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Abstract. Measurement-outliers caused by non-linear 
observation model or random disturbance will lead to the 
accuracy decline of a target tracking filter. This paper 
proposes a robust probability hypothesis density (PHD) 
filter to handle the measurement-outlier problem based on 
Student’s T Kalman (TK) filtering technique and Varia-
tional Bayesian (VB) method. First, the non-standard 
measurement noise is considered to follow the Student’s T 
distribution. Second, the TK filtering technique is employed 
to update the target states. Third, the posterior likelihood 
is updated by the VB approach. Simulation results show 
that the proposed method can reduce the optimal subpat-
tern assignment (OSPA) error in the non-standard obser-
vation scenarios with measurement-outliers, compared 
with other typical multiple target tracking filters. 

Keywords 
Multiple target tracking, PHD filter, Student’s T 
Kalman, Variational Bayesian, non-linear filter 

1. Introduction 
Multiple targets tracking has important applications in 

sonar, navigation, radar detection and other engineering 
fields. Based on Finite Set Statistics (FISST), Mahler pro-
posed the random finite set (RFS) observation model [1]. 
The first-order moment of an RFS is the PHD [1], which is 
an intensity function defined over the state space. Another 
important observation model is the labeled random finite 
set (LRFS) [2], which establishes a strict mathematical 
model for track association problem. The typical imple-
mentations of the LRFS theory are generalized labeled 
multi-Bernoulli (GLMB) filter [3] and labeled multi-Ber-
noulli (LMB) filter [4]. Up to now, the PHD filters and 
GLMB/LMB filters are the hottest topic in multiple targets 
tracking field. 

In the RFS theory, one of the most important imple-
mentations of the PHD framework is the Gaussian mixture 
PHD (GM-PHD) filter [5], which assumes that the meas-
urement noise follows the Gaussian distribution, therefore 
the PHD can be approximated by a Gaussian mixture form. 
In [6] and [7], Mahler derived the cardinality distribution 
and presented a cardinalized PHD (CPHD) filter. The 
CPHD filter can provide higher-order estimations on the 
number of targets, which leads to better tracking perfor-
mance compared with the PHD filter. Since it expenses 
higher computational costs, researchers modified the 
CPHD filter in [8–10]. However, the PHD/CPHD filters 
cannot provide track estimates due to target tracks of a RFS 
filter are not ordered. To solve this problem, Clark et al. 
developed a weight-based track management scheme for 
GM-PHD filter in [11], and Panta et al. presented a novel 
tree-structure-based track management scheme to track 
crossing targets in [12]. However, these schemes are only 
supplements to the RFS theory and are not based on strict 
mathematical derivation. 

The LRFS theory was presented by Vo et al. to solve 
the problem that the RFS theory does not establish a strict 
mathematical model for target trajectory [2]. Based on 
LRFS, Vo et al. presented the delta GLMB (δ-GLMB) 
filter [2] and Reuter et al. presented the LMB filter [3]. The 
GLMB and LMB approaches have high accuracy in state 
estimation due to they can formally estimate tracks. How-
ever, they still have the problem of high computational 
complexity. Thus, a joint GLMB/LMB filter was proposed 
to reduce the computational complexity in [13]. The trun-
cation procedures are modified by the Gibbs sampling 
method and a joint prediction and update method is used to 
eliminate inefficiencies, with further modifications in [14]. 
Recently, a modified GLMB filter was presented in [15], 
which can handle the signal-to-noise ratio scenarios. 

For non-standard measurement scenarios, the particle, 
extended Kalman (EK) [16] and unscented Kalman (UK) 
[17] filtering  techniques  are  commonly  used for RFS and



530 PENG LI, CHEN XU, WENHUI WANG, ET AL., ROBUST STUDENT’S T DISTRIBUTION BASED PHD/CPHD FILTER … 

LRFS tracking approaches. The Sequential Monte Carlo 
PHD (SMC-PHD) filter [18] is a typically particle imple-
mentation of PHD filter to handle non-linear scenarios. 
However, the SMC-PHD filter takes a lot of computational 
costs, which limits its practical application. In [4] and [19], 
EK, UK and particle implementations were utilized in the 
GM-PHD filter to handle the bearing and range (BAR) 
measurement scenarios. Recently, an LMB filter for bear-
ings-only scenarios was presented in [20]. In [21], an im-
proved measurement-oriented marginal multi-Bernoulli/ 
Poisson (IMOMB/P) filter was presented to solve the 
measurement miss detection problem. In [22], a multi-
model particle filter was presented to handle the maneuver-
ing target.  

