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Abstract. The use of the combination of different speech 
features is a common practice to improve the accuracy of 
Speech Emotion Recognition (SER). Sometimes, this leads 
to an abrupt increase in the processing time and some of 
these features contribute less to emotion recognition often 
resulting in an incorrect prediction of emotion due to 
which the accuracy of the SER system decreases substan-
tially. Hence, there is a need to select the appropriate fea-
ture set that can contribute significantly to emotion recog-
nition. This paper presents the use of Feature Selection 
with Adaptive Structure Learning (FSASL) and Unsuper-
vised Feature Selection with Ordinal Locality (UFSOL) 
algorithms for feature dimension reduction to improve SER 
performance with reduced feature dimension. A novel Sub-
set Feature Selection (SuFS) algorithm is proposed to re-
duce further the feature dimension and achieve a compara-
ble better accuracy when used along with the FSASL and 
UFSOL algorithms. 1582 INTERSPEECH 2010 Paralin-
guistic, 20 Gammatone Cepstral Coefficients and Support 
Vector Machine classifier with 10-Fold Cross-Validation 
and Hold-Out Validation are considered in this work. The 
EMO-DB and IEMOCAP databases are used to evaluate 
the performance of the proposed SER system in terms of 
classification accuracy and computational time. From the 
result analysis, it is evident that the proposed SER system 
outperforms the existing ones. 

Keywords 
Speech Emotion Recognition (SER), INTERSPEECH 
Paralinguistic Feature Set, GTCC, feature selection, 
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1. Introduction 
Speech Emotion Recognition (SER) is the method of 

detecting the emotional state of a speaker using a speech 
signal. The field of emotion recognition has gained a lot of 
interest in human-computer interaction these days, and 
intensive research is going on in this field using various 
feature extraction techniques and machine learning algo-
rithms. SER is used in the applications viz., call-center 
services, in vehicles, as a diagnosing tool in medical ser-
vices, story-telling and in E-tutoring applications etc. 

There are six archetypal emotions: anger, neutral, 
happiness, disgust, surprise, fear and sadness. In situations 
where only a person's speech signals are available, SER 
plays a prominent role [1], [2]. Speech features can be 
classified as Continuous, Voice Quality, Spectral and Non-
linear Teager Energy Operator (TEO) features. Figure 1 
shows the categorical representation of some of these 
speech features. A significant challenge in SER is the iden-
tification of useful speech features that holds the emotional 
characteristics from a speech signal, and most of the re-
search related to SER is focused on identifying the effec-
tive feature set. It is evident from the literature that the 
feature fusion increased the classification accuracy of the 
SER system and became the most common practice. 

Even though the classification accuracy of the SER 
system increases due to feature fusion, it also increases the 
computational overhead on the classifier. This is because 
some of the features contribute in a better way, while some 
of them might not be useful at all for emotion recognition. 
The feature selection methods simplify the task of inter-
pretation by the classification algorithms easier. These 
techniques majorly eradicate the loss caused due to the 
curse of dimensionality and also the problem of overfitting 
by improving the generalization in the model, i.e., the use 
of less redundant data that leads to incorrect predictions 
increasing the accuracy of the SER system and thus, en-
hancing the prediction performance by decreasing the 
computational time and memory by the SER system. 
Hence, feature dimension reduction is the best way to en-
hance the accuracy of the SER system. The reduction of the 
number of features causes an uncertain loss of information 
and subsequently leads to instability in the performance of 
the SER system. To overcome this drawback and to acquire 
the most optimal feature sets that improve SER accuracy, 
many feature selection techniques are developed in ma-
chine learning. 

 
Fig. 1. Categorization of speech features. 
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In feature selection, from the original feature set, 
a subset of features is selected with respect to their rele-
vance and redundancy. It improves the prediction perfor-
mance and reduces the computational complexity and stor-
age, providing faster and cost effective models [3]. In ma-
chine learning, a feature vector is the n-dimensional vector 
representing the features of all samples. The space-related 
to these vectors is the feature space. To decrease the di-
mensionality of feature space, the feature selection or fea-
ture transformation methods can be used. In feature trans-
formation, the original feature space is transformed into 
a different space having a distinct set of axes to reduce the 
dimensionality of the data. 

In contrast, feature selection reduces into a subspace 
from the original feature space without transformation. 
Some examples of feature selection methods are ReliefF, 
Fisher Score, Information Gain, Chi Squares, LASSO, etc. 
Feature selection techniques can be categorized based on 
labelling of the data as supervised, unsupervised and semi-
supervised. In supervised feature selection, the data is la-
belled feature evaluation process. If the data is huge, label-
ling of the data is costly and a tedious task. Unsupervised 
feature selection can overcome these drawbacks of super-
vised approaches. But this is more difficult than supervised 
ones since it does not have labelled data and still its result 
can be good even without any prior knowledge. The evalu-
ation of feature selection methods can be further classified 
into four types, i.e., filter, wrapper, embedded, hybrid and 
ensemble feature selection, as shown in Fig. 2. 

Filter feature selection techniques use the statistical 
analysis to assign a distinctive feature with a score. Their 
score ranks the features, and later, these are retained or 
removed from the original feature vector set accordingly. 
These filter techniques mostly use a single variable in their 
analysis and features are considered independent of each 
other or dependent terms. The most commonly used filter 
methods are the Chi-squared test [4], variance threshold 
[5], information gain, etc. The fast feature selection 
method, i.e., Fisher feature selection is used in [6] with 
decision SVM for SER. The wrapper feature selection 
techniques consider a set of features with various combina-
tions of the feature sub-sets. Later, these feature subsets are 
compared with one another as a search problem which is 
estimated and compared with other groups. Further, the 
prediction process is performed to assign the score onto 
each of the feature sets depending on the prediction accu-
racy. The process of search can be systematical such as 
searching the first best features, for example, hill-climbing 
algorithm or using heuristics. The search process can be 
systematic, stochastic or heuristic such as a best-first 
search, random hill-climbing algorithm, forward and back-
ward passes to add and remove features. Genetic Algo-
rithms, Recursive Feature Elimination (RFE), Sequential 
Feature Selection (SFS), etc. are some of the wrapper 
methods of feature selection. In [7], SFS and Sequential 
Floating Feature Selection (SFFS) are used for SER. 

Embedded methods, while creating the model in the 
learning process, select the best features that can be used to 

 
Fig. 2. Categorization of feature selection techniques. 

enhance accuracy. Regularization techniques are the most 
commonly used embedded methods for feature selection: 
LASSO, FSASL, Ridge Regression, Elastic Net, etc. In [8], 
an L1-Norm with multiple kernel learning and embedded 
feature selection method are used for SER. The hybrid 
method is a combination of two or more feature selection 
methods (e.g., filter + wrapper). These methods try to ac-
quire the benefits of both techniques by combining their 
corresponding strengths. It achieves improved efficiency, 
prediction performance and decreases computational com-
plexity. The most widely used hybrid method is the com-
bined feature selection with filter and wrapper approaches. 

Ensemble method constructs a collection of feature 
subgroups and produces an aggregate result from the 
group. The primary goal of this method is to tackle the 
unpredictability problems in most of the feature selection 
algorithms. This method is based on various subsampling 
schemes in which one feature selection technique runs on 
many subsamples, and the resultant features are combined 
to attain a subset with more stability. With this, for high 
dimensional data, the feature selection performance is no 
longer dependent on any individual selected subset, thus 
attains more flexibility and robustness. 

In [9], a sparse representation based sparse partial 
least squares regression (SPLSR) feature selection method 
is used for SER. Apart from these, feature selection tech-
niques, feature transformation methods can also be used for 
feature dimension reduction in SER [10–12]. In [10], semi-
NMF feature transformation technique with multiple kernel 
Gaussian process is used for feature dimension reduction. 
In [11], a supervised feature transformation based dimen-
sion reduction method i.e., modified supervised locally 
linear embedding (MSLLE) algorithm is adopted for SER. 
In [12], principal component analysis (PCA) is used for 
SER to transform the high dimensional feature space to 
a lower dimension. 

In [13], unsupervised feature learning is carried out 
using k-means clustering, sparse Auto-Encoders (AE) and 
sparse restricted Boltzmann machines for feature mapping 
to obtain optimal feature set for SER. The adversarial AEs 
and variational AEs have the ability to encode the high 
dimensional feature vector to a lower dimension and also 
have the ability to reconstruct the original feature space. 
Therefore, in [14], [15], these are used as feature dimension 
reduction techniques for SER. In [16], a new variant of 
feature extraction technique i.e., deep neural network based 
heterogeneous model consisting of AE, denoising AE and 
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an improved shared hidden layer AE is used to extract the 
features from speech signal. These layers also provide 
feature optimization up to some extent. But to obtain better 
performance for SER with the high-dimension feature set, 
a fusion level network with support vector machine (SVM) 
classifier is used. 

In this paper, an SER system is proposed with unsu-
pervised feature selection algorithms with the Support 
Vector Machine (SVM) classifier using Linear and Radial 
Basis Function (RBF) kernels. The significant contribu-
tions of this work are: 

i) Using the UFSOL and FSASL unsupervised feature 
selection algorithms for feature selection which have 
not yet been explored for SER. 

ii) To propose a Subset Feature Selection (SuFS) algo-
rithm to improve the performance of the proposed 
SER system further by selecting the subset of features 
after UFSOL and FSASL feature selection, based on 
the 10-fold validation accuracy obtained by using 
UFSOL and FSASL algorithms, as the decisive factor 
for feature selection. 

