
RADIOENGINEERING, VOL. 29, NO. 4, DECEMBER 2020 625

Coherence Optimized Channel Estimation
for Mm-Wave Massive MIMO

Faisal AKRAM, Imran RASHID, Abdul GHAFOOR, Adil Masood SIDDIQUI

Dept. of Electrical Engineering, College of Signals, National University of Science and Technology (NUST), Pakistan

faisal.akram@mcs.edu.pk, irashid@mcs.edu.pk, abdulghafoor-mcs@nust.edu.pk, dradil@mcs.edu.pk

Submitted September 17, 2019 / Accepted June 19, 2020

Abstract. Mm-wave MIMO communication makes
a hybrid combination of analog RF and digital baseband
processing more attractive, where digital baseband pre-
coders/combiners able to adapt to the pre-defined analog
(switch based) RF processors. Non-uniform two-dimensional
quantized azimuth and elevation angle grid antenna array re-
sponses are suggested for uniform planar array (UPA) and
are proven orthogonal. Training vectors (or sensing ma-
trix) are designed for suggested antenna array response with
unitary RF processing for UPA in mm-wave hybrid MIMO
system. Proposed training vectors achieve minimized total
coherence of the equivalent sensing matrix for hybrid MIMO
system. Open-loop channel estimation of the mm-wave chan-
nel is done by using iterative re-weight based super resolution
algorithm to exploit its sparse nature. Extensive simulations
reveal the benefit of coherence optimization where normal-
ized mean squared error is reduced and spectral efficiency is
improved in comparison to existing methods.
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1. Introduction
Millimeter wave communication is a promising tech-

nology enabling solutions to the global bandwidth shortage
in the frequency spectrum below 6GHz [1]. Mm-wave sys-
tems have smaller wavelengths as compared to microwave
frequencies. Therefore, larger and more compact antenna
arrays are possible for mm-wave systems due to their smaller
inter-antenna separation, which results in increased beam-
forming gains [1].

The channel for mm-wave spectrum is inherently sparse
due to its peculiar propagation characteristic with limited
diffraction, material penetration and small number of scatter-
ers [2]. As a result, mm-wave channel matrices are rank defi-
cient, depending on the few dominant singular values which
tend to be much smaller than the number of antennas [3].

Consequently, a hybrid MIMO architecture with RF beam-
forming (analog) cascaded with digital baseband processing
has been proposed in [4], [5]. Number of RF chains in hy-
brid MIMO architecture is determined by the effective rank
of the channel.

In mm-wave MIMO systems, analog RF processors
are often implemented using phase shifters with constant
modulus condition [4]. In [6], space-time alignment allows
mm-wave channel estimation during beam sweeping time.
In [4], the designing of baseband precoding/combining and
RF beamformer is jointly done. This technique outperforms
the solution where firstly the RF beam is steered to the an-
gle of arrival (AoA)/ angle of departure (AoD) and then
subsequently optimization of baseband precoding/combining
is done. In [7], channel estimation for time varying mm-
wave channels is considered in two stages. Initially, the
AoAs/AoDs estimation is done using adaptive angle estima-
tion and then pilot beamforming is done based on estimated
AoAs/AoDs. It is designed to maximize pilot power for
efficient path gain recovery. Two-stage algorithm in [8] per-
forms estimation of position and rotation angle for single
transmitter. Initially, multiple measurement vectors match-
ing pursuit is used for coarse estimation followed by a refine-
ment stage based on the space-alternating (generalized) ex-
pectation maximization algorithm. In [9], correlation based
adaptive compressed sensing using cosine beam pattern and
hierarchical codebook are used for better angle resolution
estimation (AoA/AoD), which improves spectral efficiency.
In [10], hybrid mm-wave massive MIMO channel estimation
is done in two stages. Initially, joint AoA/AoD estimation is
transformed into two one dimensional sub-problems. Then
subsequently, sparse signal reconstruction is done using the
initial support set.

