
RADIOENGINEERING, VOL. 29, NO. 2, JUNE 2020 365

Sliding Window Evaluation of the Wiener-Hopf Equation
Alfred KRAKER, Barna CSUKA, Zsolt KOLLAR

Dept. of Measurement and Information Systems, Budapest University of Technology and Economics
Magyar Tudósok körútja 2. (Building I) H-1117 Budapest, Hungary

{csuka, kollarzs}@mit.bme.hu

Submitted January 30, 2020 / Accepted April 14, 2020

Abstract. This paper presents an efficient method for solv-
ing the Wiener-Hopf equation in a sliding window by cal-
culating the correlation matrices recursively. Furthermore,
a novel algorithm is introduced for evaluating the inverse
of the auto-correlation matrix – the Recursion with Splitting
the Correlation matrix into 4 Blocks for Inversion (RSC4BI)
– which can significantly reduce the computational require-
ments. The presented procedure is optimized for special
cases to achieve an efficient implementation which allows
faster real-time signal processing or to reduce the response
time – e.g. the latency – by distributing the computations over
the time. The proposed method is also validated through nu-
merical simulations and hardware implementation.

Keywords
Adaptive filtering, sliding window Wiener filter,
Wiener-Hopf equation, recursive matrix inversion,
RSC4BI

1. Introduction
In this article, it is assumed that the system is a Finite

Impulse Response (FIR) filter. This FIR filter is modelled
as a Wiener Filter (WF) [1] which is able to track a system
by linear time-invariant filtering. To perform the estima-
tion of the filter coefficients, two statistical functions have
to be calculated in matrix form: the auto-correlation of the
input signal and the cross-correlation of the input and out-
put signals. Using these matrices, the Wiener-Hopf (WH)
equation can be formulated and its solution provides the op-
timum for the filter coefficients in a Minimum Mean Square
Error (MMSE) sense [2]. These MMSE-filters – and their
modified versions – are widely used in signal processing to
identify a given dynamic system [3–6].

During the solution of the WH equation the auto-corre-
lation matrix has to be inverted. Several algorithms can be
applied to solve the inversion of matrices, depending on the
properties of the matrix [7], [8]. The computational load of
the inversion becomes critical, if a low complexity hardware

with limited performance is applied. Furthermore, this oper-
ation is also critical, if real-time adaptive filtering has to be
performed by the WF: during this adaptive method the filter
coefficients adapt over time to track the internal changes of
the dynamic system.

The challenges, that require this adaptive and real-time
filtering are very diverse, such as compensation of current
transformers [9], noise cancellation in microphones [10], or
to calculate charge density on a dielectric surface [11]. Study-
ing these examples, it can be stated that the matrix inversion
is crucial step of these procedures due the O

(
n3) complexity.

The applicability of this configuration is limited because of
the real-time environment, as the applied matrices have to be
small enough to fulfill the real-time conditions. Consider-
ing these circumstances, such algorithms have to be applied
which can evaluate the WH equation in real-time and with
low computational complexity. A common method for per-
forming matrix inversion in a recursive manner is the split
Levinson algorithm [12], [13]. Although the poor stability
limits the usage of the method [14], but its behaviour can
be predicted and compensated by computing the condition
number [15].

This article presents a novel method for the efficient
solution of the WH equation in a sliding window, the Sliding
Wiener Filter (SWF). The direct calculation of the inverse of
the auto-correlation matrix can be avoided by applying the
Recursion with Splitting the Correlation matrix into 4 Blocks
for Inversion (RSC4BI). Furthermore, not only the inverse,
but the auto-correlation matrix and cross-correlation vector
are also recursively evaluated using the results of the previous
calculations.

The paper is organized as follows. Section 2 gives
a short overview of adaptive filtering and the WH equation.
The applied notations for the investigated signals are intro-
duced as well. Section 3 describes the method of SWF, and
the RSC4BI is presented as well. In Sec. 4 the complexity
analysis of SWF is investigated and compared with the con-
ventionalWH solution. An optimized version of the RSC4BI
algorithm is also presented for low complexity implementa-
tion. Simulation results for the proposed method in terms
of runtime and quantization error are presented in Sec. 5.
Finally, the conclusions are drawn.

DOI: 10.13164/re.2020.0365 SIGNALS



366 A. KRAKER, B. CSUKA, ZS. KOLLAR, SLIDING WINDOW EVALUATION OF THE WIENER-HOPF EQUATION

Throughout the paper the following notations are used.
The matrices are denoted by capital bold letters, vectors by
small bold letters and scalars by plain letters. The superscript
()T denotes matrix or vector transposition; ()−1 denotes the
multiplicative inverse of a matrix. The applied normal dis-
tributions are denoted by the common notation: N

(
µ,σ2) ,

where µ is the mean and σ2 is the variance of the distribu-
tion, while the E {·} operator means the expected value of
the parameter, and the average of the parameter is denoted by
an overline: (·).

2. Adaptive Filtering
The adaptive filter is modeled as a linear time-invariant

filter having a finite impulse response with K coefficients.
As a result, the output signal of the adaptive filter can be
expressed by convolution using the coefficients h(n) and the
input signal x(n) as

y(n) = x(n) ∗ h(n) =
K−1∑
k=0

x(n − k)h(k). (1)

The previous equation can be expressed also as matrix mul-
tiplication in an observation window containing N samples:

y(n) = X(n)h(n) (2)

where vectors y(n) and h(n) are expressed using the signals
y(n) and h(n), respectively as:

yT(n) =
[
y(n) y(n+1) . . . y(n+N−1)

]
, (3)

hT(n) =
[
h(0) h(1) . . . h(K−1)

]
, (4)

and the data matrix X(n) with size N × K can be expressed
using x(n) as

X(n) =


x(n) x(n−1) . . . x(n−K+1)

x(n+1) x(n) . . . x(n−K+2)
.
.
.