The rest of the paper is structured as follows: Sec-
tion 2 describes the proposed SER system with UFSOL, 
FSASL algorithms along with a novel Subset Feature Se-
lection (SuFS) algorithm and Section 3 discusses the per-
formance analysis of the proposed SER system followed by 
Section 4 with the conclusion and future scope of the pro-
posed work. 

2. Proposed Speech Emotion Recogni-
tion System using Unsupervised 
Feature Selection Algorithms 
In the proposed SER system, after the feature extrac-

tion, the unsupervised feature selection algorithms, i.e., 
UFSOL and FSASL are used individually to select the most 
prominent from the original feature set as shown in Fig. 3. 

2.1 Database 

In the proposed work, EMO-DB and IEMOCAP da-
tasets are considered for the SER analysis. EMO-DB, the 
German database [18] is widely used in SER analysis by 
many of the researchers. The recording for emotional data 
was done in an anechoic chamber by five male and five 
female actors between the age group of 25–35. Totally 535 
speech signals were recorded at 48 kHz with Anger, Bore-
dom, Disgust, Anxiety/Fear, Happiness, Sad and Neutral. 
Later these are down-sampled to 16 kHz. The Interactive 
Emotional Dyadic Motion Capture (IEMOCAP) database 
[19] is an acted, multimodal and multi-speaker database. 
Twelve hours of audio-visual data that include video, 
speech, text transcriptions and motion capture of the face. 
In this work, the speech data with emotions, anger, happi-
ness, neutral and sadness are considered as in most of the 
SER works, with a total of 4490 utterances. 

 
Fig. 3. Proposed SER system using unsupervised feature 

selection. 

2.2 Pre-Processing 

The speech signal is initially passed through a pre-
emphasis filter to boost the energy in their higher 
frequencies which are attenuated during the speech signal 
production from vocal tract [20]. 

2.3 Feature Extraction 

Feature Extraction in speech emotion recognition is 
the process of extracting the speech specific features that 
have the emotion relevant information [1]. In order to ob-
tain the emotional contents from a speech signal, a partic-
ular set of features can be extracted by applying various 
signal processing techniques. In this work, INTERSPEECH 
2010 paralinguistic challenge feature set and Gammatone 
Cepstral Coefficients (GTCC) are used as features. The 
INTERSPEECH 2010 paralinguistic challenge set consists 
of 1582 features with a four-set of features combined [21].  
 

Descriptors Functionals 
PCM Loudness 
MFCC [0-14] 
Log Mel Freq. Band [0-7] 
LSP Frequency [0-7] 
F0 by Sub-Harmonic Sum. 
F0 Envelope 
Voicing Probability 
Jitter Local 
Jitter DDP 
Shimmer Local 

Position – max./ min. 
Arithmetic mean, Standard Deviation 
Skewness, Kurtosis 
Linear regression coefficient 
Linear regression error 
Quartile 
Quartile range 
Percentile 
Percentile range 
Up-level time  

Tab. 1.  INTERSPEECH 2010 paralinguistic feature set. 
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The Munich open Speech and Music Interpretation by 
Large Space Extraction (openSMILE) toolkit [22] is uti-
lized to extract the 1582 features for the individual speech 
signal. The configuration file ‘IS10paraling:conf” is used to 
obtain these features and the features, along with the de-
scription are as shown in Tab. 1. 

The gammatone filter takes its name from the impulse 
response, which is the product of a Gamma distribution 
function and a sinusoidal tone centered at the frequency, 
being computed as [23]: 

      1 2
ce cos 2n Btg t Kt f t      (1) 

where g(t) is the impulse response of gammatone filter; K 
is the amplitude factor; n is the filter order; fc is the central 
frequency in Hz; ߶ is the phase shift; B is the duration of 
impulse response (B = 1.019  ERB(fc)).  

ERB is the equivalent rectangular bandwidth i.e., 
ERB(f) = 24.7 + 0.108f. The center frequency fc of each 
gammatone filter is equally spaced on ERB scale, i.e., 

   high low1
c low

ERBS f f
f ERBS ERBS f

N

 

  
 
 

, where 

   1021.4 log 1 0.00437ERBS f f  .  

The fourth order gammatone filter is similar to human 
auditory model, therefore n = 4. Here, flow = 62.5 Hz, 
fhigh = 3400 Hz and N is the number of gammatone filters 
i.e., 20. After obtaining the gammatone filter coefficients 
the cepstral analysis is applied to these, obtaining a total of 
20 gammatone cepstral coefficients using the gammatone 
filter. 

2.4 Unsupervised Feature Selection 

The unsupervised feature selection algorithms, i.e., 
UFSOL and FSASL, which are not yet explored for SER so 
far, are used in this work. Apart from this, a novel Subset 
Feature Selection algorithm is modelled by the results ob-
tained after using UFSOL and FSASL algorithms to im-
prove the performance of the SER system further. The 
entire set of 1602 features is given to the feature selection 
algorithms to select the most prominent features, as shown 
in Fig. 3. The UFSOL and FSASL algorithms are discussed 
as below: 

2.4.1 Unsupervised Feature Selection with Ordinal 
Locality (UFSOL): 

Consider X = [x1,…,xd] m  d as the initial feature 

matrix with d speech signals and m number of features. 
Generally the regularized regression, feature selection is 
formulated as [24]: 

 T 2
F 2,minW q W X H W   (2) 

where W m  d2 (m < d2) is a projection matrix/ feature 

selection matrix; l2,q-norm (q is typically set to 0 or 1) 

assures the sparseness in rows of W; H = [h1,…,hd] d2  d 

is a target matrix in this unsupervised feature selection 
algorithm.  

Whereas, H is a label matrix in case of supervised 
multi-class data. In this work, the bi-orthogonal semi Non-
negative Matrix Factorization (NMF) is used to decompose 
H into two new matrices i.e., H ≅ UV with V  0, VVT= I 

and UTU = I.  

If the feature set selected for original sample xi is 
supposed to be yi = WTxi, then Y = WTX. According to the 
principle of “ordinal locality preserving”, given a triplet 
(xi, xu, xv) comprised of xi and its neighbors xu and xv, their 
corresponding feature groups also form a triplet (yi, yu, yv). 
Let the distance metric be denoted by dist(.,.). The feature 
selection holds ordinal locality preserving if the following 
condition is preserved: i.e., if dist(xi,xu)  dist(xi,xv) then 
dist(yi,yu)  dist(yi,yv).  

Based on this, the appropriate feature group for each 
data point is identical to optimizing the following ordinal 
locality preserving loss function over a collection of triplets 
as below:  

    
1

max dist , dist , 
i i

d
i
uv i u i v

i u v  

  
Y

N N

A y y y y   (3) 

where Ni is a set of sequence numbers indicating the k 
nearest neighbors of xi; A

i denotes an antisymmetric matrix 
with (u,v)th element, the dist(xi,xu) – dist(xi,xv). If the 
weighting matrix is denoted as C m  d then 
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From (4), equation (3) is equivalent to  

  
1 1

min dist ,  .
d d

ij i j
i j

y y
 


Y
C   (5) 

The squared Euclidean distance is used to establish 
each pairwise distance. The loss function of ordinal  
locality preserving can be written accordingly as 

2

2
1 1

min
d d

ij i j
i j 

 y y
Y

C , which has an equivalent compact 

matrix form:  Tmin Tr
Y

YLY  as well as 

 T Tmin Tr
W

W XLX W  by substituting Y = WTX. From these 

considerations, (2) can be formulated as 

  2T T T

2,1
min Tr ,

F
    F

W, U,V
W X UV W W XLX W

T Ts.t. ,  0,    IW W = I V VV        (6) 

where  and  are scalar constants that controls the 
relativeness of corresponding terms.  

According to half-quadratic theory, for a fixed t, there 
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is a conjugate function (.), with 

 2 2  inf
2r R

r
t t r     

 


. The infimum could be 

reached at 2 1 /r t   . With this, (4) can be optimized 

by minimizing its augmented function	ܨ as below: 
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  (7) 
where R is a m  d2 diagonal matrix storing the auxiliary 
variables and ሼ߰ሽୀଵ

  are conjugate functions. i.e.,  

    min F  min F̂
W,U,V W,U,V,R

W,U, V W, U, V, R . (8) 

The minimization of F̂(W,U,V,R) is as shown below: 

i) The diagonal elements of R are updated in parallel:  

 2

2
1 /ii i  R W   (9) 

The algorithm to solve (7) is as below: 
 

Algorithm 1: The algorithm to solve (7) 

Input: Data matrix X = [x1,…,xd] m  d; Number of each 

sample’s nearest neighbors k;  Parameters d2, c, , and . 

