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Abstract. In this paper the Finite Integration Technique
(FIT) hybridized with theMethod-of-Moments (MoM) is used
to find resonance frequencies and quality factors of open
cylindrical dielectric resonators (CDRs). The technique is
based on the previously developed formulation for scattering
problems, with the application of root searching algorithm
to find zeros of the final matrix determinant in the complex
frequency plane. The method is validated by comparison
of obtained results with the results of simulations done us-
ing other methods, and with measurement data found in the
literature.
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1. Introduction
Open dielectric resonators are widely used for high fre-

quency operation as Dielectric Resonator Antennas (DRAs),
because of their low cost, low losses, and temperature stabil-
ity [1]. Although original designs comprise mainly homo-
geneous DRs [2], [3], more sophisticated constructions are
developed, aimed at widening the antenna bandwidth, while
keeping compact dimensions [4], [5]. Classic approach to the
task of finding resonant frequencies of DRs is based on the
formulations of proper eigenvalue problems ( [6], Chapter 5,
p. 185–257). Those methods are however well suited for
closed configurations, where no radiation exists, and losses
contributing to lowering the Q-factor are associated with the
losses in the materials used to fabricate the resonating struc-
ture. On the other hand, in antenna problems, it is more
common to apply "no incident field" formulations [7], [8],
i.e. to define resonances as the phenomena, where non-zero
fields can exist with no external excitation. Such a situation
can take place at complex frequencies, where the real part of
the complex resonant frequency corresponds to the resonant
frequency of the structure, while the imaginary part is used

to compute the Q-factor. Please note that in the open situa-
tion, the Q-factor is finite even in the case of ideal lossless
materials (assumed in the first approximation model), as the
energy leaks out from the structure due to the electromag-
netic radiation.

Within antenna community, integral equation (IE)
methods of analysis are in common use, as they incorporate
radiation in the straightforward way. Thus, there exist for-
mulations based on surface integral equations (SIE) [3, 7, 9]
suitable for homogeneous resonators, or resonators built from
homogeneous parts, volume integral equations (VIE) [10] for
inhomogeneous DRs, or combined VIE-SIE [11] hybridizing
previous approaches. On the other hand, for closed config-
urations, it is relatively easy to apply grid methods [12],
which are naturally suitable for the analysis of inhomoge-
neous structures.

Recently, in the author’s paper [13], the hybrid method
of analysis of electromagnetic scattering by heterogeneous
dielectric bodies of revolution was presented. The method
divides the space into two parts using cylindrical surface.
The interior part is analyzed using FIT, which - as already
mentioned - is excellent for highly inhomogeneous regions,
while the exterior part is accounted for using typical radia-
tion operators, based on the equivalence principle [14]. The
formulation benefits from the usual decoupling of the full
three-dimensional problem into azimuthal modes. The fi-
nal (matrix) equation contains as the unknown quantity the
tangential electric fields at the boundary of the FIT region.
Here, we adopt this formulation to find resonant frequencies
and associated Q-factors of cylindrical DRs, which may be
inhomogeneous in the body-of-revolution (BoR) sense – i.e.
(assuming that the cylindrical DR is placed with the sym-
metry axis lying on the z-axis of the cylindrical coordinate
system) its parameters may arbitrarily vary with respect to
ρ and z variables, while being constant with respect to the
azimuthal φ variable.

The assumption about the rotational symmetry allows
for easy a priori identification of the resonant modes – first
enabling separate analysis of TE, TM, and HEMmodes, with
pre-assumed mode’s first index describing resonant fields
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behaviorwith respect to the azimuthal variable. In the present
work, we adopt the simple resonance naming convention ( [6],
p. 276) using as the second mode index its number counted
from the lowest resonant frequency.

The rest of the article is organized as follows: first we
outline the FIT-MoM formulation given in [13], tuning it
to the task of finding resonant frequencies and associated
Q-factors of particular resonances, then we give some com-
putational examples, comparing results with the literature
data, especially with those obtained using aforementioned
SIE and VIE formulations.

2. Formulation
An example geometry of the problem is depicted in

Fig. 1(a), where the stacked DR, consisting of two parts with
different electric parameters, bounded as a whole by surface
S, is placed within the artificially created region surrounded
by cylindrical surface Sb . Inside Sb we have another sur-
face Sh , on which Huygens sources are placed, responsible
for radiation of electromagnetic fields to the outside region
(cf. [13], [14]).
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Fig. 1. Stacked cylindrical DRA placed within the cylindrical
surface (a) and the corresponding generating cross sec-
tion (b) (cf. [13]).