.

.

.
. . .

.

.

.
x(n+N−1) x(n+N−2) . . . x(n+N−K)

 . (5)

The error signal vector ε is the expected value of the
difference of the desired signal vector d(n) and the output
signal vector y(n):

ε(n) = E {d(n) − y(n)} (6)

where dT(n) =
[
d(n) d(n + 1) . . . d(n+N−1)

]
.

The adaptive algorithm should minimize the cost func-
tion (C) as a function of the filter coefficients, considering (2)
and (6) it can be expressed in MMSE sense as

C (h (n)) = E
{
ε2(n)

}
= E

{
d(n)Td(n)

}
+

+hT(n)R(n)h(n)−2hT(n)p(n) (7)

where

R(n)=E
{
XT(n)X(n)

}
(8)

is the auto-correlation matrix with size K × K of the input
signal, while

p(n)=E
{
XT(n)d(n)

}
(9)

is the cross-correlation vector with size K × 1 of the input
and output signals.

The optimal solution for the filter coefficients – know
as the WH equation – can be given in MMSE sense by the
derivative of C (h (n)) with respect to h (n). The optimal
coefficients ĥopt(n) with size K × 1 are given in form [2]:

ĥopt(n) = R−1(n)p(n). (10)

3. Evaluation of the WH Equation
In this section the calculation steps for evaluating the

WH equation in a sliding window of length N – by a sample-
by-sample manner – are described. First, the matrix X(n+1)
is expressed based on the previous matrix X(n) with the aid
of a permutation matrix and an identity vector. Then, the
correlation matrices R(n+1) and p(n+1) are expressed from
the matrices elaborated in the previous step based on two dif-
ferent methods: using a permutation matrix and using dyadic
products. Finally, the RSC4BI algorithm is introduced for
the calculation of the inverse of the auto-correlation matrix
R−1(n+1). The algorithm calculates R−1(n+1) using the pre-
viously calculated matrices R(n), R(n+1) and R−1(n). The
algorithm exploits higher efficiency by splitting the matrix
into four submatrices.

For the representation of the column and row elements
of matrix X(n) from (5), the following notation will be ap-
plied:

X(n) =
[
x1(n) x2(n) . . . xK (n)

]
=


x1(n)
x2(n)
...

xN (n)


(11)

where x1,x2, . . . are the column vectors, and x1,x2, . . . are
the row vectors of X.

3.1 Calculation of X(n+1)
For the calculation of the matrix X(n+1) derived from

the matrix X(n) the permutation matrix and the identity vec-
tor are defined. The K × K permutation matrix is given as

P =



0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0


. (12)

The N × 1 identity vector – where only the ith element is 1 –
is expressed as



RADIOENGINEERING, VOL. 29, NO. 2, JUNE 2020 367

eT
i =

[
0 . . . 0 ei=1 0 . . . 0

]
. (13)

Finally, the matrix X(n+1) can be expressed as a permuted
version ofX(n) and compensated by the dyadic product of the
difference of the time domain vectors – x1(n+1) and xK (n) –
and the identity vector:

X(n+1) = X(n)P + (x1(n+1) − xK (n)) eT
1 . (14)

3.2 Calculation of R(n+1)
The auto-correlation matrix R(n+1) can be expressed

using R(n) in the following 2 different methods.

3.2.1Using Permutation Matrix

Applying (14), the transposed version of X(n+1) can be
expressed as:

XT(n+1) = PTXT(n) + e1 (x1(n+1) − xK (n))T . (15)

As a further step, the matrix R(n+1) can be expressed
through (8), (14) and (15) as:

R(n+1) =XT(n+1)X(n+1) =
=PTXT(n)X(n)P+
+ PTXT(n) (x1(n+1) − xK (n)) eT

1+

+ e1 (x1(n+1) − xK (n))T X(n)P+

+ e1 (x1(n+1) − xK (n))T (x1(n+1) − xK (n)) eT
1
(16)

where the first term in (16) can be expressed with the of (8)
as

PTXT(n)X(n)P = PTR(n)P. (17)

As a result, the updated auto-correlation matrix is expressed
from the previous results using the permutation matrix and
the identity vector.

3.2.2Using Dyadic Product

The auto-correlation matrix can also be expressed also
through dyadic product as [16], [17]:

R(n) =
N∑
i=1
(xi(n))Txi(n). (18)

The updated version of the auto-correlation matrix can be
derived in a similar manner:

R(n+1) =
N∑
i=1
(xi(n+1))Txi(n+1). (19)

Due to the calculations in a sliding window, it can be noted
that

xi(n+1) = xi+1(n), for i = 1, . . . ,N−1. (20)

As a result, the updated auto-correlation matrix can be also
expressed by subtracting the dyadic product of the oldest vec-
tor and adding the dyadic product of the newest vector to the
previous matrix [16], [17]:

R(n+1) = R(n)−

−

(
x1(n)

)T
x1(n)+

+
(
xN (n+1)

)T
xN (n+1). (21)

3.3 Calculation of p(n+1)
The cross-correlation vector p(n+1) can be similarly

expressed using p(n) in the following 2 different ways.

3.3.1Using Permutation Matrix

Similarly to the method presented in Sec. 3.2.1, d(n+1)
can expressed using the permutation matrix and the identity
vector as

d(n+1) = Pd(n) − eN (d(n)−d(n+N)) . (22)

The updated cross-correlation vector can be derived based
on (9), (15) and (22) as

p(n+1) =XT(n+1)d(n+1) =
=PTXT(n)Pd(n)−
− PTXT(n)eN (d(n)−d(n+N))+

+ e1 (x1(n+1)−xK (n))T Pd(n)−

− e1 (x1(n+1)−xK (n))T eN (d(n)−d(n+N)). (23)

As a result the updated cross-correlation vector is expressed
with the aid of the permutation matrix and the identity vector.