Solution: 
1: Compute C via (6) and its corresponding Laplacian 

matrix L; 
2: Initialize W(0) with d2 different columns randomly 

selected d1  d1 identity matrix, t = 0; 
3: while not convergence do 
4: t  t + 1; 
5: Update R(t) via (9); 
6: Update U(t) and V(t) by K-means; 
7: Update W(t) by Eigen decomposition; 
8: end while 

Output: 
WFeature Selection matrix; V cluster indicator matrix. 

ii) To solve (7), (U, V) is updated for fixed W by apply-
ing orthogonal Semi-NMF on projected data i.e., fea-
ture selection matrix Y = WTX . The orthogonal semi-
NMF problem, 2 Tmin ,  s.t. 0,  

F
 

U,V
Y UV V VV  is 

equivalent to relaxed K-means clustering. The zero 
gradient condition U = WTXVT is attained by updat-
ing (U, V) using k-means clustering. 

iii) W is updated with (U, V) fixed, substitute 
U = WTXVT in f(W,U,V) and the objective function 

 
T

Tmin Tr
W W=I

W GW 	is solved by applying Eigen 

decomposition on  T T  
2

    G R X L I V V X . 

The optimal W comprises d2 Eigen vectors 
corresponding to the smallest Eigen values of d2. 

All the above steps are updated until convergence as 
summarized in Algorithm 1. W is the resultant feature 
selection matrix. 

2.4.2 Feature Selection with Adaptive Structure 
Learning (FSASL): 

In this algorithm, consider the feature set as X  d  m, 

where d is the dimension of the speech files and m is the 
number of features. The parameters α, β, γ, µ are consid-
ered as the regularization parameters used to balance spar-
sity and reconstruction error of global as well as local 
structure learning. Also, considering the optimized data 
dimension as c, the resultant optimized feature set  d  c. 

Using the general equation that guides the FSASL method 
[25]: 

 
 
 

2T T

1

2T T 2

21
,

,

min

m

q r qr qr
q r

x x



  

  

  

Z,S,P
Z X Z XS S

Z Z P P Z

    (10) 

subject to Sqr = 0, P̅1m= 1m, P̅  0, ZTXXTZ = I̅; where, 
X = Input Feature set; x = a particular row of data matrix; 
 

Algorithm 2: FSASL Algorithm 

Input: Input feature set as X m  d; d is the dimension of 

the speech files; m is the number of features. 

Solution: 

For each data sample xq, all the data points {xr}
m

r=1 are 
considered as the neighborhood of xq	with probability 
P(q,r). 

S = Weight matrix of the data matrix; 
s = a particular row of the Weight matrix; 
Z = feature selection and transformation matrix. 

The optimization problem in (10) derives different 
variables (S, P and Z(t)) into a set of sub-problems with 
only single variable involved and is solved as follows: 

1) Solving for S by keeping P and Z as constant. For 
each q, update the qth column of S by solving the 
problem: 

  2'min
q

q
q q q

s
x X s s  , s.t. Sqq = 0 (11) 

where X’ and x’ are the transpose matrices of X and x. 

2) Solving for P by keeping S and Z as constant. For 
each q, update the qth column of P by solving the 
problem 

  2' ' 2

,

min
m

q r qr qr
q r

x x  
W,S,P

P P    (12) 
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s.t. 1T
mpq = 1, Pqr  0. Denote A  m  m be a square 

matrix with 2' '1

2qr q rx x


  A , then the above 

problem can be written as: 

 
T

2T T1
min

2q
q q

p
p a , s.t. pT

q1m = 1, 0  pT
qr  1 (13) 

where p’(t) is the qth row of P. 

3) Compute the overall graph laplacian by L = 
LS + (LS), then 

  T
P P / 2  L D P P     (14) 

where, DP is a diagonal matrix whose ith diagonal 
element is   / 2qr rq

r

 P P  

    T

S   L I S I S .   (15) 

4) Now computing the feature selection or 
transformation matrix Z by keeping P and S as 
constant and using the equation below: 

  T T T

21
min   Tr 

Z
Z XLX Z Z , s.t. ZTXXTZ = I. (16) 

Given the tth estimation Zt	and DZt denoting the 
diagonal matrix with the ith diagonal element as 

 2
1 / 2 t

qz , (16) can be rewritten as: 

  T Tmin   Tr (  tZW
Z X L D X Z , s.t. ZTXXTZ = I.  (17) 

The optimal solution of Z gives the Eigen vectors 
corresponding to the c smallest Eigen values of generalized 
Eigen-problem: 

   T T
t

Z
X L + D X Z = ΛXX Z    (18) 

where Λ is a diagonal matrix whose diagonal elements are 
Eigen values. 

Output: Sort all the d features according to ||zq||2 (q = 1, ..., 
d) in descending order and select the top k ranked features. 

The resultant is Z as the feature selection matrix. Both 
the FSASL and UFSOL algorithms rearrange the original 
feature set accordingly, as per their prominence with the 
ranks of the corresponding algorithms. Later, the rear-
ranged feature sets are fed to the classifiers to perform 
emotion classification. 

2.4.3 Subset Feature Selection (SuFS): 

After the unsupervised feature selection, a novel 
Subset Feature Selection algorithm is introduced upon the 
UFSOL and FSASL algorithms.  

Algorithm 3: Subset Feature Selection (SuFS) 
Input: Ranking vector r based on Unsupervised Feature 
Selection; Original Feature Vector F (1602 features); 

Accuracy vector a with accuracies based on ranking of 
various features using Feature Selection algorithm; l = 
number of features at which highest accuracy is obtained 
using UFSOL or FSASL. 

Solution: 
1: Initialize sub-rank (sr) with a(1) (since, first accuracy 

value is always > 0) 
2: Initialize h = 2 
 for g = 0:1:l 
  if a(g + 1) > a(g) 
      sr(h) = r(g + 1) 
  update h ← h + 1 
 end 
3: for i = 0:1:len(sr) 
 sf(g) = F(:, sr(g)) 
    end 

Output: Subset of original feature vector (sf) 

To further reduce the dimension of the feature set 
without effecting the accuracy of the SER system, i.e., to 
obtain a better accuracy with a reduced feature set. The 
proposed SuFS depends on the ranking vector (i.e., 
prominence of the features) and the validation accuracy 
obtained from the features selected from UFSOL and 
FSASL algorithms. The ranking vector is according to d2 
smallest Eigen values of UFSOL algorithm and d smallest 
Eigen values of FSASL algorithm. The SuFS algorithm is 
discussed in Algorithm 3. The SuFS algorithm is applied to 
the features selected by UFSOL and FSASL to obtain sf 
feature vector. Further, the subset of features, i.e., features 
obtained from UFSOL-SuFS and FSASL-SuFS are given 
to the SVM classifier for both validation and testing. 

3. Simulation Results and Discussion 
In the proposed SER system, the 1602 INTER-

SPEECH Paralinguistic and GTCC features are extracted 
from the speech signal. This huge set of features is fed to 
the UFSOL and FSASL algorithms for feature selection. In 
this paper, the support vector machine (SVM) classification 
technique with Linear and Radial Basis Function (RBF) 
kernels using Hold-Out and 10-fold Cross-Validation are 
used for emotion classification. Initially, the speech signal 
database is divided into training and testing datasets. The 
80% of the dataset is considered for training and 20% for 
testing for hold-out validation. The k-fold cross-validation 
(here, k = 10) is a resampling method employed to evaluate 
machine learning models on a limited dataset. The dataset 
is randomly divided into k groups or folds of nearly equal 
size. The first fold is used as a validation set, and the model 
is fit on the remaining k – 1 folds. In this work, the 10-fold 
cross-validation schema is used to train and test the accu-
racy of the proposed SER system. Hence, the entire dataset 
is randomly split into 10 parts, among that 9 parts are used 
for training the classifier (SVM), and testing is carried out 
on the hold-out or test data, i.e., the tenth part. This process 
is repeated in 10 folds, i.e., 10 times, until the entire dataset 
is completely trained.  
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Fig. 4. Performance variation of the proposed SER system 

with FSASL and UFSOL feature selection using SVM 
classifier (10-fold cross-validation) with EMO-DB 
database. 

 
Fig. 5. Performance variation of the proposed SER system 

with FSASL and UFSOL feature selection using SVM 
classifier (10-fold cross-validation) with IEMOCAP 
database. 

The performance of the proposed SER system is eval-
uated using the machine learning performance metric, i.e., 
the Classification Accuracy. In this work, the 10-fold cross-
validation and Hold-Out Validation are used to train and 
test the accuracy of the proposed SER system. All the sim-
ulations are carried out in a Computer with Intel(R) 
Xeon(R) CPU E3-1220 v3 of 3.10 GHz 64-bit processor 
with 16 GB RAM. To select the first prominent features 
which give the highest accuracy, to select initial feature set, 
the feature selection matrix of both UFSOL and FSASL 
algorithms are given to the SVM classifier as shown in 
Fig. 3. Figures 4 and 5 show the variation of classification 
accuracy with the number of features using FSASL and 
UFSOL feature selection for EMO-DB and IEMOCAP. 

For EMO-DB, using FSASL the highest validation 
accuracy of 86% is obtained for 600 features and 85% 
validation accuracy for 500 features with UFSOL. For 
IEMOCAP, for 1250 features the highest accuracy of 
71.4% using FSASL and 72% using UFSOL is obtained.  