All surfaces, namely S, Sb , Sh may be understood as
produced by rotation, around the symmetry axis z, of corre-
sponding generating arcs L, Lb , Lh . The so-called generating
surface is shown in Fig. 1(b). As for the internal region we
apply FIT for field analysis, also proper grid consisting of
electric and magnetic field samples is shown in Fig. 1(b).
It is to be noted that the outer contour Lb corresponds to
samples of tangential electric values, which is important for
further reasoning. As the geometry belongs to the Body-
of-Revolution class, all fields and sources are periodic with
respect to the azimuthal variable φ, and can be expanded
into exponential Fourier series. Furthermore, formulas de-
scribing particular modes are decoupled, so in the subsequent
formulation we use single mode notation, which is empha-
sized by adding superscript m, denoting mode number.

2.1 Internal and External Problem
Within this formulation, we use the typical splitting of

the situation at hand into internal and external problems, cou-
pled by the tangential component of the electric field at the
boundary Sb .

Here, the internal problem is described with the use
of wave equation for electric field, which in the modal dis-
cretized form arising from the application of FIT can be
written as:

M−1
ε C̃

m
M−1
µ Cm em − ω2em = −M−1

ε C̃
m

M−1
µ Cm

b emb (1)

where em and em
b
are vector of electric field samples within

the FIT grid and at the boundary, respectively, Cm and C̃
m

are the discretized curl operators (cf. [14]), and Mε and Mµ

are diagonal matrices describing values of permittivity and
permeability at the locations of the proper field samples.

For m = 0, (1) decouples into two independent ma-
trix equations for [emρ ,emz ]T (TM modes) or emφ (TE modes).
For m , 0 we deal with hybrid (HEM) modes, where it is
possible to obtain emφ from [emρ ,emz ]T, using discretized zero-
divergence condition (see [12], [13]):

jmMεφemφ + DφρMερemρ + DφzMεzemz = 0 (2)

where Dφρ and Dφz result from discretizing divergence op-
erators.

For all the cases, (1) maybe transformed into the com-
mon form: {

Am − ω2I
}

emc = −Bmemb (3)

where emc stands either for [emρ ,emz ]T (HEM or TMmodes) or
emφ for TE modes. Particular forms of Am and Bm matrices
are given in [13]. Note that for HEM modes, it is possible to
get emφ from emc using (2).
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Fields in the external region are described by (cf. [14]):
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where Sh denotes Huygens surface, primed vectors denote
source position, and n̂′ is a vector normal to Sh pointing

outwards. As usual, G
E

J , G
E

M , G
H

J , and G
H

M are the dyadic
Green’s functions relating source electric or magnetic cur-
rents to proper electric or magnetic fields. As this formu-
lation is intended for BoRs, entries of the Green’s functions
must be expressed in cylindrical coordinates, and their modal
counterparts have to be calculated.

Here, we assume that the generating arc Lh of the Huy-
gens surface lies along primary (electric field) grid, so the
magnetic fields have to be interpolated from neighboring
samples, as in [14]. The external problem is then discretized,
assuming piecewise-constant fields and point matching, ob-
servation points being proper locations of boundary field
samples.

This leads to the matrix form of electric field integral
equation (EFIE):

emb = Zm
EJhm

h + Zm
EMemh . (6)

Above, matrices Zm
EJ and Zm

EM come from correspond-
ing integrals in (4), vectors hm

h and em
h
denote field samples

on the Huygens surface, which are directly related to the field
samples in the FIT grid, i.e. they can be obtained multiplying
emc by proper matrices (see [13]). Thus, (6) may written in
the general form:

emb = Zm
EEemc . (7)

Please note that neither (4), (5), nor (6), (7) do not in-
clude incident fields, which corresponds to the no-excitation
assumption mentioned in the Introduction.

2.2 Complex Resonant Frequencies
We can solve (3) for em and then substitute the result to

(7), to get: [
I + Zm

EE (A
m − ω2I)−1Bm

]
emb = 0 (8)

which is no-excitation counterpart of the equation (44)
in [13].

Non-trivial solutions of (8) exist when the determinant
of the corresponding matrix is equal to zero, so we arrive at
the final equation:

Det
[
I + Zm

EE (A
m − ω2I)−1Bm

]
= 0 (9)

which is possible to be fulfilled at proper complex frequen-
cies [6]. One should remember that the frequency depen-
dence in (8) and (9) is included also in the MoM Zm

EE term.