In recent years, Student’s T distribution is considered 
to be more robust than Gaussian distribution in non-stand-
ard scenarios, thus it has become a hot topic in target track-
ing. Huang et al. presented a robust Student’s T Kalman 
filter in [23] to handle the heavy-tailed measurement filter-
ing problems. In [24], a Gaussian-Student’s T mixture 
distribution Kalman filter was proposed. This filter uses the 
VB based TK filtering method [26] and the inverse Wishart 
distribution to jointly infer the state vector, auxiliary ran-
dom variables, Bernoulli random variables and mixing 
probabilities. A Student’s T distribution based PHD filter 
for multiple target tracking was proposed in [25]. In this 
filter, the measurement likelihood is derived by the Stu-
dent’s T distribution instead of Gaussian distribution, thus 
its performance is better than the GM-PHD filter in scenar-
ios with measurement-outliers. However, this work does 
not consider the application of VB technology to improve 
the robustness. 

This paper based on the VB based TK filtering tech-
nique in [26] proposes the robust Student’s T Kalman 
PHD/CPHD (TK-PHD/CPHD) filters and extended TK-
PHD (E-TK-PHD) filter to handle the measurement-outli-
ers and BAR scenarios. The code is published on GitHub 
[31]. The contributions are as follows: 

1) The TK filtering technique [26] and VB frame-
work [27] are employed to update the posterior intensity 
each scan. Therefore, the proposed TK-PHD and TK-
CPHD filters can converge quickly through iteration to 
improve tracking accuracy when outliers are generated, 
and have higher robustness in non-linear scenarios. 

2) The E-TK-PHD implementation was proposed 
for BAR scenarios. It uses the idea of solving Jacobian 
matrix in extended Kalman filter technique to deal with 
BAR scenarios, thus its accuracy is higher than linear im-
plementations in BAR scenarios. 

The paper is organized as follows. Section 2 intro-
duces the VB approach and TK filter. The implementation 
methods of the TK-PHD/CPHD and E-TK-PHD filters for 
measurement-outliers and BAR scenarios are presented in 
Sec. 3. Section 4 shows the simulation results. Section 5 
contains our conclusions. 

2. Background 

2.1 The Variational Bayesian Inference 

Assuming that the true posterior probability density is 
g(ZX), the key step of the VB approach is to use an appro-
ximate posterior probability density (Z) to approximate 
g(ZX). According to [27], a distribution can be written as 
sum of two parts, i.e.  
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where L() is called ELOB, KL() is called KL divergence 
[28], which denotes the distance between two distributions. 
Therefore, the new form of (Z) and g(ZX) can be ob-
tained by 

      log ||g X KL g L    .  (2) 

The problem translates into minimizing KL(g). 
Assuming that g(X) is constant, KL(g) can be minimized 
by maximizing L(). Assuming that each hidden variable 
obeys an independent and identical distribution, thus 

   i
i

Z z   . L() can be rewritten by 
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Note that zi and zj are the single variable form divided by 
complex variable Z. i and j are the subscript of the infor-
mation entropy   
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larger than zero as well. According to (2), our goal is to 
maximize L(). The information entropy is not constant, 

thus L() will maximize when     *KL ||j jz z   =0. 

Therefore, (zj) can be obtained by 

       *
exp log ,
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i j
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By way of a given number times recurrences, (zj) 
can be approximated to g(ZX). 

2.2 The VB Based Student-T Kalman Filter 

The TK filter was presented in [26], which can deal 
with non-linear measurement models, especially measure-
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ment-outlier models. The observation model with Student’s 
T distributed measurement noise is 

   1 1| ~ N ,k k k kx x f x  Q ,  (5a) 

   | ~ St , ,k k k kz x h x R   (5b) 

where xk is the state. zk is the measurement. St() is the 
Students’ T distribution. f() and h() are dynamic and 
measurement model functions,  is the degree of freedom. 
Qk and Rk are covariance matrices of process and measure-
ment noise, respectively. According to [26], the Student’s 
T distribution’s probability density is 
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where St() denotes Student’s T distribution, d is the di-
mensions of physical space. When   0, the above 
Student’s T distribution converges to N(h(xk), Rk). The TK 
filter employs an auxiliary random variable k, thus the 
likelihood can be approximately expressed as a hierarchical 
Gaussian forms, i.e. (5b) can be rewritten as 
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  ~ Gamma 2, 2k v v .  (7b) 

Therefore, the update steps of the VB based TK filter can 
be approximately implemented as follows: 
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where 
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where tr() denotes the trace of a matrix. Through a given 
number of Nk times recurrences, k converges. 