It is evident from Figs. 4 and 5, even with initially 
selected features using UFSOL and FSASL algorithms, the 
SER accuracy is not increasing. Therefore, still, the feature 
selection is possible from initially chosen features. Hence, 
the SuFS algorithm is applied after UFSOL and FSASL 
feature selection to acquire better accuracy with less num-
ber of features. The initially selected features are fed to the 
SuFS algorithm to reduce further the number of features 
acquiring the best performance. Later, the highest promi-
nent features selected by SuFS are fed to the SVM classi-
fier with Linear and RBF kernels for emotion classification. 

The best GTCC features selected for EMO-DB are 
GTCC [1] using FSASL and FSASL-SuFS, GTCC [2] 
using UFSOL and UFSOL-SuFS. While, for IEMOCAP, 
GTCC [1–20] i.e., the entire GTCC feature set is selected 
using FSASL, GTCC [1, 2, 4–7, 11] using FSASL-SuFS, 
GTCC [1–19] using UFSOL and GTCC [3–5, 7, 9, 10,  
12–19] using UFSOL-SuFS. The best INTERSPEECH 
Paralinguistic 2010 features selected by each of the feature 
selection algorithm that are considered in the proposed 
SER are shown in Tab. 2.  

The performance of the proposed SER system with 
different feature selection algorithms is compared with the 
baseline SER system (without feature selection) using 
SVM classifier with Linear and RBF kernels using hold-out 
validation and 10-fold cross-validation are as shown in 
Tab. 3 and 4 in terms of classification accuracy and valida-
tion (or) testing time. Tables 3 and 4 show the simulation 
results of the proposed SER system for EMO-DB and 
IEMOCAP databases with hold-out validation and 10-fold 
cross-validation using SVM classifier. From the results, it 
can be clearly understood that for EMO-DB database, bet-
ter performance is achieved upon using the SVM classifier 
with Linear Kernel, and RBF kernel for IEMOCAP database. 

From the results shown in Tab. 3 and 4, it is clear that 
the SVM with Linear kernel gives better classification for 
EMO-DB data and with RBF kernel in case of IEMOCAP 
data. Table 3 shows the hold-out validation results for 
EMO-DB and IEMOCAP database. For EMO-DB, the 
highest testing accuracy of 86% with the lowest computa-
tional time for training and testing, i.e., 0.165 and 0.032 
seconds using FSASL-SuFS algorithm. Similarly, for 
IEMOCAP database, the highest testing accuracy and at 
lowest computational time of 14 and 2.9 seconds for train-
ing and testing is 77.5% using UFSOL-SuFS algorithm. 

In Tab. 4, for EMO-DB database, using SVM with 
Linear kernel the 10-fold cross-validation accuracy of 
baseline SER system without feature selection is 85(0.8) % 
with 1602 features. After applying the feature selection 
algorithms, the dimension of the feature set is reduced. The 
proposed SER system achieves an accuracy of 86% using 
UFSOL with selected 500 features and 85(1.3)% using 
FSASL with 600 selected features. The SuFS algorithm is 
applied on these selected features of UFSOL and FSASL, 
thus reducing the number of features and acquiring the 
accuracy of 85(1.5)% for UFSOL-SuFS with 450 features 
and 85(0.8)% for FSASL-SuFS with 350 features. Simi-
larly, for IEMOCAP database using SVM with RBF kernel, 
the 10-fold cross-validation accuracy of baseline SER sys-
tem without feature selection is 69(0.4)% with 1602 fea-
tures. After feature selection, the proposed SER system 
achieves an accuracy of 69(0.4)% using UFSOL and 
FSASL with selected 1250 selected features. The accuracy 
with UFSOL-SuFS is 77(0.4)% with 800 features and 
69(0.4)% for FSASL-SuFS with 650 features. The confu-
sion matrices with individual accuracy of each emotion of 
EMO-DB and IEMOCAP database using the proposed 
SER system with baseline, FSASL, UFSOL, FSASL-SuFS 
and UFSOL-SuFS are shown in Tab. 5 to 14. 
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Method EMO-DB IEMOCAP 
 
 
 
 
 
 
 
 
 
 
 
 
 

FSASL 
 

Position – max. For all functionals and their deltas Position – max. For all functionals and their deltas 
Position – min. For all functionals and their deltas except F0 Env Position – min. For all functionals and there deltas 

Arithmetic 
mean 

F0 Sub,F0 Env, MFCC[1,3-14] Arithmetic 
mean 

F0Sub+∆,F0Env+∆,Voicing Prob,JitterLocal,JitterDDP,ShimmerLocal, 
PCM,MFCC[0-14],MFCC∆[0,1,3,5-7,9-14],LogMel[0-7],LSP [1-7] 

Standard 
Deviation 

F0 Sub, F0 Env+∆,MFCC[1-14], MFCC∆[0,1,3,4,7,9-
14] 

Standard 
Deviation 

F0 Sub+∆,F0 Env+∆,Jitter Local,Jitter DDP, Shimmer Local, PCM, 
MFCC+∆[0-14], Log Mel [0-5,7], Log Mel ∆ [0-7], LSP [1-7] 

 
Skewness 

F0 Sub ∆, F0 Env+∆, Voicing Prob, Jitter Local ∆, 
Jitter DDP+∆,Shimmer 

Local+∆,LSP[6],LSP∆[6,7],MFCC∆[1] 

 
Skewness 

For all functionals and their deltas 

 
Kurtosis 

F0 Sub+∆, F0 Env+∆,Voicing Prob+∆, Jitter Local+ ∆,
Jitter DDP+ ∆,Shimmer Local+ ∆, PCM ∆,MFCC[0,3-
5,10,12,14], MFCC∆[2,4-10,12,13], Log Mel [0-3,6], 

Log Mel ∆ [1-7], LSP [0,5-7], LSP∆ [0-3,6] 

 
Kurtosis 

 
For all functionals and their deltas 

Linear 
regression 
coefficient 

c1 F0 Sub Linear 
regression 
coefficient

c1 F0 Sub+∆,F0 Env+∆, MFCC[0-2,4-14] 
c2 F0 Sub, F0 Env+∆, MFCC[0-14] c2 F0 Sub+∆,F0 Env+∆,Voicing Prob, Shimmer Local, PCM, MFCC+∆[0-

14],Log Mel [0-7], Log Mel ∆ [0-6], LSP [0-7] 
 

Linear 
regression 

error 

A F0 by Sub, F0 Env, MFCC[0-13], MFCC∆[1,7,9,10]  

Linear 
regression 

error 

A F0 Sub+∆,F0 Env+∆, Jitter Local, Jitter DDP, Shimmer Local,PCM, 
MFCC+∆[0-14], Log Mel+∆ [0-7] 

Q MFCC[0-14], MFCC∆[0-7,9-13], F0 Sub + ∆, F0 Env 
+ ∆, Log Mel [0-6] 

Q F0 Sub+∆,F0 Env+∆, Shimmer Local, PCM, MFCC [0-14], MFCC∆[0-
13],Log Mel [1-7], Log Mel ∆ [0-7] 

 
 

Quartile 

1 F0 Sub, F0 Env, Log Mel [0,1,4], MFCC[0-12,14], 
MFCC∆[1,10,14] 

 
 

Quartile 

1 F0 Sub+∆,F0 Env+∆, Voicing Prob, Shimmer Local, PCM, MFCC+∆[0-
14], Log Mel+∆ [0-7], LSP [0-7] 

2 F0 Sub, F0 Env, MFCC[0-14] 2 F0 Sub∆,F0 Env+∆, Voicing Prob, Shimmer Local, MFCC+∆[0-14], Log 
Mel [0-7], Log Mel ∆ [0,1,4-6], LSP [1-7] 

3 F0 Sub, F0 Env+ ∆, MFCC[0-11,13,14], 
MFCC∆[0,3,7,10,11,14], Log Mel [3-5] 

3 F0 Sub+∆,F0 Env+∆, Voicing Prob, Shimmer Local, PCM, Jitter Local, 
Jitter DDP, MFCC+∆[0-14], Log Mel+∆ [0-7], LSP [1-7] 

 
 

Quartile 
range 

2-1 F0 Sub, F0 Env, MFCC[0-4,6-9,11-14], MFCC∆[7,10],
Log Mel [0,5] 

 
 

Quartile 
range 

2-1 F0 Sub+∆,F0 Env+∆, Voicing Prob, Shimmer Local, PCM, MFCC+∆[0-
14], Log Mel [0-7], Log Mel ∆ [0,2-7], LSP [0,2,3,5] 

3-1 F0 Sub, F0 Env+ ∆, MFCC[0-14], 
MFCC∆[0,1,3,4,6,7,9-12,14], Log Mel [0-7] 

3-1 F0 Sub+∆,F0 Env+∆, Voicing Prob, Shimmer Local, PCM+∆, Jitter Local,
Jitter DDP, MFCC+∆[0-14], Log Mel+∆ [0-7], LSP [0,3,5] 

3-2 F0 Sub, F0 Env+ ∆, MFCC[0-4,6-14], 
MFCC∆[0,1,3,6,9,10,14], Log Mel [3-5] 

3-2 F0Sub+∆,F0Env+∆,VoicingProb, ShimLocal,PCM,JitteLocal,Jitter DDP, 
MFCC+∆[0-14],LogMel[0-7],LogMel∆ [0,1,3-6], LSP [3,4] 