3.3.2Using Dyadic Product

Following the derivations presented in Sec. 3.2.2 the
cross-correlation vector can be also expressed by a dyadic
product as

p(n) =
N∑
i=1
(xi(n))Td(n + i − 1). (24)

The consecutive cross-correlation vector in the sliding win-
dow can be calculated using a dyadic product as

p(n+1) =
N∑
i=1
(xi(n+1))Td(n+i). (25)

Based on (20), (24) and (25), the updated cross-correlation
vector can be expressed from the previous cross-correlation
vector as

p(n+1) =p(n)−

−

(
x1(n)

)T
d(n)+

+
(
xN (n+1)

)T
d(n+N). (26)



368 A. KRAKER, B. CSUKA, ZS. KOLLAR, SLIDING WINDOW EVALUATION OF THE WIENER-HOPF EQUATION

3.4 Calculation of R−1(n+1) – the RSC4BI
Algorithm

In this section an efficient algorithm for the calcula-
tion of the inverse of the updated auto-correlation matrix
(R−1(n+1)) is presented. The following supplementary ma-
trix notations and their splitting into four submatrices are
used for the auto-correlation matrices and their inverse:

R(n) = A =
[
A11 a12
aT

21 a22

]
, (27)

R(n+1) = B =
[
b11 bT

12
b21 B22

]
, (28)

R−1(n) = U =
[
U11 u12
uT

21 u22

]
, (29)

R−1(n+1) = V =
[
v11 vT

12
v21 V22

]
. (30)

These notations can be seen in Fig. 1.

The derivation of inverse of such hypermatrices with
4 submatrices is presented in the Appendix. Based on (16)
and (17) it can be shown that A11 = B22. Furthermore, the
submatrix B−1

22 can also be expressed using (A-3) and (A-7)
as

B−1
22 = A−1

11 = U11 − u12u−1
22 uT

21. (31)

With the result of the previous equation, the reduced subma-
trix of B can be also expressed using (A-7) as

b11,r = b11 − bT
12B−1

22 b21. (32)

As V = B−1, the upper left corner element of V can also be
easily expressed using (31), (32), and (A-3) as

v11 = b−1
11,r = (b11 − bT

12B−1
22 b21)

−1. (33)

Similarly, the lower left submatrix ofV can be also calculated
using (A-4) as

v21 = −B−1
22 b21b−1

11,r . (34)

The upper right submatrix of V can be calculated using (A-5)
or based on (34) as

vT
12 = vT

21 = −b−1
11,rb

T
21B−1

22 . (35)

As a final step, the submatrix V22 can be expressed with the
aid of (A-6) as

V22 = B−1
22 + B−1

22 b21b−1
11,rb

T
12B−1

22 . (36)

A11

aT
21

a12

a22

A = R(n)

B22

bT
12

b21

b11

B = R(n+1)

U11

uT
21

u12

u22

U = R−1(n)

V22

vT
12

v21

v11

V = R−1(n+1)

Fig. 1. Structure of the correlation matrix (R) and its
inverse (R−1).

Finally, the updated inverse auto-correlation matrix can
be summed and expressed based on the matrices B,U and the
calculated submatrices of V as

R−1(n+1) = V =
b−1

11,r −b−1
11,rb

T
21B−1

22

−B−1
22 b21b−1

11,r B−1
22 + B−1

22 b21b−1
11,rb

T
12B−1

22

 . (37)

The steps for calculating the inverse of the auto-correlation
matrix – the RSC4BI algorithm – can be seen in Alg. 1.

Algorithm 1. The RSC4BI algorithm.
INPUT: B ≡ R(n+1), U ≡ R−1(n)
OUTPUT: V ≡ R−1(n+1)
function RSC4BI(B,U)
calculate B−1

22 using the submatrices of U (31)
calculate b11,r using B−1

22 and B (32)
using B−1

22 and b11,r express the submatrices of V:
calculate v11 (33)
calculate v21 and vT

12 (34)-(35)
calculate V22 (36)

form V using v11,v21,vT
12,v22 (37)

end function

3.5 Remarks on the Proposed Calculations
3.5.1 Initialization

As it is presented in this section,R−1 (n+1) can be evalu-
ated based on R−1 (n), therefore the initialization value of the
recursion has to be defined prior to starting the algorithm.
In this section two different methods are recommended to
perform the initialization.



RADIOENGINEERING, VOL. 29, NO. 2, JUNE 2020 369

The first method is a simple solution through inversion
of the auto-correlation matrix using the conventional pro-
cedures. However, this method requires all the samples to
arrive in the observation window, thus the filter starts to fol-
low the signal only after collecting the requested number of
input samples.

The second method is the expansion of the inverse ma-
trix according to the number of input samples. This solution
is performed by applying the Levinson algorithm spreading
the computational load across the incoming samples [12].

3.5.2Zero Valued Input

During signal acquisition, it may occur that the analog-
to-digital converter records zero values if the signal level is
too small. In such a case, X (n) contains zero value which
may lead to the rows of X not being linearly independent
anymore. Since R = XTX, the rank of the auto-correlation
matrix becomes lower than the number of columns. As a re-
sult, R becomes singular, i.e. det (R) = 0, therefore the
inversion of the matrix is not possible. To avoid this issue,
the incoming signal should be perturbed by an additive white
noise – e.g. dither – whose level has to be low enough not to
notably alter the input signal, but still large enough to enable
the inversion of the auto-correlationmatrix. Without this per-
turbation, if the signal falls to zero then the auto-correlation
matrix is also zero, so it is not invertible and the algorithm
is divergent. After the signal is present again, the diverged
algorithm can not find a proper solution, thus it can not be
convergent furthermore.