2.3 The PHD Filter 

A PHD filter is an approximation to solve the compu-
tational problem of the multi-target Bayesian filter. Let Dk 
and Dkk – 1 denote the intensities of the posterior and pre-
dicted density respectively, the target PHD is  
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where ζ and ξ denote target prior and posterior states. z 
denotes the measurement. kk – 1() denotes the target 
spawning intensity, and ϑk(x) denotes the target birth 
intensity. pS,k() and pD,k() are target existing and detection 
probabilities. κk(z) is the clutter intensity. gk (zx) is the 
multi-target likelihood.  

The PHD filter use Dkk – 1(x) and Dk (x) to calculate 
the weight of each component, and the components with 
large weights are considered targets. The existing PHD 
framework mainly use the Kalman filter to update target 
states, and use Gaussian mixture or particle filtering ap-
proaches to approximate the likelihood gk (zx). The contri-
bution of this work is to replace Kalman filter with TK 
filter, and propose a new likelihood. Therefore, the PHD 
filter will be robust to measurement-outliers. 

3. The Student’s T Kalman PHD Filter 

3.1 Key Method 

The updating step of a PHD filter is a multiple hy-
pothesis process between the prediction components and 
all the measurements each scan. The state of each predic-
tion component will be updated by a corresponding meas-
urement, and generates a posterior components. Typically, 
the components are Gaussian mixture form and the meas-
urements are assumed to follow the Gaussian distribution, 
i.e., the likelihood gk (zx) in (10b) is the Gaussian probabil-
ity density. Moreover, the Gaussian form is suitable for the 
Kalman filtering technology, thus Kalman filter is usually 
used in a PHD filter. However, the Gaussian distribution is 
only an ideal case, which leads to a lack of robustness of 
a standard PHD filter. 

Compared with the Gaussian distribution, the 
Student’s T distribution has stronger robustness. Our key 
method is to find a robust way to replace Gaussian model 
with Student’s T model. Our first work is to employ 
the more robust TK filtering technology to improve the state
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updating process. However, the TK filter is based on VB 
technology, thus the likelihood gk (zx) cannot be assumed 
as the Student’s T density directly. Therefore, our second 
work is to derive a new likelihood function for the PHD 
filter using KL divergence, i.e. formulas (22)–(32). 

3.2 The Iteration of TK-PHD Filter 

The TK filter has strong robustness and accuracy in 
the outlier scenarios. Therefore, the key method of this 
work is to use TK filter to improve the state updating step 
of a PHD filter and approximate the weights of compo-
nents. Assuming that the state space system is given by (5), 
the target predicted PHD is the same as (13a).  

According to [26], in order to implement the TK 
filter, an auxiliary random variable k was introduced. 
Based on (5b), (7) and (8), the posterior PHD can be 
rewritten as 
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where k  Gamma(ν/2, ν/2). The most important contribu-
tion is to replace (10b) with (11), and to derive the specific 
updating method of the new Dk (x). 

3.3 The Implementation for Measurement-
Outlier Scenarios 

Assuming that the state space system is given by (5), 
in this work, the target prediction PHD is equal to the 
standard GM-PHD filter [4], and can be obtained by 
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where DS,kk – 1(x), Dβ,kk – 1(x) and ϑk(x) denote the predicted 
intensity of existing, spawning and birth targets, respec-
tively. DS,kk – 1(x) is given by 
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where Fk – 1 is the state transition matrix. m(j)
k–1 and P(j)

k–1  
are the kinematical state and covariance matrix of the jth 
component at time k – 1. Dβ,kk – 1(x) is given by 
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The birth intensity ϑk(x) is given by 
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The most important contribution of this work is the 
modification of the state updating steps. According to (5), 
the target posterior PHD is 
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According to (5), (6), the states are assumed to follow 
Student’s T distribution, thus DD,k (xz) can be rewritten by 
a Gaussian form by setting an auxiliary random variable, 
i.e., 
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Then, the states m(j)
kk and P(j)

kk can be updated by the TK 
filtering technique. The VB model approximates the non-
linear probability by an iteration process. For each iteration, 
the states will be calculated by 
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where k is the expectation of the auxiliary random 

variable introduced in (11), and can be calculated by 

    k kv d v    , (21a) 

        T
1

| |tr j j
k k k k k k k k k kz z   H m H m R . (21b) 

The derivation process of (21) reference (28) and (32).  