Spatial channel covariance estimation is used in [11],
for designing of analog precoders for hybrid (MIMO) archi-
tecture. Matrix completion based channel estimation is done
with generalized conditional gradient framework. In [12],
alternating minimization approach which is robust to array-
inherent impairments is developed. In [13], successive in-
terference cancellation allows designing of near-optimal pre-
coders for multiple sub-arrays at the transmitter/receiver re-
sulting in higher energy efficiency. In [14], clustered sparse
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Bayesian learning approach is used for hybridMIMOchannel
estimation without knowledge of channel statistics and angu-
lar information of users. In [15], sparse Bayesian learning
based block-sparse channel estimation is done for mm-wave
hybrid MIMO system using multiple measurement vectors.
Furthermore, a recursive hierarchical Bayesian Kalman fil-
ter is used for estimation of time-selective channel. In [16],
Kalman based formulation for hybrid analog/digital precod-
ing in multi-user environments is proposed with affordable
complexity.

In [17], channel estimation using training sequence (TS)
design based on inverse discrete Fourier transform (IDFT) of
a frequency domain binary TS is done. It is followed by
an investigation of genetic algorithm to optimize the auto-
coherence and cross-coherence of the blocks of sensing ma-
trix. In [18], randomly constructed pilot signals and beam-
forming vectors are considered and the mutual coherence pa-
rameter of the resulting sensing matrix is analysed. In [19],
hybrid analog/digital precoding and combining matrices are
designed based on minimum mean squared error (MMSE)
criteria. In [20], open-loop channel estimator for hybrid
MIMO using uniform linear array (ULA) is proposed. Base-
band training vectors are proposed for non-uniform quantized
angles grid. The antenna array response is based on one di-
mension with unitary RF-beamformers. However, baseband
training vectors for two-dimensional non-uniform quantized
angles, matching the fine angular resolution of mm-wave sig-
nals are required to be investigated. Coherence minimization
achieved for the equivalent sensing matrix also shows room
for further improvement.

In this paper, training vectors forming baseband pre-
coder/combiner are designed for mm-wave hybrid MIMO
system. The environment is based on parametric channel
model with quantized AoAs/AoDs (azimuth & elevation an-
gle) for UPA and the pilot vectors are a cascade of RF beam-
former and baseband precoder/combiner. For channel esti-
mation, iterative re-weight super resolution algorithm [21] is
used. The contributions of the paper are mentioned below:

• A sparse channel recovery problem is formulated for
mm-wave hybrid MIMO system. Redundant dictio-
nary consisting of antenna array response vectors with
non-uniformly distributed angular grid for azimuth and
elevation in [− π2 , π2 ] is suggested. Such an antenna array
response is shown to have full rank (orthogonal) which
facilitates coherence minimization of the overall equiv-
alent sensing matrix for the mm-wave hybrid MIMO
system. The angular grids for azimuth angles θγ and
elevation angles φγ are defined such that sin(θγ) and
sin(φγ) are uniformly distributed in [−1,1]. The az-
imuth and elevation angular resolution of the proposed
scheme can be finer than the parametric channel model.
The non-uniformly distributed azimuth and elevation
grids are shown to reduce the mutual coherence of the
redundant dictionary.

• Pilot beam patterns for unitary RF beamformers are de-
signed to minimize the overall coherence of the equiv-
alent sensing matrix. Baseband precoder/combiner are
optimized for a given RF beamformer and orthogonal
antenna array response to lower the overall coherence
of the mm-wave hybrid MIMO system. Coherence
minimization of baseband precoder/combiner is done
by modifying Grassmannian codebook generation al-
gorithm for dictionary adaptation. The overall coher-
ence of the system is taken as the maximum normal-
ized inner product of the effective sensing matrix for
the transmitter/receiver. The effective sensing matrix
is formed by the product of the RF beamformer, base-
band precoder/combiner and the respective combined
azimuth and elevation angular antenna array response
for UPA. It is observed that reduced coherence of the
system enables better estimation accuracy.

• A detailed analysis of the coherence achieved through
proposed technique for overall mm-waveMIMO system
with different fixed antenna array but varying resolution
(finer) antenna array responses is provided.

• Normalized error performance and achievable spectral
efficiency of the proposed approach is compared to ex-
isting techniques. Error performance is also analyzed
with varying number of paths and antenna array grid
resolutions that are equivalent to the specific antenna
configuration and further finer resolutions.