4. Complexity Analysis of the SWF

4.1 Updating the Matrices X, R and p
Since the SWF requires initial values, it is assumed

in the following subsections that X (n), R (n) and p (n) are
already available at the beginning of the calculations.

4.1.1Calculate X (n+1)

In order to update the matrix X, Equation (14) has to
be evaluated. After detailed investigation of the equation it
can be concluded that only memory operations are required
to calculate the updated X(n+1) matrix.

4.1.2Calculate R (n+1) by Permutation

To create the new auto-correlation matrix, R (n+1),
Equation (16) has to be evaluated. The complexity of each
term for addition is calculated separately.

The first term can be calculated according to (17) by
simple memory operations: shifting columns and rows.

The first factor in the second term, PTXT (n) only con-
tains memory operations. The remaining factor is a matrix
generation, where only the first column differs from zero

which is equal to x1 (n+1) −xK (n). The multiplication of
these factors is not a complete matrix multiplication; be-
cause of the zero columns, only the first column has to be
evaluated. Considering the simple matrix identity for trans-
posing the product of matrices, the third term is already given
by transposing the second one.

The subtraction in the forth term is already given, so
only the multiplication is taken into account. Due to the
special form of matrices, the zero columns and rows, this
operation can be reduced to a scalar multiplication of two
vectors of length N . As a result, this term is a zero matrix
except the element in the upper left corner.

After these calculations, the terms have to be added.
As the last three terms contain only one row or column vec-
tor or a single element, and an auto-correlation matrix is
symmetric, only a partial matrix addition is required. The
summarized computational requirements of updating R by
permutation are presented in Tab. 1.

4.1.3Calculate p (n+1) by Permutation

To create the new cross-correlation matrix, Equa-
tion (23) has to be evaluated. After the memory operations of
the permutation, a K×N matrix is multiplied by an N element
long column vector.

The first factor of the second term, PTXT (n) is already
discussed in Sec. 4.1.2. The remaining factor is a column
vector generation, where only the last element differs from
zero, which is d (n) −d (n+N). The multiplication by this
vector takes the last column from the matrix to the result.

The first factor of the third term is a matrix generation,
where only the first row (x1 (n+1) −xK (n)) differs from zero,
which is already calculated when updating R (Sec. 4.1.2).
Thismatrix ismultiplied by a permuted column vector, which
operation can be reduced to a scalar multiplication due to the
zero rows.

The subtractions in the forth term are already calcu-
lated, so only the multiplication is taken into account. The
factors of the product are almost empty, only the first row of
the matrix and last element of the column vector are not zero.
Due to the structure of the factors, only a singlemultiplication
is required.

Summarizing these computations, the terms have to be
added considering that the last two terms contain a single
element. The summarized computational requirements for
updating p by permutation are presented in Tab. 2.

4.1.4Calculate R (n+1) by Dyadic Product

According to (21), two matrices of size K×K are gen-
erated from x1 and xN . As the multiplication of two vectors
zTz results in a symmetric matrix, only the upper triangular
parts have to be calculated, thus only

(
K2+K

)
/2 multiplica-

tions are required instead of K2. These considerations can
be applied for the additions as well.



370 A. KRAKER, B. CSUKA, ZS. KOLLAR, SLIDING WINDOW EVALUATION OF THE WIENER-HOPF EQUATION

Operations × +

PTXT(n)X(n)P 0 0
PTXT(n)·

· (x1(n+1) − xK (n)) eT
1

NK (N−1)K + N

e1 (x1(n+1) − xK (n))T ·
· X(n)P

0 0

e1 (x1(n+1) − xK (n))T ·
· (x1(n+1) − xK (n)) eT

1
N N − 1

Summing terms 0 K + 1

In total: NK + N NK + 2N

Tab. 1. Computational requirements to update R by
permutation (16).

Operations × +

PTXT(n)Pd(n) NK (N − 1)K
PTXT(n)·
· eN (d(n)−d(n+N))

K 1

e1 (x1(n+1)−xK (n))T ·
· Pd(n)

N N − 1

e1 (x1(n+1)−xK (n))T ·
· eN (d(n)−d(n+N))

1 0

Summing terms 0 N + 2

In total: NK + N+
+K + 1

NK + 2N−
−K + 2

Tab. 2. Computational requirements to update p by
permutation (23).

Permutation Dyadic product
R (n + 1) NK + 2N K2 + K
p (n + 1) NK + 2N − K + 2 2K

Tab. 3. Number of additions to calculate p and R.

Permutation Dyadic product
R (n + 1) NK + N K2 + K
p (n + 1) NK + N + K + 1 2K

Tab. 4. Number of multiplications to calculate p and R.

4.1.5Calculate p (n+1) by Dyadic Product

According to (26), two column vectors of length K are
generated from x1 and xN . These vectors multiplied by d (n)
and d (N) and finally, these three vectors are summed.

4.1.6Comparison of Permutation- and Dyadic Product-
Based Methods
The computational complexities ofR (n+1) and p (n+1)

are summarized and presented in Tab. 3 andTab. 4. To choose
the appropriate method, the computational requirements – in
terms of additions andmultiplications – have to be compared.

Considering the update procedure of the auto-
correlation matrix, the following inequalities should be in-
vestigated based on the aforementioned tables:

NK + 2N ≤ K2 + K, (38)
NK + N ≤ K2 + K . (39)

After rearranging (39), the following criterion can be formed:
N≤K . Also, Equation (38) can be expressed as

N
K
≤

K + 1
K + 2

. (40)

The right side of (40) converges to 1 from below, therefore
N has to be lower than K to fulfil the inequality. This is in
correspondence with the result obtained from (39), thus the
permutation method has lower computational requirements
if N≤K; otherwise the dyadic calculation is recommended.