 
Percentile 

99.0 F0 Sub, F0 Env+ ∆, MFCC[0-14], MFCC∆[1-14],  
Log Mel [1-7], PCM 

 
Percentile

99.0 F0Sub+∆,F0Env+∆,VoicingProb,ShimLocal, PCM+∆, Jitter Local, 
JitterDDP,MFCC[0,2-14],MFCC∆[0-14],LogMel+∆[0-7],LSP[0-7] 

1.0 F0 Env ∆, MFCC+∆[0-14], Log Mel [3-7]  1.0 F0Env+∆,VoicingProb,PCM∆,MFCC+∆[0-14],LogMel+∆[0-7], LSP[0-7]
Percentile  

range 
F0 Env, MFCC+∆[0-14], Log Mel [1,2,5,6], Log Mel 

∆[0,1,7], PCM 
Percentile  

range 
F0 Env+∆, VoicingProb, PCM+∆, MFCC+∆[0-14], LogMel[0-7], 

LogMel∆ [0-2,4-7], LSP [0-7], LSP∆[2] 
 
 

Up-level time 
90 

 
 

Jitter Local ∆ 

 
 

Up-level 
time 

75 F0 Sub+∆,F0 Env+∆,Voicing Prob,Jitter Local+∆, Jitter DDP, Shimmer 
Local+∆,PCM∆, MFCC[0-3,5-10,12-14],MFCC∆[0-14], LogMel[0-6], 

LogMel∆ [0,4,5,7], LSP [0-7], LSP∆[0-2,4,6,7] 
90 F0Sub+∆,F0Env,VoicingProb,JitterLocal+∆,JitterDDP+∆, 

ShimmerLocal+∆, MFCC[0,1,5-7,9,13],MFCC∆[2,4,7,12], LogMel[0-2,4-
6], LSP [0,2,3,5-7], LSP∆[2] 

 
 
 
 
 
 
 
 
 
 
 

UFSOL 

Position – max. For all functionals and their deltas except LogMel∆[6] Position – max. For all functionals and there deltas 
Position – min. For all functionals and their deltas except F0 Env Position – min. For all functionals and there deltas 

Arithmetic 
mean 

F0 Sub,F0 Env, PCM, MFCC[0-14] Arithmetic 
mean 

F0Sub∆,F0Env+∆,VoicingProb,,JitterDDP+∆,ShimmerLocal+∆, PCM, 
MFCC[0-14],MFCC∆[3-6,8,12,14],LogMel[0-7],LSP[0-7] 

Standard 
Deviation 

F0 Sub, F0 Env, MFCC[0,2,5,8-12] Standard 
Deviation 

F0 Sub+∆,F0 Env+∆, Jitter Local+∆, Jitter DDP+∆,Shimmer 
Local+∆,PCM, MFCC+∆[0-14], Log Mel+∆ [0-7], LSP[0-2,5] 

 

Skewness F0 Sub ∆, Jitter Local ∆, Jitter DDP+∆,Shimmer 
Local∆, 

 

Skewness For all functionals and their deltas 

 
Kurtosis 

F0 Sub+∆,F0 Env+∆,Voicing Prob,Jitter Local+∆, 
Jitter DDP+∆,Shimmer Local+∆,PCM, Log Mel [6], 

Log Mel ∆ [2,4,6,7], LSP[6,7], LSP∆ [4,6] 

 
Kurtosis 

 
For all functionals and their deltas 

Linear 
regression 
coefficient 

c1 PCM Linear 
regression 
coefficient

c1 F0 Sub+∆,F0 Env+∆, PCM, MFCC[0-11,13,14] 
c2 F0 Sub,F0 Env+∆,PCM,MFCC[0-14],Log Mel[1,2,4] c2 F0Sub+∆,F0Env+∆,JitterLocal,JitterDDP,ShimmerLocal+∆,PCM, 

VoicingProb,MFCC+∆[0-14],LogMel[0-7],LSP[0-7],LogMel∆[0-2] 
 

Linear 
regression 

error 

A F0 Sub,F0 Env, PCM, MFCC[0-4,7,8,10]  

Linear 
regression 

error 

A F0 Sub+∆,F0 Env+∆, PCM, Shimmer Local+∆, MFCC+∆[0-14], Log 
Mel+∆ [0-7], LSP[0] 

Q F0 Sub,F0 Env+∆,PCM,MFCC+∆[0-14],Log Mel[0-7] Q F0Sub+∆,F0Env+∆,PCM,JitterDDP∆,MFCC+∆[0-14],LogMel[0-7], 
LogMel∆[1-7] 

 
 

Quartile 

1 F0 Sub,F0 Env,MFCC[0-14],Log Mel[0,2,3,5,6]  
 

Quartile 

1 F0Sub+∆,F0Env+∆,Jitter DDP,Shimmer Local+∆, PCM,Voicing 
Prob,MFCC+∆[0-14], Log Mel+∆ [0-7], LSP [0-7] 

2 F0 Sub,F0 Env,MFCC[0-14],Log Mel[6,7] 2 F0Sub+∆,F0Env+∆,VoicingProb, Jitter DDP,Shimmer Local+∆, 
PCM,JitterLocal, MFCC+∆[0-14],Log Mel [0-7], LSP [0-7] 

3 F0 Sub,F0 Env,MFCC[0-14] 3 F0Sub+∆,F0Env+∆,VoicingProb, Jitter DDP+∆,Shimmer Local, 
PCM,JitterLocal, MFCC+∆[0-14],Log Mel +∆ [0-7], LSP [0-7] 

 
 

Quartile 
range 

2-1 F0 Sub,F0 Env,MFCC[0-7,9,10,12-14]  
Quartile 

range 

2-1 F0Sub+∆,F0Env,ShimmLocal+∆,PCM,MFCC+∆[0-14],LogMel+∆[0-
7],LSP[6] 

3-1 F0 Sub,F0 Env+∆,MFCC[0-14], MFCC∆[0,1,2,6,7], 
Log Mel[1] 

3-1 F0Sub+∆,F0Env+∆,Shimmer Local+∆, PCM, VoicingProb ∆, Jitter 
DDP∆, MFCC+∆[0-14],Log Mel +∆ [0-7], LSP [0-3,5] 

3-2 F0 Sub,F0 Env, MFCC[0-3,5,6,8,9,13,14] 3-2 F0Sub+∆,F0Env+∆,Shimmer Local+∆, PCM, MFCC+∆[0-14], Log Mel 
[0-7], Log Mel ∆ [1-7], LSP [1,2] 

 
 

Percentile 

99.0 F0 Sub,F0 Env+∆,MFCC[0-14], MFCC∆[0-5,7-
12],Log Mel[2,3] 

 
 

Percentile

99.0 F0Sub+∆,F0Env+∆,Shimmer Local+∆, Jitter DDP+∆, PCM∆, LSP∆[1], , 
LSP [0-7], VoicingProb, Jitter Local, MFCC+∆[0-14],Log Mel +∆ [0-7]

1.0 F0 Env+∆,MFCC[0-14], MFCC∆[0-4,6-12],Log 
Mel[0,2,3,5-7] 

1.0 F0Env+∆, PCM+∆, VoicingProb, MFCC+∆[0-14],Log Mel +∆ [0-7], LSP 
[0-7], LSP∆[0,1] 

Percentile  
range 

F0Env+∆,MFCC+∆[0-14],LogMel[0,2,3,5-7], 
LogMel∆[2] 

Percentile  
range 

F0Env+∆, PCM+∆, VoicingProb+∆, MFCC+∆[0-14],Log Mel +∆ [0-7], 
LSP [0-7], LSP∆[1-6] 
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Up-level time 

75 

 
Shimmer Local ∆ 

 
Up-level 

time 

75 F0Sub+∆,F0Env,Shimmer Local+∆, Jitter DDP+∆, VoicingProb, Jitter 
Local+∆, MFCC+∆[0-14], Log Mel[0-7],Log Mel∆[2,3,6, 7], LSP[0-7], 

LSP∆[0-3,5-7] 
90 F0Sub+∆,F0Env,ShimmerLocal+∆,JitterDDP+∆,VoicingProb,JitterLocal

+∆,MFCC[1,6,13,14],MFCC∆[2],LogMel[0,1,6,7],LSP[1,3-7], LSP∆[5]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

FSASL
-SuFS 

 
 

Position – max. 

F0 Sub+∆,F0 Env,Voicing Prob+∆,Jitter Local+∆, 
Jitter DDP+∆,Shimmer Local,PCM+∆, MFCC[0,2,3,5-
8,10,11], MFCC∆[0-3,9,11,14],Log Mel[0-2,6,7],Log 

Mel∆[0-2,4,6,7], LSP[1,2,5,7], LSP∆[0,3-7] 

 
 

Position – max.

 
F0Sub∆,F0Env,Shimmer Local+∆, Jitter DDP+∆, VoicingProb,PCM+∆, 

MFCC[0,3-14], MFCC∆[0,2-6,8-14], Log Mel[0-3,5-7], Log Mel∆[0-
3,5,7],  LSP[0,4-7], LSP∆[0-3,5-7] 

 
Position – min. 