Given the number of iterations Nk, the states m(j)
kk and 
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kk will convergence to optimal value by iteration. 

According to (11), the updated target weight is 
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where the target likelihood    | ,j
k kz x   is difficult to 

solve, thus an approximate form will be given by  

            | , | |j j j
k k k k k k kz x z x z     .  (23) 

According to section 2.1, the KL divergence method can be 

employed to solve    | j
k kz x  and    | j

k kz . According 

to [32, p. 463], thus we obtain  

 

            
       

       
   

KL | | || | ,

| |

| |
log d d .

| ,

j j j
k k k k k k k

j j
k k k k

j j
k k k k

k kj
k k k

z x z z x

z x z

z x z
x

z x

   

  

  








 
    

  (24) 

According to (4),    | j
k kz  and    | j

k kz x  become 

          log | | , const
k

j j
k k x k k kz E z x     , (25a) 

          log | | , const
k

j j
k k k k kz x E z x    . (25b) 

According to formula (18),    | , j
k k kz x  is positively 

correlated with the distributions    
| |

1
N | ,j j

k k k k
k

x


 
 
 

m P and 

 Gamma | 2, 2k v v , i.e. 

 
     

   | 1 | 1

| , N ,

N , Gamma | 2, 2 .

j
k k k k k k

k k k k k

z x x

v v

 

 

 

 

R

m P
 (26) 

Therefore, 

 

         
   | 1 | 1

log | | , const

N , N ,

Gamma | , const
2 2

k

k

j j
k k x k k k

x k k k k k kk

k

z E z x

E x

v v

  





 

  

 
    

R m P  (27) 

where 

    Gamma | , 1 log
2 2 2 2


                k

k
x k k

vv v v d
E , (28a) 

    1
N ,

2kx k k k kkE x    R , (28b) 

      T 1trk k k k k k k kz z   H m H m R . (28c) 

Combining formulas (27), (28), we obtain 

    | exp 1 log
2 2


   

       
  

j k
k k k k

vv d
z . (29) 

Similarly,    | j
k kz x  can be written as 

 

         
   
 

     
            

| 1 | 1

T
1

| |

T

| | 1 | 1 | | 1

log | | , const

N , N ,

Gamma | 2, 2 const

1

2
1

.
2

k

k

j j
k k k k k

k k k k k kk

k

j j
k k k k k k k k k k

j j j j j
k k k k k k k k k k

z x E z x

E x

v v

z z





 







 



  

  

 
 

   

  

R m P

H m R H m

m m P m m

 (30) 

Thus we can obtain 

 

 

     
            

T
1

| |

T

| | 1 | 1 | | 1

( | )

1
exp

2

1
.

2

j
k k

j j
k k k k k k k k k k

j j j j j
k k k k k k k k k k

z x

z z



 

  



  


   


H m R H m

m m P m m

 (31) 

Note that, the expectation E(k) is not the expectation 
of Gamma(ν/2, ν/2), and it is the expectation of φk

(j)(zk). 
Therefore, it is easy to be obtained that 

         |      j
k k k k

E z v d v . (32) 

Note that the formulas (19)–(21) determine the update 
of state m(j)

kk and P(j)
kk in the tracking process. These 

formulas are based on TK filtering technology and 
correspond to formulas (8), (9). The weight of each 
component can be calculated by formula (22). The formula 
(23) is the likelihood function used in (22). Formulas (29) 
and (31) are final derived results for solving (23), and 
(24)–(28), and (30) are its derivation process. The Pseudo-
code is shown in Tab. 1. The code can be available at [31]. 