Similar inequalities can be considered during the up-
grade of the cross-correlation vector based on the aforemen-
tioned tables:

NK + 2N − K + 2 ≤ 2K, (41)
NK + N + K + 1 ≤ 2K . (42)

If these equations are rearranged, the following conditions
are generated:

N ≤ 3 − 8/(K + 2) , (43)
N ≤ (K − 1) /(K + 1) . (44)

However Equation (43) could be fulfilled in some degenerate
cases (e.g. N<3), but the right side of (44) converges to 1
which leads to the following non-satisfiable criterion: N<1.
This requirement can never be satisfied, thus p (n+1) should
be calculated by dyadic products in all cases.

4.2 Complexity of the RSC4BI Algorithm
Since the presented four blocks inversion can be applied

for general cases as long as A11 = B22 is valid, therefore this
case is investigated first. After that, the auto-correlation
matrices are discussed which are symmetric, thus the com-
putational requirements can be further reduced.

4.2.1General Case

For the expression of the submatrices of V, two tempo-
rary matrices need to be calculated: B−1

11 according to (31)
and b11,r according to (32).

The second part of the subtraction in (31) is generated
by multiplying two vectors. Before evaluating this multipli-
cation, one of these vectors has to bemodified by u−1

22 = 1/u22
to minimize the number of operations performed.

According to the evaluation of B−1
22 , b11,r is generated

similarly. However, it is a single value, therefore only this
scalar is generated from the components ofB. The number of
required operations are independent of the calculation order
of the vector multiplications. If b11,r is already given, then
v11 can be expressed through a division.



RADIOENGINEERING, VOL. 29, NO. 2, JUNE 2020 371

Operations × + /

B−1
11 (31) K (K − 1) (K − 1)2 1

b11,r (32) K (K − 1) K (K − 2) + 1 0
v11 (33) 0 0 1
v21 (34) K (K − 1) (K − 1) (K − 2) 0
vT

12 (35) K (K − 1) (K − 1) (K − 2) 0

V22 (36) (K − 1)2 (K − 1)2 0

In total: 5K2 − 6K + 1 5K2 − 12K + 7 2

Tab. 5. Computational requirements to update R−1 (Sec. 4.2.1).

Operations × + /

B−1
11 (31) (K + 2) (K − 1) /2 K (K − 1) /2 1

b11,r (32) K (K − 1) K (K − 2) + 1 0
v11 (33) 0 0 1
v21 (34) K − 1 0 0
vT

12 0 0 0

V22 (36) K (K − 1) /2 K (K − 1) /2 0

In total: 2K2 − 2 2K2 − 3K + 1 2

Tab. 6. Computational requirements to update R−1 (Sec. 4.2.2).

Algorithm 2. The reduced RSC4BI algorithm.
INPUT: B ≡ R(n+1), U ≡ R−1(n)
OUTPUT: V ≡ R−1(n+1)
1: function RSC4BI_reduced(B,U)
2: create temporary variable (w):
3: calculate B−1

22 = U11 − u12u−1
22 uT

21
4: calculate w = B−1

22 b21
5: calculate b11,r = b11 − bT

12w
6: express the submatrices of V:
7: calculate v11 = 1/b11,r
8: calculate v21 = −wv11
9: calculate vT

12 = vT
21

10: calculate V22 = B−1
22 − v21wT

11: form V using v11,v21,vT
12,V22

12: end function

After having these temporary matrices, the remaining
components of V are calculated. The vector component,
v21 is derived as Equation (34) shows: a column vector is
generated by a multiplication, which result is normalized by
b−1

11,r = v11. Now v21 , v12, therefore vT
12 has to be computed

similarly to v21.

During the calculation of the last submatrix, V22, the
order of the multiplications should be carefully selected. If
the left to right order is applied, then the complexity increases
up to K3 because of the full matrix multiplication. Avoid-
ing this issue – considering that the matrix multiplication is
associative –, an outside to the inside approach should be
applied as shown in (45) to decrease the complexity to K2

(The proposed execution order of the operations are shown
with circled numbers):

B−1
22

1O
· b21

2O
· b−1

11,r
4O
· bT

12
3O
· B−1

22 . (45)

Taking these considerations into account, the number of
required operations can be decreased if the temporary results
of v12 and v21 are applied.

In total, this RSC4BI-inversion of R (n+1) achieves
an O

(
K2) complexity by utilizing the special structures of

matrices (see in Fig. 1). The summarized computational
requirements are presented in Tab. 5.

4.2.2Reduced Case

Using the fact that R is an auto-correlation matrix,
therefore R = RT. Considering these symmetry proper-
ties, it can be satisfactory in certain cases to evaluate only
the upper triangular part instead of the whole matrix. Also,
in (31), it can be assumed that u12 = u21, thus calculating
only the upper triangular part is satisfactory.

Due to the symmetry, (bT
12B−1

22 )
T is equal to B−1

22 b21:(
bT

12B−1
22

)T
=

(
B−1

22

)T (
bT

12

)T
= B−1

22 b21. (46)

However Equation (32) could be optimized because the scalar
product of the vectors contains repetitive terms in the sum, but
considering (37), the calculation of the temporary variable
w = B−1

22 b21 is useful, thus it is required for the calculations
of vT

12, v21 and V22. Therefore the scalar value bT
12B−1

22 b21 is
calculated in two steps, keeping the order of the operations.
This result is subtracted from b11 to obtain b11,r = v−1

11 .