F0 Sub+∆,F0 Env ∆,Voicing Prob+∆, Jitter DDP+∆, 
MFCC[1-3,5,7,11,12], MFCC∆[0-5,7,9,10,12-14],Log 

Mel[0,1,6,7],LogMel∆[1,3-7], LSP[2,3,5-7], LSP∆[2-7]

 
Position – min.

F0Sub+∆,F0Env+∆,Shimmer Local, Jitter DDP+∆, VoicingProb+∆, Jitter 
Local∆,PCM, MFCC[3-5,7,9,10,12-14], MFCC∆[0,1,5-14], Log Mel +∆ 

[0-7], LSP[0,2-7], LSP∆[0-7] 
Arithmetic 

mean 
MFCC[1,3,4,8,10-13] Arithmetic 

mean 
F0Sub∆,Voicing Prob, JitterLocal, JitterDDP, PCM,MFCC[0,2-9,11-13], 

MFCC∆[0,1,3,6,7,11-14],LogMel[1,4],LSP [2] 
Standard 
Deviation 

F0 Env ∆, MFCC[2-4,6,7,9,10,12,13], MFCC∆[7,10] Standard 
Deviation 

Jitter Local, PCM, MFCC[2,3,9,11], MFCC∆[3,11,14], Log Mel [1,2,6], 
Log Mel ∆ [2,5], LSP [0,2,3] 

 

Skewness F0Sub∆,F0Env∆,Voicing Prob,Jitter Local ∆,Shimmer 
Local∆ 

 

Skewness Shimmer Local+∆,Jitter Local,PCM, MFCC[10,12], MFCC∆[1,3,5,7 Log 
Mel [3,6,7], Log Mel ∆ [0,4], LSP [1,6],LSP∆[7] 

 
Kurtosis 

F0Sub∆,F0Env,VoicingProb+∆,JitterLocal,Shimmer 
Local∆, Jitter DDP+∆, MFCC[0,3,12,14], 

MFCC∆[2,9,10,12], Log Mel[0,1,2],Log Mel∆[4,6,7], 
LSP[0,6,7], LSP∆[7] 

 
Kurtosis 

F0Sub∆,F0Env,Shimmer Local∆, Jitter DDP+∆, VoicingProb∆, Jitter 
Local, PCM, MFCC[5,9,10,13], MFCC∆[1,3,7-9,11], Log Mel [0-3,6,7], 

Log Mel ∆ [0,3,5-7], LSP [3-5],LSP∆[0-2,5-7] 

Linear 
regression 
coefficient 

c1 F0 Sub Linear 
regression 
coefficient

c1 F0 Sub∆,F0 Env+∆, MFCC[1,2,5-8,10-13] 
c2 F0 Sub, F0 Env+∆, MFCC[0,2-4,6,8,10,12] c2 F0 Sub∆, Voicing Prob, MFCC[0,2-8,11,12-14],MFCC∆[1,2,12,13],Log 

Mel [0,1,4,5], Log Mel ∆ [0,2,4-6], LSP [1,7] 
 

Linear 
regression 

error 

A F0 Sub, F0 Env, MFCC[1-8,10,11,13]  

Linear 
regression 

error 

A F0 Env∆, Jitter Local, Jitter DDP, PCM, MFCC[0-2,4,5,7-9,12-14], 
MFCC∆[1,3,6,12], Log Mel[1,2,5],Log Mel∆ [1,2,5,7] 

Q MFCC[0,2,5,7-14], MFCC∆[0-5,9,12-13],  F0 Sub, F0 
Env, Log Mel [0-6] 

Q F0 Env∆, Shimmer Local, PCM, MFCC [1,3,6,7,11,13,14], MFCC∆[0-2,4-
8,10,12],Log Mel [0-5], Log Mel ∆ [0,2,6,7] 

 
 

Quartile 

1 F0 Sub, Log Mel [0], MFCC[0,1,4,6,9-11,14], 
MFCC∆[10] 

 
 

Quartile 

1 F0 Sub,Voicing Prob,MFCC[1,3-7,10-14],MFCC∆[1,3,4,6,10,11], Log 
Mel[1,6],LogMel∆ [0,2-4], LSP [0-2] 

2 MFCC[0-4,6-9,11-13] 2 F0 Sub,F0 Env∆, Voicing Prob, Shimmer Local, MFCC[1,2,4-11,13,14], 
MFCC∆[0,2,3,5,7,8,11], Log Mel [0,1,3,4], Log Mel ∆ [0,1,4,5], LSP [2]

3 F0 Env+ ∆, MFCC[0-2,4,6-11,13], Log Mel [4] 3 F0 Env∆, Jitter Local, Jitter DDP, MFCC[0,2-4,8-10,13,14], 
MFCC∆[3,8,12,13]  Log Mel[0-3,6,7]LogMel∆ [1-3], LSP [1,2,7] 

 
 

Quartile 
range 

2-1 F0 Sub, F0 Env, MFCC[2,4,6,8,9,11,14], MFCC∆[10], 
Log Mel [0] 

 
 

Quartile 
range 

2-1 F0 Sub,F0 Env+∆, Voicing Prob, Shimmer Local, PCM, MFCC[0,1,5-
9,12], MFCC∆[0-2,7,13], Log Mel[1,2],LogMel∆ [0,2,3,5], LSP [0,2,3,5]

3-1 MFCC[3,6,10,11,13,14], 
MFCC∆[0,1,3,4,6,7,9,10,11,14], Log Mel [0,3-6] 

3-1 F0 Sub∆, Voicing Prob, PCM,Jitter Local, Jitter DDP, MFCC[0-4,6-8,10-
12,14],MFCC∆[2,5,10,15], Log Mel[0-3,6],LogMel∆ [0,3,7], LSP [3,5] 

3-2 F0 Env, MFCC[0,2,4,7,8,10,11-14], Log Mel [4] 3-2 F0Sub∆,F0Env∆,VoicingProb, PCM, JitterLocal, Jitter DDP, MFCC[2-
13], LogMel[0,2], LogMel∆ [1,4,5], LSP [3,4] 

 
Percentile 

99.0 MFCC[1-6,9,11], MFCC∆[2-7,9-13], Log Mel [1-
3,6,7] 

 
Percentile

99.0 F0Sub∆, VoicingProb,ShimLocal, PCM+∆, MFCC[4-6,8-11,13], 
MFCC∆[0,1,3,5,8,9,13], LogMel[2],LogMel∆[0,2,6,7],LSP[0,2,6,7] 

1.0 F0 Env ∆, MFCC+∆[0-14], Log Mel [3-7] 1.0 F0 Env+∆, VoicingProb, PCM∆, MFCC[1-3,6-8,10-14],MFCC∆[1-5,7-
9,11,13,14], LogMel[4,7], LogMel ∆[1,3,7], LSP[1,4] 

Percentile  
range 

MFCC[3,7-9],MFCC∆[0-2,4,6-9,12,13],Log Mel 
[1,2,5], Log Mel ∆[0] 

Percentile  
range 

VoicingProb, MFCC[2,4-6,8,9,12,13],MFCC∆[0,2,6-9,11,13], 
LogMel[3,5], LogMel∆ [2,5,6], LSP [0,1,3,7], LSP∆[2] 

Up-level time  
___ 

 

Up-level 
time 

75 F0 Env∆, Jitter DDP, MFCC[3,5,8,12,14],MFCC∆[0,2,8,9,11,13,14], 
LogMel[1,2,4,5], LogMel∆ [0,4,5,7], LSP [0-3,5], LSP∆[0,4,7] 

90 Voicing Prob, Jitter DDP, Shimmer Local∆, MFCC[5-7,9,13], 
MFCC∆[4,7,12], LogMel[0,2,4-6], LSP [0,2,3,5-7], LSP∆[2] 

 
 
 
 
 
 
 
 
 
 
 
 

UFSOL
-SuFS 

 
Position – max. 

F0 Sub+∆,F0 Env+∆,Voicing Prob+∆,Jitter Local+∆, 
Jitter DDP+∆,Shimmer Local, PCM, MFCC[0-7,10-

14], MFCC∆[0-3,5-13], Log Mel [0,5-7], Log Mel ∆[4-
7], LSP [0-6], LSP∆ [0,2,3-7] 

 
Position – max.

F0 Sub∆,F0 Env,Voicing Prob+∆,Jitter Local,,Shimmer Local∆, PCM∆, 
MFCC[3-9,12], MFCC∆[1,3,5,6,8-10], Log Mel [0,1,3,4,7], Log Mel 

∆[0,3,5], LSP [0,2,7], LSP∆ [1,3-7] 

 
Position – min. 

F0 Sub+∆,Voicing Prob+∆, Jitter DDP+∆,Shimmer 
Local+∆, PCM, MFCC[0-3,7-10,14], MFCC∆[3-13], 

LogMel[0,1,4-7],LogMel ∆[3-7],LSP[3-5,7],LSP∆[3-7]

 
Position – min.