In order to ensure that the calculation amount of a 
PHD filter is not too large, similar components need to be 
merged, and the components with small weight need to be 
pruned. The merging, pruning steps of the proposed TK-
PHD filter are the same as the standard PHD filter, and the 
details can be found in [4]. Note that the above proposed 
method mainly modifies the state filtering step and the 
likelihood function, that is, it can be directly used in the 
CPHD framework. Therefore, for brevity and readability, 
the formulas of the CPHD filter won't be listed here. 
 

Input: 
 

| 1
j

k km ,
 
| 1
j

k kP  , kR , kH , kN , kz  and v  

Output: 
 

|
j

k km  and 
 
|
j

k kP  

initial 1k   

for 1 to kn N  

Compute kK  and kS  using formula (20). 

Compute 
 

|
j

k km and 
 
|
j

k kP  using formula (19). 

Compute k  and  k  using formula (21). 

end 

Compute 
 j
kw  using formula (22), (29), and (31)-(32) 

Tab. 1.  Pseudo-code for TK-PHD filter’s updating step. 
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3.4 The Implementation for BAR Scenarios 

Assuming that the measurement model is formed as 
zk = {k,k}, where k and k are the bearing and the range 
values, respectively. The linear target state is modeled by 
xk = {ux,uy,vx,vy} where ux and uy are the two-dimensional 
Cartesian coordinate vectors with corresponding velocity 
vectors vx and vy. Obviously, the major problem of BAR 
scenarios is how to filter with different types of data. 
A simple solution is to map the BAR measurements to 
Cartesian coordinates. However, the mapped measure-
ments is a non-linear form, thus the tracking accuracy of 
a linear PHD filter will decrease. In order to solve this 
problem, Vo et al. presented the EK-PHD filter using EK 
method in [4]. In this section, combining the EK method, 
the extended TK-PHD (E-TK-PHD) filter is proposed for 
the BAR scenarios. 

Assuming that the observation is a non-linear model: 

  1 1,k k k kx f x   , (33a) 

  ,k k k kz h x   (33b) 

where ζk – 1 and εk are zero-mean Gaussian process noise 
and measurement noise with covariances Qk – 1 and Rk, 
respectively. The Jacobian-matrix based local linearization 
method of the EK method can be employed to the proposed 
method. Considering the BAR measurements, the observa-
tion model can be written as  

  
 y x

2 2
x y

arctan
,k k k k

u u
h x

u u
 

 
  
  

.  (34) 

The state transition model matrix is still the linear 
form, thus Fk in (13b) does not change. The major steps of 
the E-TK-PHD filter are the same as the TK-PHD filter. 
However, the observation matrix in (20a) becomes 

   

   
| 1

2 2 2 2
y x y x x y

2 2 2 2
x x y y x y

ˆ ,0

0 0

0 0

j
k k k

k k k k x m
h x x

u u u u u u

u u u u u u


  

  
 
   

H

.  (35) 

4. Simulation Results 
This section shows the performances between pro-

posed methods and other important tracking methods. 
There are two target track models shown in Fig. 1(a) and 
(b). The probability of measurement-outliers at each scan is 
10%. In order to verify the performance of the proposed 
filters, three different scenarios are tested respectively, and 
the parameters are shown in Tab. 2. In BAR scenarios, σ

2 
and σ

2 denote the bearing and range noise, respectively. 

Note that: 1) Scenario 1 is set to show the perfor-
mance of TK-PHD/CPHD filters in the linear cases. 
2)  Scenario 2 is  a non-linear case  without  measurement- 
 

 Scenario 1 Scenario 3 Scenario 3 

Linear/BAR Linear BAR BAR 

Measurement 
noise 

2

2

10 0

0 10
k

 
  
 

R

 

 22
θ 90 

2 2
ρ 10   

 22
θ 90 

2 2
ρ 10   

Outliers noise 

2

2

50 0

0 50
k

 
  
 

R

 

No outliers 
 22

θ 20 
2 2
ρ 40   

Surveillance 
volume (m2) 

=2000 2000 =4000 2000  =4000 2000

Clutters’ 
intensity 

62.5 10  k  61.25 10  k  61.25 10  k

Scanning 
interval (s) s 1T   s 1T   s 1T   

Process noise 
1 0

0 1k

 
  
 

Q  
1 0

0 1k

 
  
 

Q  
1 0

0 1k

 
  
 

Q  

Survival  
probability S 0.99p   S 0.99p   S 0.99p   

Detection 
probability D 0.99p   D 0.99p   D 0.99p   

Tab. 2.  Parameters of three scenarios. 
 