Using these temporary results, the remaining parts of
V are easily evaluated: v12 (requiring (K − 1) multipli-
cations) is equal to v21. Furthermore, the calculation of
B−1

22 b21b−1
11,rb

T
12B−1

22 is reduced to the multiplication of the
two already calculated vectors where only the upper triangu-
lar part has to be computed.

This reduced algorithm is presented in Alg. 2, while
the computational requirements are summarized in Tab. 6.
Comparing the results to Tab. 5, it can be stated that the com-
plexity of the RSC4BI-algorithm can be reduced to less than
half by taking into account the symmetry properties of the
matrices.

5. Simulation Results

5.1 Parameters and the Applied Signals
The simulations are performed using Matlab2019a.

The observed filter is a highpass FIR-filter with 4 taps:
[0.2, − 0.5, 0.7, 0.1]. The applied sampling frequency is
10 kHz.

To investigate the SWF method which is presented in
Sec. 3, these 0.1 s long probe signals are generated:



372 A. KRAKER, B. CSUKA, ZS. KOLLAR, SLIDING WINDOW EVALUATION OF THE WIENER-HOPF EQUATION

(a) Runtime on computer (applied clock frequency: 3.7GHz). (b) Runtime on microcontroller (applied clock frequency: 216MHz).

Fig. 2. Averaged runtime of different methods depending on the filter length.

• Gaussian white noise with N (0.1,1),

• 200 Hz noisy sine wave with random phase between
[−π; π], and

• noisy multisine signal from 10 up to 500Hz (frequency
step: 10Hz) with random phase between [−π; π].

In case of a noisy signal the previously described Gaus-
sian white noise is added (N (0.1,1)). The output signal of
the observed filter is generated by convolution (1) to obtain
a reference signal for the investigations.

To compare the RSC4BI to the conventional inversion
methods, two further signals are also created by using dif-
ferent algorithms for matrix inversion. The first signal is
generated by classic matrix inversion which is performed by
Lower-Upper (LU) decomposition in Matlab. This compu-
tation may suffer from round-off errors, therefore to avoid
this defect and returning to that the initial problem is the
solution of a system of linear equations – according to (2)
– Matlab recommends to use the so called "backslash di-
vision" (denoted by \) operator. This procedure generates
the second signal solving the equations by a proper solver
depending on the matrix properties. This algorithm is opti-
mized to the computational time and it reduces the round-off
errors as well.

The observed system is estimated and followed by aWF.
Its taps are computed from the WH equation – according
to (10) – which is evaluated by using the reduced RSC4BI-
algorithm (Alg. 2), the classic matrix inversion, and the sys-
tem of linear equations method. During the simulations, it is
assumed that there is no a priori knowledge regarding the ob-
served filter, it is considered as black box with a given output
signal. Therefore the length of the filter (the observed one
and the WF) may differ, so their taps can not be compared
directly, only their output signals.

5.2 Runtime of the Procedures
The simulations are performed on a desktop computer

containing an AMD Ryzen 7 2700X processor with 32GB
RAM and on a STM32F722 microcontroller. Each method
is evaluated 10,000 times as a single thread application and
the runtime of every calculation is separately measured. The
observation window includes N=20 samples, while the filter
length is changed between the values K=(10,20,30), because
the calculation complexity ofR (n+1) is dependent only onK .
The averages of themeasured runtimes are presented in Fig. 2.
The bar chart is completed by additional crosses to illustrate
the medians and the 5 − 95% percentiles as well. The sys-
tem of linear equations is a specialized algorithm in Matlab
therefore only two methods were investigated on the micro-
controller (see Fig. 2(b)), while Fig. 2(a) contains the results
of three algorithms. As Section 4 states, the RSC4BI algo-
rithm has lower computational requirements, if the number
of the filter taps increase, then the runtime increases slower
than in the case of classic matrix inversion or solving the sys-
tem of linear equations. However, it should be noted that the
optimized built-in solution of Matlab, using system of lin-
ear equations is the fastest if K is low, but it grows faster with
increasing values of K than the proposed RSC4BI method.

5.3 Root Mean Square Deviation of SWF
The first simulation is made by Monte Carlo method

to investigate the performance of the algorithm by applying
different probe signals. The SWF contains K=20 taps, while
the observation window encloses N=20 samples. As a result,
the Root Mean Square Deviation (RMSD) of the reference
and the modeled output signals is calculated. 100,000 simu-
lations are performed whose RMSD is evaluated as follows:

RMSD (n) =
√
ε2
i (n). The delay elements and the obser-

vation window are empty at the beginning therefore there is
a decaying transient, so the first 15ms of the signal is cut off
to obtain the average over the time (displayed by dashed line).



RADIOENGINEERING, VOL. 29, NO. 2, JUNE 2020 373

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time [s]

-250

-200

-150

-100

-50

0

50

R
M

S
D

 [d
B

]

Truncated average: -44.57 dB

(a) Input: noisy multisine signal.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time [s]

-250

-200

-150

-100

-50

0

50

R
M

S
D

 [d
B

]

Truncated average: -77.96 dB

(b) Input: noisy sine wave.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time [s]

-250

-200

-150

-100

-50

0

50

R
M

S
D

 [d
B

]

Truncated average: -119.28 dB

(c) Input: white noise (µ = 0.1).

Fig. 3. RootMean SquareDeviation of SWF algorithm over time
with different probe signals.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time [s]

-350

-300

-250

-200

-150

-100

-50

0

50

R
M

S
D

 [d
B

]

K < 40

K = 40

K > 40

Fig. 4. RootMean SquareDeviation of SWF algorithm over time
from K = 5 to K = 50 with N = 40.

