22.13±5.90 15.77±2.33 

T
u

m
or

 

θ-TLBO 0.88±0.36 18.12±4.07 13.39±3.65 

TLBO 0.88±0.35 19.13±6.49 11.87±3.52 

SU 0.91±0.35 25.97±5.60 8.09±5.57 

SC 0.91±0.35 20.58±6.71 9.02±5.27 

Full 0.83±0.34 21.33±6.61 17.76±9.89 

Tab. 1.  Mean and standard deviation (SD) of the IVIM 
parameters estimated by the proposed θ-TLBO, TLBO, 
“SU”, “SC” and “Full” algorithms for healthy and 
subjects with tumor. 

 

Θ-TLBO Vs.    

 TLBO SU SC Full 

D ≈1.00 <0.001 <0.001 0.043 
D* ≈1.00 <0.001 0.164 0.037
f 0.024 <0.001 <0.001 0.179 

Tab. 2.  Pairwise comparison (p-value) between the IVIM-
derived parameters' values from the proposed θ-TLBO 
method and four other algorithms for brain tissue. 

in comparison with other estimated parameters and D pa-
rameter has the least variation. However, the proposed θ-
TLBO method provides lower variance in comparison with 
other algorithms in both healthy and patient subjects. 

Repeated measures ANOVA with a Greenhouse-
Geisser correction (p < 0.05) was conducted on all experi-
mental data (Tab. 2). Significant differences are in bold. 
The test concluded that there was a significant main effect 
of algorithm selection on the estimation of D value 
(F(1.198,19.171)=31.072, p < .001), D* value (F(2.350, 
37.595)=17.697, p < .001) and f value (F(1.091,17.450)= 
28.788, p < .001). Post hoc tests using the Bonferroni cor-
rection was applied to pairwise comparison between the θ-
TLBO method and four other algorithms. It revealed that 
all IVIM parameters values measured by the θ-TLBO 
method significantly differed from three conventional algo-
rithms “SU”, “SC” and “Full”, except between the D* 
value obtained from “SC” algorithm (p = 0.164) and the f 
value obtained from “Full” algorithm (p = 0.179). 

Figure 4 illustrates the variability of each IVIM pa-
rameters as a bar plot of the CVs over all subjects for each 
fitting algorithm. Error bars represent 95% confidence 
interval for mean. The CV value related to each patient 
over the considered ROI was calculated separately and 
then averaged over all healthy and tumor groups. 

Statistical significance of the difference between the 
estimated parameters across all fitting algorithms was cal-
culated by one-way ANOVA test (Post hoc comparisons 
using the Tukey (honestly significant difference) HSD test, 
p < .05). The lowest CV was achieved for all parameters by 
applying the proposed θ-TLBO method and the “Full” 
algorithm have higher CV compared with other algorithms.  
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Fig. 3.  Accuracy and precision of the IVIM parameter estimation from simulated data using the proposed θ-TLBO based method, TLBO-

based algorithm, “SU”, “SC” and “Full” as a function of SNR. The first row presents the accuracy of each estimator by mean of overall 
relative bias for each parameter and the second row presents relative root mean square error (RRMS) of each algorithm. The proposed 
θ-TLBO method improved the accuracy of D and f parameters estimation compared to the four other algorithms. Also, the proposed θ-
TLBO method yielded the least RRMS error for all parameters in low SNRs. 

The CVs for estimated parameters in the healthy group using 
the proposed θ-TLBO method were 7%, 46% and 16%, 
respectively. The CVs for estimated D, D* and f parameters 
for tumor group were 9%, 35% and 18%, respectively. The 
CV related to D parameter obtained from the proposed θ-
TLBO method was significantly different from four other 
algorithms in both groups (all p < 0.001).  

Also, the CVs of D* parameter obtained from the 
proposed θ-TLBO method in both groups were significantly 
lower compared with four other algorithms (p < 0.001) as 
well as the  CVs of f parameter  (p < 0.001). No significant 

 
Fig. 4.  Bar plot of the coefficient of variations (CVs) of each 

IVIM parameter over all patients computed for each 
considered fitting algorithm. CVs are separated in two 
healthy (left plot) and tumor (right plot) groups. The 
improvement in CV% when using the proposed θ-
TLBO method is clear. The CVs related to all three 
parameters obtained from the proposed θ-TLBO 
algorithm were significantly lower compared with four 
other algorithms (p < 0.001). 

differences were found among the CVs of all three param-
eters obtained with the “SC” and the “SU” algorithms 
(p = 1.00 for D, p = 0.99 for D* and p = 0.993 for f). Also, 
the CVs related to all three parameters obtained from 
TLBO algorithm significantly differed from three algo-
rithms “SU”, “SC” and “θ-TLBO” in both groups, while 
there is no significant differences between the CV related 
to D and D* values obtained from “Full” and “TLBO” 
algorithms. 