Kinematical state Weight Error covariance 
T

0 x,0 y,0, , 0, 0u u   m  0 0.01w   2 2 2 2
0 diag 5 ,5 ,10 ,10   P  

Tab. 3.  Initial parameters of each component. 

outliers. The most important purpose of the proposed filters 
is to deal with the measurement-outliers, thus this scenario 
can well test the robustness of the proposed filters. 
3) Scenario 3 is the most complex one, which can show the 
effectiveness of the proposed filters.  

The initial parameters of each component are shown 
in Tab. 3.  

The proposed methods are compared with: standard 
GM-PHD [4]/CPHD [7] filters; EK-PHD [4] filter; Joint-
LMB (J-LMB) [13] filter (an important and advanced filter 
in recent years) and its form of directly using EK (called 
EK-J-LMB filter). Note that except for EK-PHD, EK-J-
LMB and E-TK-PHD filters, other filters cannot handle the 
BAR measurement directly, thus the BAR measurements 
are converted into Cartesian coordinates for these filters. 
The given number of recurrences is Nk = 10. The degree of 
freedom of Student’s T distribution is ν = 7 with linear 
model and ν = 15 with BAR model. 200 Monte Carlo simu-
lations were preformed, and the performances are pre-
sented in terms of the OSPA metric [29] and computational 
time cost. The simulation environment is as follows: Soft-
ware: MATLAB 2019(a); Computer system: Windows 10; 
CPU: Intel(R) Core(TM) i7-6700HQ. 

4.1 Scenario 1 

In this scenario, there are four targets moving in 
a straight line. Two of them cross at the 50th scan, and 
their tracks are shown in Fig. 1(a). Figure 2 shows the 
average performances of 200 Monte Carlo runs. 
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(a) Target track model 1 

 
(b) Target track model 2 

Fig. 1.  Target track models. Circles and triangles denote the 
target starting and ending positions, respectively. 

Figure 2(a) shows the average OSPA values, and the 
main conclusions are summarized as follows: 1) The OSPA 
values of standard EK-PHD and GM-PHD/CPHD filters 
are the largest, which shows that their performances are 
worse than other filters. 2) The OSPA values of TK-CPHD 
filter is lower than the J-LMB filter, which shows that the 
proposed TK-CPHD filter has the best performance in the 
linear scenarios with measurement-outliers.  

Note that, the OSPA values of J-LMB filter and TK-
CPHD filter are roughly the same from 40–60 s (when the 
two targets are closely spaced). The reason is that the 
tracking accuracy of the standard LMB framework is 
higher than the standard PHD/CPHD framework when 
targets are closely spaced. Thus, this accuracy difference 
offsets the accuracy advantage of TK-CPHD filter when 
targets are closely spaced. 

Figure 2(b) shows the average estimated number of 
targets. The performance of J-LMB and TK-PHD filters 
are roughly the same. Compared with the results of 
Fig. 2(a), it mains that the J-LMB filter has the highest 
position estimation accuracy than other filters. The esti-
mated values of the proposed TK-CPHD filter are obvi-
ously closest to the true values. It indicates that the TK-
CPHD filter has better performance advantages in cardina-
lization estimation. 

Figure 2(c) shows the average computational time 
costs. In this linear scenario, obviously, the computational 
complexity of the PHD framework is the smallest, CPHD 
is the second, and LMB is the largest. Moreover, combined 
with the results in Fig. 2(a) and (b), the proposed TK-
CPHD filter achieves higher accuracy with less time cost 
than J-LMB filter. 

Figure 3 shows the average OSPA values of the 
whole tracking process with different detection probability 
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(c) Average computational time costs 

Fig. 2.  Average performances of different filters in Scenario 1. 

pD in 200 Monte Carlo runs. The proposed TK-CPHD filter 
achieves the better performance than the J-LMB filter 
when pD = 0.99. However, when pD = 0.95, the proposed 
method has only a slight accuracy advantage. When 
pD < 0.95, the J-LMB filter achieves the best performance. 
Therefore, the proposed method is suitable for the observa-
tion system with high detection rate. The reason for this is 
that the LRFS-based filter considers the track information 
to handle the target missed detection. Thus it is hard for 
a RFS-based filter to be more accurate than the J-LMB 
filter in a low detection probability scenario. However, 
Figure 3 also shows that the proposed TK-CPHD filter can 
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Fig. 3.  Average OSPA values with different pD. 

greatly improve the accuracy compared with the CPHD 
filter with any pD. Therefore, applying the proposed idea to 
LRFS may solve this problem, but further derivation of 
VB-based track likelihood is required. 