These results are presented in Fig. 3, where the RMSD
and its average are displayed in dB in case of the different
probe signals. The deviation is the lowest if the input signal
is only noise (Fig. 3(c)). However, it has to be noted that the
signal level of noise is lower than the amplitude of the sine
waves, which leads to lower RMSD if only noise is present.

5.4 Dependencies on N and K

As it is presented in Sec. 3, the SWF algorithm depends
not only on K but on N as well, so the effect of these de-
pendencies are investigated in Fig. 4 for the following cases:
N<K , N=K and N>K . These simulations are similar to the
former ones (Sec. 5.3), but the input signal is only the noise
(N (0.1,1)) and K is running from 5 up to 50 with a step size
of 5. It can be seen that K should not be greater than N ,
because it leads to high RMSD. Using the same settings for
K and N decreases the RMSD and gives a better result, but
the K<N case provides the best precision.

To understand these deviances in RMSD values, the ini-
tial problem has to be taken into account: the y = Xh system
of linear equations has to be solved (2). If K<N , then the sys-
tem is overdetermined, therefore a best solution can be found
in MMSE sense. The existence of the solution is not neces-
sary to be investigated in this case, because the system (h (n))
exists. In the case K=N , the exact solution of the system is
created, whose RMSD is limited by the numeric precision of
the applied procedures. If K>N , then there is an underde-
termined system, where the solution is not a unique solution,
but a whole subspace. A global optimal solution – in MMSE
sense – may be found in this subspace, but in certain cases
only a local optimum is found, especially if the numeric pre-
cision is worse, than in case of matrix inversion, when the
conditional number gets higher.



374 A. KRAKER, B. CSUKA, ZS. KOLLAR, SLIDING WINDOW EVALUATION OF THE WIENER-HOPF EQUATION

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time [s]

-300

-250

-200

-150

-100

-50

0

50

100

R
M

S
D

 [d
B

]

System of linear equations
Inversion

SWF

(a) K = 20

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time [s]

-300

-250

-200

-150

-100

-50

0

50

100

R
M

S
D

 [d
B

]

System of linear equations

Inversion

SWF

(b) K = 30

Fig. 5. Comparison of the different methods depending on filter length.

5.5 RMSD-Comparison of the Different
Inversion Methods

The output of the RSC4BI algorithm is compared not
only to the convolved reference signal, but to the two conven-
tional methods as well. These results are presented in Fig. 5
for K= (20, 30) cases while N=20. If N=K is considered, the
precision of the calculations depends on the algorithm, and as
Fig. 5(a) shows, the RMSD of the system of linear equations
is lower compared to the inversion and RSC4BI. Because of
the underdeterminated system, if K=30 (Fig. 5(b)), the in-
version can not find the proper solution (Sec. 5.4), while the
system of linear equations gives unchanged precision and the
RMSD of RSC4BI is higher, but still at an acceptable level.

6. Conclusion
In this paper an efficient step-by-step algorithm, the

SWF is presented for the solution of the WH equation in
a sliding window. Not only an algorithm for calculating the
inverse of the auto-correlation matrix is given – the RSC4BI
algorithm – but a recursive update procedure for the matrices
R and p is presented as well. Additionally, two solutions
for the initialization of the recursive algorithm were also
suggested.

The inverse calculation is deduced to matrix multiplica-
tions and simple inversion of singular elements. This proce-
dure is optimized for low complexity execution which makes
the RSC4BI algorithm preferable for real-time applications
and cost-effective processors. As the theoretical and simu-
lated results show, the complexity of the algorithm is O

(
K2)

because the inversion of the auto-correlation matrix is de-
duced to the inversion of a single element, meanwhile the
matrix inversion generally requires O

(
K3) operations.

It was also shown, that the reduced complexity degrades
the calculation precision, but it does not influence signif-
icantly the stability and the convergence. Therefore, the
proposed algorithms can be considered as a practical solu-
tion suitable for low complexity hardware for real-time signal
processing or to reduce the response time by distributing the
computational load over time.

Acknowledgments
The authors are thankful for Prof. Thomas Zwick, as

this work was partially carried out during the stay of Zsolt
Kollár as a visiting researcher at the Karlsruhe Institute of
Technology at the Institute of Radio Frequency Engineering
and Electronics (IHE).

References

[1] WIENER, N. The linear filter for a single time series. Chapter in
Extrapolation, Interpolation, and Smoothing of Stationary Time Se-
ries: With Engineering Applications. M.I.T. Press, 1949, p. 81–103.
ISBN: 978-0-2622-3002-5

[2] WIDROW, B., STEARNS, S. D. The adaptive linear combiner. Chap-
ter in Adaptive Signal Processing. Prentice-Hall, 1985, p. 15–30.
ISBN: 978-0-1300-4029-9

[3] HUDEC, R., MARCHEVSKY, S. Adaptive order-statistic LMS
filters. Radioengineering, 2001, vol. 10, no. 1, p. 20–24.
ISSN: 1210-2512

[4] KIZILKAYA, A., UKTE, A., ELBI, M. D. Statistical multirate high-
resolution signal reconstruction using the EMD-IT based denois-
ing approach. Radioengineering, 2015, vol. 24, no. 1, p. 226–232.
DOI: 10.13164/re.2015.0226



RADIOENGINEERING, VOL. 29, NO. 2, JUNE 2020 375

[5] HU, Y., SONG, M., DANG, X. D., et al. Interference mitigation for
the GPS receiver utilizing the cyclic spectral analysis and RR-MSWF
algorithm. Radioengineering, 2017, vol. 26, no. 3, p. 798–807.
DOI: 10.13164/re.2017.0798

[6] FAN, X., TAN, Z., SONG, P., et al. A variable step-size CLMS
algorithm and its analysis. Radioengineering, 2020, vol. 29, no. 1.
p. 182–188. DOI: 10.13164/re.2020.0182