Thus, we change each jω in the equations into a com-
plex variable s, and then perform procedure of finding roots
of the determinant (9). In numerical procedures, we look for
minima of the determinant with sufficient level of accuracy.
Once the roots are found, both resonant frequencies and as-
sociated quality factors are obtained from ( [6], p. 275–276):

ωm,ν = Im(sm,ν), (10)

Qm,ν = −
Im(sm,ν)

2 Re(sm,ν)
(11)

where sm,ν is the complex root of (9).

As signalized in the Introduction,m stands for azimuthal
mode number, while ν is an integer used to count the reso-
nances associated with this particular mode, starting from
the lowest resonant frequency.

3. Sample Results
Procedure outlined in the previous section was imple-

mented in the form of FORTRAN code. As a minima finding
algorithm, we applied Nelder-Mead method [15], as imple-
mented in [16], [17].

First, we computed resonance frequencies of homoge-
neous dielectric resonator with radius a = 5.25mm, height
h = 4.6mm, and εr = 38.0, for which a lot of compari-
son data exists in the literature. The discretization used was
23 cells per resonator height and 21 cells per resonator ra-
dius. This corresponds to primary grid cells with dimensions
0.2mm × 0.25mm, which alsomeans that the cells were rect-
angular rather than square. The margin 4 cells from each side
of the resonator to the FIT boundary was applied.

The computation results are presented in Tab. 1 (reso-
nant frequencies), and Tab. 2 (quality factors). As seen from
the tables, the agreement of results is excellent.
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Mode Frequency [GHz]
MoM-
FIT

MoM
VIE [10]

MoM
SIE [9]

Measured
[7]

T-matrix
[8]

TE01 4.846 4.861 4.829 4.85 4.9604
TM01 7.524 7.594 7.524 7.60 7.5384
HEM11 6.340 6.373 6.333 – 6.3450
HEM12 6.656 6.657 6.638 6.64 6.6520
HEM21 7.757 7.784 7.752 7.81 7.7621

Tab. 1. Comparison of computed and measured resonant fre-
quency results for homogeneous DR with radius
a = 5.25mm, height h = 4.6mm, and εr = 38.0.

Mode Q
MoM-
FIT

MoM
VIE [10]

MoM
SIE [9]

Measured
[7]

T-matrix
[8]

TE01 41.384 40.7 45.8 51 40.819
TM01 76.725 73.7 76.8 86 76.921
HEM11 30.53 30.4 30.7 – 30.853
HEM12 50.204 49.5 52.1 64 50.316
HEM21 333.36 329.8 327.1 204 337.66

Tab. 2. Comparison of computed and measured Q factor results
for homogeneous DR with radius a = 5.25mm, height
h = 4.6mm, and εr = 38.0.

The second test concerned a dielectric resonator with
the same outer dimensions and outer part permittivity, as
in the first example (i.e. radius a = 5.25mm, height
h = 4.6mm, and εr = 38.0), but with the inner part with
different parameters. The structure of the DR is depicted in
the sketch picture inserted in Fig. 2. The inner part radius was
chosen as one fourth of the outer radius, while the relative
dielectric permittivity of the inner part was changed from 1.0
(ring resonator) through 100.0. The comparison of the results
with the results obtained using VIE-MoM approach [10] is
given in Fig. 2. Also included - where available - are the
results given in [8]. Again, the correctness of the present for-
mulation is proved. One can notice some differences between
results of FIT-MoM and VIE-MoM – FIT-MoM-computed
resonant frequencies are usually a little bit lower than those
resulting fromVIE-MoM.However, results fromTab. 1 show
that the disrepancies in general lie within the spread of results
given by various cited methods. Moreover, it seems that FIT-
MoM results are closer to SIE-MoM results from [9], than to
VIE-MoM.

4. Conclusions
In this paper, the application of recently introduced FIT-

MoM-BoR formulation for the analysis of open inhomoge-
neous cylindrical dielectric resonators (CDRs) has been pre-
sented. The method was verified by comparison with other
existing techniques and its correctness was proved. The for-
mulation may now be used to find resonant frequencies and
quality factors of CDRs of various shapes and permittiv-
ity profiles. Future developments may go into the direction
of placing CDRs within environments described by differ-
ent – than free-space – Green’s functions, e.g. multilayered
media [18].
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Fig. 2. Resonance frequencies (a) and Q factors (b) of five
lower modes of a dielectric inhomogeneous resonator
versus permittivity of the inner part εr1. Dimensions:
a = 5.25mm, h = 4.6mm, radius of the plug a1 = a/4,
εr = 38. Solid lines – present formulation, dashed
lines – [10], circles – [8].
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