F0 Sub∆,F0 Env∆,Voicing Prob,Jitter Local∆, Jitter DDP∆,Shimmer 
Local∆, PCM+∆, MFCC[1-3,6,7,12,13], MFCC∆[0,3,5-8,10,12,13], Log 

Mel [4,7], Log Mel ∆[3,5], LSP [1,3,4,6,7], LSP∆ [2,4-6] 
Arithmetic 

mean 
F0 Sub,F0 Env, PCM, MFCC[0-14] Arithmetic 

mean, 
F0Sub∆,F0Env+∆,VoicingProb,,JitterDDP∆,ShimmerLocal∆,MFCC[1,3,5,

6,8, 11,12], MFCC∆[3-6,8,12,14],LogMel[2,5,6],LSP[0,1,4-7] 
 

Standard 
Deviation 

F0 Sub, F0 Env, MFCC[0,2,5,8-12]  

Standard 
Deviation 

F0Sub+∆,F0Env∆,JitterLocal,JitterDDP+∆,ShimmerLocal+∆,PCM,MFC
C[1,2,6,7,11-14],MFCC∆[0,3,4,8,12],LogMel[1-3,6],LogMel∆[0-

7],LSP[0-2,5] 
 

Skewness 
F0 Sub ∆, Jitter Local ∆, Jitter DDP+∆,Shimmer 

Local∆ 
 

Skewness 
F0 Sub+∆,F0 Env+∆,Voicing Prob∆,Jitter Local+∆, Jitter DDP+∆, 

Shimmer Local+∆, PCM+∆, MFCC[0,,3-5,8,10,11,13,14], MFCC∆[0,5,7-
9,14], Log Mel [0-3,5,7], Log Mel ∆[0,3-7], LSP [0,1,3-7], LSP∆ [2,3,6] 

 
Kurtosis 

F0 Sub+∆,F0 Env+∆,Voicing Prob,Jitter Local+∆, 
Jitter DDP+∆,Shimmer Local+∆,PCM, Log Mel [6], 

Log Mel ∆ [2,4,6,7], LSP[6,7], LSP∆ [4,6] 

 
Kurtosis 

F0Sub,F0 Env+∆, Jitter Local∆,Shimmer Local∆, PCM+∆, MFCC[1,3-
5,8,12-14], MFCC∆[0,3,7,9,10,13,14], Log Mel [1-5], Log Mel ∆[0-3,6], 

LSP [0,1,3,4,6,7], LSP∆ [0,5-7] 
Linear 

regression 
coefficient 

c1 PCM Linear 
regression 
coefficient

c1 F0 Sub,F0 Env∆,MFCC[0-11,13,14] 
c2 F0 Sub,F0 Env+∆,PCM,MFCC[0-14],Log Mel[1,2,4] c2 F0Env,JitterLocal,JitterDDP,ShimmerLocal+∆,VoicingProb,MFCC[3,4,6,

13,14],MFCC∆[2,4-6,8],LogMel[2,4,5],LSP[0,3-7],LogMel∆[0-2] 
 

Linear 
regression 

error 

A F0 Sub,F0 Env, PCM, MFCC[0-4,7,8,10]  

Linear 
regression 

error 

A F0 Sub+∆,F0 Env+∆, Shimmer Local+∆, MFCC[0,2-5,7,8,10,12-14], 
MFCC∆[1,5,6,7,9,10,13,14], LogMel[0,3,4,7],LogMel∆ [0-7], LSP[0] 

Q F0 Sub,F0 Env+∆,PCM,MFCC[0,3-
7,12,13],MFCC∆[0,3-12],Log Mel[0-5,7] 

Q F0 Sub∆,F0 Env+∆,Jitter DDP ∆, MFCC[0-14],MFCC∆[0,3-9,11], Log 
Mel [1-4,6], Log Mel ∆ [1,3-7] 

 
 
 

Quartile 

1 F0 Sub,F0 Env,MFCC[0-14],Log Mel[0,2,3,5,6]  
 
 

Quartile 

1 F0Sub∆,JitterDDP,ShimmerLocal,PCM,VoicingProb,MFCC[0,6,8,11,12,1
4], MFCC∆[0,1,6,12-14], LogMel[2,4,5,7],LogMel∆ [0-7], LSP [0,1,4-7]

2 F0 Sub,F0 Env,MFCC[0-14],Log Mel[6,7] 2 F0Env∆,VoicingProb, Jitter DDP,Shimmer Local,JitterLocal, 
MFCC[0,1,4-6,8,10,12,13],MFCC∆[0-9,11-14],Log Mel [2,6], LSP [0,1,4-

7] 
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3 F0 Sub,F0 Env,MFCC[0-14] 3 F0Sub+∆,VoicingProb,JitterDDP+∆,ShimmLocal,PCM,JitterLocal, 
MFCC[0,4,6-8,10-12],MFCC∆[0-2,7-9,11-14],LogMel[1,6,7], 

LogMel∆[0-7],LSP[0,1,3-7] 
 
 

Quartile 
range 

2-1 F0 Sub,F0 Env,MFCC[0-7,9,10,12-14]  
 

Quartile 
range 

2-1 F0Sub∆,Shimmer Local+∆,PCM,MFCC[1-5,8,10,12],MFCC∆[0,4,7-9,11-
14], LogMel[0,1,5,6], LogMel∆[0-7],LSP [6] 

3-1 F0 Sub,F0 Env+∆,MFCC[0-14], 
MFCC∆[0,1,2,6,7],Log Mel[1] 

3-1 F0Sub∆,Shimmer Local∆, VoicingProb ∆, Jitter DDP∆, MFCC[1,4,5,8-
14],MFCC∆[0,1,10-14],LogMel[1,4,6], LogMel [0-7], LSP [0-3,5] 

3-2 F0 Sub,F0 Env,MFCC[0-3,5,6,8,9,13,14] 3-2 F0Sub,F0Env∆,Shimmer Local∆, PCM, MFCC[1,2,8,9,11,12,14], 
MFCC∆[1,2,7-9,11-14], LogMel [2-7], Log Mel ∆ [1-7], LSP [1,2] 

 
 

Percentile 

99.0 F0 Sub,F0 Env+∆,MFCC[0-14], MFCC∆[0-5,7-
12],Log Mel[2,3] 

 
 

Percentile

99.0 F0Sub+∆,ShimmerLocal∆,JitterDDP∆,PCM∆,VoicingProb,MFCC[0,2,5-
9,11, 12,14],MFCC∆[1-8,10-14],LogMel[3,5],LogMel∆[1,3-7], LSP[0,2-

7], LSP∆[1] 
1.0 F0 Env+∆,MFCC[0-14], MFCC∆[0-4,6-12],Log 

Mel[0,2,3,5-7] 
1.0 F0Env∆,PCM+∆,VoicingProb, LogMel[0,2,4,7], LogMel∆ [1,5-7], 

LSP[0,1,3-7], LSP∆[0,1],MFCC[6,7,9,12,14],MFCC∆[0-3,5,7,9,10,12-14]
Percentile  

range 
F0 Env+∆,MFCC+∆[0-14],Log Mel[0,2,3,5-7], 

LogMel∆[2] 
Percentile  

range 
F0Env∆,VoicingProb+∆, MFCC[0,4,8,9,11,12],MFCC∆[0,3,5-8,10,12-

14], LogMel[3-5,7],LogMel∆[0,2-4], LSP [0-7], LSP∆[1-6] 
 

Up-level time 
 

____ 
 

Up-level 
time 

75 F0Sub∆,F0Env, VoicingProb, Jitter Local∆, MFCC[0,3-6,8-
11,13],MFCC∆[0,2-11,14],LogMel[0-7],Log Mel∆[2,3,6, 7], 

LSP[0,1,2,4,5], LSP∆[0,1,3,5-7] 
90 F0Sub,F0Env,ShimmerLocal∆, Jitter DDP+∆, VoicingProb, Jitter Local∆, 

MFCC[1,6,13,14], MFCC∆[2], Log Mel[0,1,6,7], LSP[1,3-7], LSP∆[5] 

Tab. 2.  Best INTERSPEECH 2010 paralinguistic features selected using UFSOL, FSASL, UFSOL-SuFS and FSASL-SuFS algorithms for the 
proposed SER system for EMO-DB and IEMOCAP databases. 

 
Database 

 
Method 

 
No. of 

Features 

Linear Kernel RBF Kernel 
Training Testing Training Testing 
Time (sec) Time (sec) Acc (%) Time (sec) Time (sec) Acc (%) 

 
 
EMO-DB 

Baseline 1602 6.4 0.17 84.1 1.3 0.22 76.6 
UFSOL 500 0.22 0.05 85 0.41 0.06 75.7 
FSASL 600 0.28 0.06 86.8 0.47 0.07 75.7 
UFSOL -SuFS 450 0.21 0.043 84.9 0.57 0.08 74.8 
FSASL-SuFS 350 0.165 0.032 86 0.29 0.04 77.6 

 
 
IEMOCAP 

Baseline 1602 39.35 5.4 56.05 46.4 10.9 71 
UFSOL 1250 35 5.4 56.05 29.4 5.9 70.9 
FSASL 1250 34.1 5.3 57.3 34.6 7.7 70 
UFSOL-SuFS 800 21.2 3.4 60.6 14 2.9 77.5 
FSASL-SuFS 650 24.6 2.9 59.7 21 4.1 70.4 

Tab. 3.  Performance comparison of baseline and proposed SER systems for EMO-DB and IEMOCAP databases using SVM classifier with 
hold-out validation. 