[7] PHAM, D. T. Quick solution of least square equations and inver-
sion of block matrices of low displacement rank. IEEE Transac-
tions on Signal Processing, 1991, vol. 39, no. 9, p. 2122–2124.
DOI: 10.1109/78.134452

[8] ASIF, A., MOURA, J. M. F. Block matrices with L-block-banded
inverse: Inversion algorithms. IEEE Transactions on Signal Process-
ing, 2005, vol. 53, no. 2, p. 630–642. DOI: 10.1109/TSP.2004.840709

[9] DADIĆ, M., MOSTARAC, P., MALARIĆ, R. Wiener filtering
for real-time DSP compensation of current transformers over
a wide frequency range. IEEE Transactions on Instrumenta-
tion and Measurement, 2017, vol. 66, no. 11, p. 3023–3031.
DOI: 10.1109/TIM.2017.2717238

[10] CHEN, Y., RUAN, S., QI, T. An automotive application of real-time
adaptive Wiener filter for non-stationary noise cancellation in a car
environment. In IEEE International Conference on Signal Process-
ing, Communication and Computing (ICSPCC 2012). Hong Kong
(China), 2012, p. 597–602. DOI: 10.1109/ICSPCC.2012.6335628

[11] ZHANG, B., GAO, W., QI, Z., et al. Inversion algorithm to cal-
culate charge density on solid dielectric surface based on sur-
face potential measurement. IEEE Transactions on Instrumenta-
tion and Measurement, 2017, vol. 66, no. 12, p. 3316–3326.
DOI: 10.1109/TIM.2017.2730981

[12] MORETTIN, P. A. The Levinson algorithm and its applications in
time series analysis. International Statistical Review, 1984, vol. 52,
no. 1, p. 83–92. DOI: 10.2307/1403247

[13] DELSARTE, P., GENIN, Y. The split Levinson algorithm. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 1986,
vol. 34, no. 3, p. 470–478. DOI: 10.1109/TASSP.1986.1164830

[14] KRISHNA, H., WANG, Y. The split Levinson algorithm is weakly
stable. SIAM Journal on Numerical Analysis, 1993, vol. 30, no. 5,
p. 1498–1508. DOI: 10.1137/0730078

[15] BENESTY, J., GANSLER, T. Computation of the condition number
of a nonsingular symmetric Toeplitzmatrix with the Levinson-Durbin
algorithm. IEEE Transactions on Signal Processing, 2006, vol. 54,
no. 6, p. 2362–2364. DOI: 10.1109/TSP.2006.873494

[16] LI, J., ZAKHAROV, Y. V. Sliding window adaptive filter with
diagonal loading for estimation of sparse UWA channels. In
OCEANS 2016 - Shanghai. Shanghai (China), 2016, p. 1–5.
DOI: 10.1109/OCEANSAP.2016.7485346

[17] ZAKHAROV, Y. V., NASCIMENTO, V. H. DCD-RLS adaptive
filters with penalties for sparse identification. IEEE Transactions
on Signal Processing, 2013, vol. 61, no. 12, p. 3198–3213.
DOI: 10.1109/TSP.2013.2258340

[18] AYRES, F. The inverse of a matrix. Chapter in Theory and Problems
of Matrices. McGraw-Hill, 1974, p. 55–63. ISBN: 9780070026568

About the Authors . . .

Alfred KRAKER was born in 1941. After receiving his
M.Sc, he joined SIEMENS AG Österreich. Since 1970 he
was responsible for leading the R&D-department in broad-
cast analog and digital audio (HW/SW), and later, he led

the development of high frequency applications as well. Be-
tween 1980 and 1990, he was the Deputy Director of R&D of
analogue/digital mixing consoles and sound switching used
in radio and TV centers. From 1990, he was responsible for
the department of Digital Signal Processing until his retire-
ment in 2001. He published many papers in these areas and
about 100 patents in analogue and digital signal processing.
He was the Austrian chairman of “AUDIO engineering so-
ciety”, and he is IEEE “Senior Member” and IEEE Signal
Processing member.

Barna CSUKA was born in 1991. He received his M.Sc.
from the Budapest University of Technology and Economics
(BME) in 2016 where he is currently working on his Ph.D.
He is an assistant lecturer in the Department of Measure-
ment and Information Systems at BME. Since 2017, he is
member of the MATLAB laboratory. His research interests
include digital signal processing, measurement theory and
digital data transmission.

Zsolt KOLLÁR was born in 1983. He received his diploma
and Ph.D. degree in electric engineering from the Budapest
University of Technology and Economics (BME) in 2008 and
2013, respectively. He is an associate professor in the De-
partment of Measurement and Information Systems at BME.
Since 2017, he is the head of the MATLAB laboratory. His
research interests are digital signal processing, wireless com-
munication and quantization issues.

Appendix A: Inverse of a Hyperma-
trix With 4 Submatrices

In this section the inverse of a matrix M with four sub-
matrices is derived. The matrix M is given as

M =
[
M11 M12
M21 M22

]
. (A-1)

The inverse of the matrix M – denoted by matrix K – is given
as:

K =
[
K11 K12
K21 K22

]
. (A-2)

Using the fact that MK = KM = I, and assuming that M22
is nonsingular, the elements of K can be expressed by the
elements of M as [18]:

K11 =M−1
11,r , (A-3)

K12 = −M−1
11,rM12M−1

22 , (A-4)

K21 = −M−1
22 M21M−1

11,r , (A-5)

K22 =M−1
22 +M−1

22 M21M−1
11,rM12M−1

22 . (A-6)

In (A-3)–(A-6), the reduced submatrix M11,r can be ex-
pressed as

M11,r =M11 −M12M−1
22 M21. (A-7)