4.2 Scenario 2 

Ten targets and the tracks of Scenario 2 were shown 
in Fig. 1(b). Figure 4 shows the average performances of 
200 Monte Carlo runs. 

Figure 4(a) shows the average OSPA values, and the 
conclusions are as follows: 1) In Fig. 2(a), the precision of 
the J-LMB filter is higher than that of proposed TK-PHD 
filter, but in Fig. 4.(a), their precisions are similar, which 
shows that the proposed TK method is robust to nonlinear 
scenario. 2) The accuracy of E-TK-PHD is similar to that 
of EK-PHD, and both are higher than other standard filters 
except the EK-J-LMB. 3) Due to the accurate track asso-
ciation, the performance of the EK-J-LMB filter is better 
than other filters when the targets are closely-spaced.  

Figure 4(b) shows the average estimated number of 
targets. It can be seen that the main reason for the decrease 
of accuracy of the J-LMB filter is the inaccuracy of the 
target number estimation. However, the EK-J-LMB filter 
can achieve the best performance, which leads to the best 
performance of the OSPA results in Fig. 3(a). 

Figure 4(c) shows the average computational time 
costs. As can be seen, the time cost of the proposed E-TK-
PHD filter is the largest, while that of the EK-J-LMB filter 
is smaller. Combined with the results of Fig. 4(a) and (b), it 
shows that the performance of EK-J-LMB filter is the best 
in this non-linear scenario. 

4.3 Scenario 3 

In this scenario, the performances of the three EK-
based filters are compared, and target tracks are the same 
as Scenario 2. The difference between the two scenarios is 
that the sensor can generate randomly measurement-
outliers. Figure 4 shows the average performances of 200 
Monte Carlo runs. 
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Fig. 4. Average performances of different filters in Scenario 2. 

Figure 5(a) shows the average OSPA values. In this 
complex scenario with nonlinear and measurement-outliers, 
the TK-PHD/CPHD filters achieve better performance than 
GM-PHD/CPHD and J-LMB filters. Based on the fact that 
none of these filters use EK technology, it means that pro-
posed filters have strong robustness in dealing with com-
plex scenarios. Moreover, the proposed E-TK-PHD filter 
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achieves the best performance, which shows the effective-
ness of this work. Note that the performance of the EK-J-
LMB filter is slightly better than E-TK-PHD filter, and the 
reason is still its accurate track association. Figure 5(b) 
shows the average estimated number of targets, which 
shows that the proposed E-TK-PHD filter performs best. 

O
S

P
A

, 
p=

2,
 c

=
10

0

 
(a) Average OSPA values. 
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Fig. 5.  Average performances of different filters in Scenario 3. 

Figure 5(c) shows the average computational time 
costs. As can be seen, the time cost of the proposed E-TK-
PHD filter is the highest, thus the balance of precision and 
time cost should be considered in practical application. 

5. Conclusions 
This paper proposed robust PHD/CPHD filters to deal 

with the measurement-outlier and BAR problems based on 
TK filtering technique and VB method. The measurement 
noise is assumed to follow the Student’s T distribution, 
thus target states are updated by employing the BV based 
TK filtering technique. Moreover, the posterior likelihood 
is approximated by the VB framework, thus the proposed 
filters will have stronger robustness to deal with non-linear 
scenarios, especially measurement-outlier scenarios. 

The proposed methods not only can be applied to 
PHD and CPHD filters, but also has the potential to be 
applied to the LRFS framework, such as the J-LMB filter 
[13]. The J-LMB filter shows better performance than 
standard PHD filters, thus the use of the proposed methods 
for this filter can further improve the tracking accuracy 
theoretically. Moreover, we plan to apply the proposed 
method to extended target PHD filters, e.g. the modified 
Gaussian inverse Wishart PHD filter [30]. Extended target 
PHD filters require partitioning the measurement set each 
scan, and partition error is a common measurement-outliers 
problem. Therefore, the use of TK filtering method can 
theoretically improve tracking accuracy of an extended 
target PHD filter. 
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