5. Discussion  
In this study, we proposed a θ-TLBO-based method 

to estimate IVIM parameters. The performance of the pro-
posed method was compared with the TLBO algorithm and 
three widely used fitting algorithms “SU”, “SC” and “Full” 
in healthy and brain tumor subjects. Furthermore, extensive 
evaluations based on the simulated DW-MRI data were 
performed to assess the accuracy and precision of the pro-
posed method. According to the results obtained based on 
the simulated data, the proposed θ-TLBO-based method 
and TLBO-based algorithm provide more accurate estima-
tion than three conventional algorithms in estimating D and 
f parameters regarding relative bias criteria. Although in 
high SNRs, “SU” and “SC” algorithms provide less RRMS 
error for simulated images, however, the proposed θ-TLBO 
method was more robust to noise than other algorithms in 
all estimated parameters. Also, our experiments showed 
that parameter estimation using θ-TLBO and TLBO-based 
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algorithms reduce RRMS, especially in low SNRs as com-
pared to the conventional fitting algorithms. According to 
the estimated parameters based on experimental data, con-
siderable variability was seen between f and D* parameters 
obtained by two segmented algorithms and TLBO-based 
algorithms. This may be due to the fact that in the seg-
mented algorithms, the parameter estimation process is 
performed in several steps and separately, while in TLBO-
based algorithms, the parameter estimation is performed 
simultaneously for all three parameters. Moreover, f and D* 
parameters have a higher standard deviation than D param-
eter. This could be because of the non-linear nature of the 
IVIM model that makes some IVIM parameters more reli-
able than others [5]. Repeated measures ANOVA with 
a Greenhouse-Geisser correction on experimental data 
showed a significant difference between estimated IVIM 
parameters using different algorithms (p < 0.05). The evi-
dence of applying post hoc tests supports the hypothesis 
that the average of the estimated D values obtained by the 
proposed θ-TLBO or by TLBO methods are significantly 
different in comparison to three other algorithms 
(p < 0.001). 

However, no difference was seen among the esti-
mated D values obtained by using the proposed θ-TLBO 
and TLBO methods. On the other hand, there was no dif-
ference between the average of D* value that was estimated 
by the proposed θ-TLBO and TLBO methods as well as the 
proposed θ-TLBO method and “SC” algorithms. However, 
“SU” and “Full” algorithms showed a significant 
difference with the proposed θ-TLBO method for the aver-
age D* value. No significant difference between the esti-
mated f value obtained by the proposed θ-TLBO method 
and the “Full” algorithm was seen, while the f value ob-
tained by the proposed θ-TLBO method and other fitting 
algorithms differed significantly. The variability of IVIM 
parameters obtained from the proposed θ-TLBO method 
was compared with other algorithms in vivo data (healthy 
and tumor subjects) by CV criteria as the quantitative pre-
cision measure. For all three IVIM parameters, the pro-
posed θ-TLBO method demonstrates higher precision in 
comparison with four other algorithms. Also, our results 
support findings of previous studies [6], [9] which showed 
the D* parameter has the least precision, while estimated 
parameter D has the most precision in all algorithms. 

On the other hand, using θ-TLBO instead of the 
TLBO algorithm in the IVIM problem has some ad-
vantages. First, since each of the IVIM parameters has 
different limitation range; feasible searching space will be 
large. By using θ-TLBO and mapping individuals from 
design variables space to the θ-space, phase angles of the 
individuals are calculated and the ranges of all variables 
will be the same and map to (–π/2, π/2). Second, since the 
searching space in the θ-space is much more compact than 
TLBO, so the local optimum is very close to the global one 
and the chance of entrapping into local optima is much less 
than the TLBO. Therefore the θ-TLBO algorithm is more 
accurate and faster than the TLBO one. Third, searching 
procedure in the θ-TLBO algorithm is more accelerated 

than TLBO one because in θ-space by sweeping one solu-
tion (angle), a sector is searched while in TLBO point-to-
point searching process is done which needs more time and 
movements to search the feasible space [15]. 

Although extensive evaluations were performed to as-
sess the accuracy of the proposed method based on the 
synthetic data, evaluation of experimental DW-MRI was 
restricted by the number of patients. Since the focus of this 
paper is developing a new method based on EA for reliable 
estimation of diffusion parameters, we showed improve-
ments in estimated parameters in comparison with esti-
mated parameters using conventional algorithms based on 
synthetic data. We are continuously working on augment-
ing the number of subjects in our dataset.  

6. Conclusion 
In this paper, an evolutionary-based method for esti-

mation of the IVIM parameters in the human brain was 
proposed. Synthetic data with different SNR levels and in 
vivo DW-MRI data were used to assess the performance of 
the proposed methods. Based on the simulated and in vivo 
data, it was shown that the diffusion and perfusion IVIM 
parameters obtained by using the proposed θ-TLBO 
method were more accurate and precise than those obtained 
by using the conventional methods such as “SU”, “SC” and 
“Full” algorithms. 
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