 
 

Database 
 

Method 
No. of  

Features 
Linear Kernel RBF Kernel 

Time 
(sec) 

Acc(%) Time 
(sec) 

Acc(%) 

 
 
 
EMO-DB 

Baseline 1602 3.2 85(േ0.8) 12.13 81(േ1.5)
UFSOL 500 2.5 86(േ1.0) 4.07 78((േ1.5)
FSASL 600 1.86 85(േ1.3) 5.1 78((േ1.4)
UFSOL-
SuFS 

450 1.71 84(േ0.8) 5.4 81((േ1.4)

FSASL-
SuFS 

350 1.4 85(േ0.8) 2.68 78((േ1.3)

 
 

IEMOCAP 

Baseline 1602 304.9 58(േ0.3) 430 69(േ0.4)
UFSOL 1250 289.4 58(േ0.5) 310 69(േ0.4)
FSASL 1250 277.5 59(േ0.5) 309 69(േ0.4)
UFSOL-
SuFS 

800 216.7 57(േ0.5) 125.5 77(േ0.4)

FSASL-
SuFS 

650 199 58(േ0.4) 199.8 69(േ0.4)

Tab. 4.  Performance comparison of the baseline and proposed 
SER system for EMO-DB and IEMOCAP databases 
using SVM classifier with 10-fold cross-validation. 

 

Emotion Ang Anx Bor Dis Hap Neu Sad 

Ang 94.1% 0 0 0 5.9% 0 0 
Anx 5.5% 77.7% 0 0 16.8% 0 0 
Bor 0 0 79% 0 0 10.5% 10.5% 
Dis 0 0 0 75% 0 12.5% 12.5% 
Hap 6.2% 0 0 6.3% 87.5% 0 0 
Neu 0 5.9% 5.9% 0 0 88.2% 0 
Sad 0 0 16.7% 0 0 0 83.3% 

Tab. 5.  Confusion matrix of baseline SER system for EMO-
DB database. 

 

Emotion Ang Anx Bor Dis Hap Neu Sad 
Ang 92.4% 0 0 0 7.6% 0 0 
Anx 5.5% 84.5% 0 0 10% 0 0 
Bor 0 0 79% 0 0 10.5% 10.5% 
Dis 0 0 0 87.5% 0 12.5% 0 
Hap 12.5% 0 0 0 87.5% 0 0 
Neu 0 0 5.9% 0 0 94.1% 0 
Sad 0 0 16.7% 0 0 0 83.3% 

Tab. 6.  Confusion matrix of proposed FSASL based SER 
system for EMO-DB database. 

 

Emotion Ang Anx Bor Dis Hap Neu Sad 
Ang 94.1% 0 0 0 5.9% 0 0 
Anx 5.6% 83.3% 0 0 11.1% 0 0 
Bor 0 0 84.2% 0 0 5.3% 10.5% 
Dis 0 0 0 75% 0 25% 0 
Hap 25% 0 0 0 75% 0 0 
Neu 0 0 5.9% 0 0 94.1% 0 
Sad 0 0 16.7% 0 0 0 83.3% 

Tab. 7.  Confusion matrix of proposed UFSOL based SER 
system for EMO-DB database. 

 

Emotion Ang Anx Bor Dis Hap Neu Sad 
Ang 90.3% 0 0 0 9.7% 0 0 
Anx 9% 82% 0 9% 0 0 0 
Bor 0 0 84.2% 0 0 5.3% 10.5% 
Dis 12.5% 0 0 87.5% 0 0 0 
Hap 12.5% 0 0 0 87.5% 0 0 
Neu 0 0 5.9% 0 0 94.1% 0 
Sad 0 0 16.7% 0 0 0 83.3% 

Tab. 8.  Confusion matrix of proposed FSASL-SuFS based 
SER system for EMO-DB database. 
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Emotion  Ang Anx Bor Dis Hap Neu Sad 
Ang 96% 0 0 0 4% 0 0 
Anx 5.6% 83.3% 0 0 1.1% 0 0 
Bor 0 0 76.4% 0 0 11.8% 11.8% 
Dis 0 12.5% 0 75% 0 0 12.5% 
Hap 6.2% 0 0 6.3% 87.5% 0 0 
Neu 0 4.1% 5.9% 0 0 90% 0 
Sad 0 0 16.7% 0 0 0 83.3%

Tab. 9.  Confusion matrix of proposed UFSOL-SuFS based 
SER system for EMO-DB database. 

 

Emotion Ang Hap Neu Sad 
Ang 84% 1.3% 13.8% 0.9% 
Hap 10.8% 18% 50.4% 20.8% 
Neu 4.5% 3.5% 80.2% 11.8% 
Sad 2.2% 1.3% 24.1% 72.4% 

Tab. 10.  Confusion matrix of baseline SER system for 
IEMOCAP database. 

 

Emotion Ang Hap Neu Sad 
Ang 79.1% 1.8% 17.8% 1.3% 
Hap 10% 19% 45.9% 25.1% 
Neu 4.5% 2% 83% 10.5% 
Sad 3.5% 1.3% 24.2% 71% 

Tab. 11. Confusion matrix of proposed FSASL based SER 
system for IEMOCAP database. 

 

Emotion Ang Hap Neu Sad 
Ang 80.5% 1.3% 16.9% 1.3% 
Hap 11.7% 18.1% 46.8% 23.4% 
Neu 3.1% 2.5% 83.3% 11.1% 
Sad 3.5% 1.7% 23.2% 71.6% 

Tab. 12. Confusion matrix of proposed UFSOL based SER 
system for IEMOCAP database. 

 

Emotion Ang Hap Neu Sad 
Ang 85.5% 5.8% 6.9% 1.8% 
Hap 6.3% 20.7% 55% 18% 
Neu 4.2% 3.5% 80.9% 11.4% 
Sad 4% 2.5% 24.6% 68.9% 

Tab. 13. Confusion matrix of proposed FSASL-SuFS based 
SER system for IEMOCAP database. 

 

Emotion Ang Hap Neu Sad 
Ang 97.3% 0.9% 0.9% 0.9% 
Hap 8.1% 22.6% 50.4% 18.9% 
Neu 1.7% 2.4% 86.5% 9.4% 
Sad 1.3% 2.6% 22.8% 73.3% 

Tab. 14. Confusion matrix of proposed UFSOL-SuFS based 
SER system for IEMOCAP database. 

 

Methods EMO-DB IEMOCAP
Chen et al. 2016 [10] 77.4% - 
Zhang et al. 2013 [11] 80.85% - 
Zhang and Zhao 2013 [12] 78.5% - 
Yan et al. 2013 [9] 79.23% - 
Gudmalwar et al. 2019 [13] 75.32% - 
Ozseven 2019 [5] 84.07% - 
Sun et al. 2019 [6] 86.86% - 
Huang et al. 2015 [14] 71.16% - 
Sahu et al. 2018 [15] - 58.38% 
Latif et al. 2017 [16] - 56.42% 
Jiang et al. 2019 [17] - 64% 
 

Proposed 
SER 
System 

FSASL 86(േ1.0)% 69(േ0.4)%
UFSOL 85(േ1.3)% 69(േ0.4)%
FSASL-SuFS 85(േ1.5)% 77(േ0.4)%
UFSOL-SuFS 85(േ0.8)% 69(േ0.4)%

Tab. 15. Performance comparison of SER system with the 
existing literature works. 

From the results, it is clearly understood that by using 
the unsupervised feature selection and inducing SuFS algo-
rithm upon UFSOL and FSASL techniques, the proposed 
SER system provides improved accuracy with less compu-
tational complexity. Further, the performance of the pro-
posed SER system is compared with the different works in 
the Tab. 15 for EMO-DB and IEMOCAP databases in 
terms of the Classification Accuracy performance metric. It 
is clearly evident that the proposed SER system upon using 
the feature selection process provided improved perfor-
mance compared to the rest of the SER systems in the 
literature. 

4. Conclusion 
In this proposed SER system, the unsupervised fea-

ture selection techniques UFSOL and FSASL are employed 
to optimize the combination of INTERSPEECH 2010 Par-
alinguistic and GTCC features. Also, a novel SuFS algo-
rithm is proposed upon the UFSOL and FSASL techniques 
to reduce further the feature dimension acquiring the com-
parable performance in the proposed SER system. The 
performance of the proposed SER system is analyzed with 
EMO-DB and IEMOCAP databases using SVM classifier 
with Linear and RBF kernels. 10-fold Cross-validation 
scheme is used to train the feature sets so as to consider the 
entire dataset for both training and testing to avoid the 
over-fitting problem and Hold-Out validation scheme to 
test the performance of the proposed SER system with new 
data. The proposed SER system for EMO-DB data 
achieves highest classification accuracy using SVM with 
Linear kernel with 86% using FSASL and 85% using 
UFSOL, FSASL-SuFS and UFSOL-SuFS methods. Simi-
larly, the highest classification accuracy for IEMOCAP 
database is obtained using SVM classifier with RBF kernel 
with 77% using FSASL-SuFS and 69% using the rest of the 
methods respectively. It is clearly evident from the results 
that the proposed SER system outperforms the baseline, 
i.e., the SER system without feature selection and also with 
the existing literature works. The proposed SER system is 
language-dependent, and it can be further improved to be 
language-independent with cross-corpus analysis. 
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