2. System Model

2.1 Signal Model
Consider a hybrid mm-wave MIMO system model

(Fig. 1) [20] with uniform planar antenna array having NT
transmit and NR receive antennas which are assumed to
be multiples of their respective RF chains i.e, NRF

T and
NRF

R . The RF beamformers are realized using analog phase
shifters. During the channel estimation, the transmitter
uses beam patterns {xv ∈ CNT×1} and the receiver uses
beam patterns wq ∈ CNR×1, where v = 1,2, . . . ,Nx, q =
1,2, . . . ,Ny, ‖xv ‖22 = 1, ‖wq ‖22 = 1. The receive vector for
the v-th transmit beam is given as:

yv,q̄ =WH
q̄Hxvsv +WH

q̄nq̄,v (1)

where sv is the pilot symbol being transmitted with average
power P [22], q̄ ∈

{
1,2, . . . , Ny

NRF
R

}
,Wq̄ ∈ CNR×NRF

R represents
receive beam pattern, H ∈ CNR×NT is the channel matrix and
nq̄,v ∈ CNR×1 is the noise vector with normal distribution
having variance σ2

n . Collectively for q̄ and v the receive
matrix Y ∈ CNy×Nx is given as:

Y =WHHXS +WHN (2)
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Fig. 1. The mm-wave MIMO system model [20].

where X ∈ CNT×Nx is the precoding matrix, W ∈ CNR×Ny is
the combining matrix, N ∈ CNy×Nx is the noise matrix and
S =

√
PINx with identity matrix INx ∈ RNx×Nx is the pilot

symbols matrix [22]. Therefore,

Y =
√

PWHHX +WHN. (3)

In the hybrid MIMO framework [20], the precoding
and combining matrices are decomposed into RF and Base-
band (BB) components as X = XRFXBB and W =WRFWBB,
where XBB ∈ CNT×Nx , WBB ∈ CNR×Ny . RF components
XRF ∈ CNT×NT and WRF ∈ CNR×NR are assumed to be unitary
matrices.

2.2 Channel Model
SincemmWave channels are sparse in nature due to lim-

ited scattering [22], a geometric channel model is adopted.
Let the channel have L scatterers and each one of them con-
tributes to a propagation path between transmitter and re-
ceiver, then the channel model for UPA is given as:

H =
√

MtxMtyMrxMry

ρ

L∑
γ=1

αγ aR(θr
γ, φ

r
γ) aH

T (θt
γ, φ

r
γ) (4)

where ρ represents the average path loss, αγ is the complex
gain for the γ-th path, {Mtx, Mty} are the number of an-
tenna elements in each row and column of the transmitter
array, {Mrx, Mry} are the elements in each row and column
of the receiver array respectively. The transmitter antenna
array response aT(θt

γ, φ
t
γ) = aT(θt

γ) ⊗ aT(φt
γ) with azimuth

and elevation responses given as [23]:

aT(θt
γ) = 1√

Mtx

[
1,e−j2π d

λ sin(θ t
γ ), . . . ,e−j2π d

λ sin(θ t
γ )(Mtx−1)

]T
,

aT(φt
γ) = 1√

Mty

[
1,e−j2π d

λ sin(φt
γ ), . . . ,e−j2π d

λ sin(φt
γ )(Mty−1)

]T

(5)

where d is the separation between antenna elements, λ is the
wavelength, θt

γ, φ
t
γ ∈ [− π2 , π2 ] are the normalized spatial az-

imuth and elevation AoD respectively. Similarly, the receiver
antenna array response aR(θr

γ, φ
r
γ) = a(θr

γ) ⊗ a(φr
γ) for nor-

malized spatial AoA θr
γ, φ

r
γ ∈ [− π2 , π2 ] where θr

γ represents
azimuth AoA and φr

γ represents elevation AoA [22].

Summarily, transmitter antenna array response AT ∈
CNT×L and receiver antenna array response AR ∈ CNR×L for
UPA with L paths can be given as:

AT = [a(θt
1, φ

t
1),a(θt

2, φ
t
2), . . . ,a(θt

L, φ
t
L)],

AR = [a(θr
1, φ

r
1),a(θr

2, φ
r
2), . . . ,a(θr

L, φ
r
L)].

(6)

In more compact form the channel matrix given in (4)
can be represented as [22]:

H = AR diag (α)AH
T (7)

where α =
√

MtxMtyMrxMry/ρ[α1, α2, . . . , αL]T.

2.3 Orthogonal Antenna Array Response
In order to generalize the antenna array response for

both azimuth and elevation angles, grid points Ng � L
are uniformly taken in [22], [24], i.e, θζ ∈ 2πζ/Ng, ζ ∈
{1,2, . . . ,Ng} and φη ∈ 2πη/Ng, η ∈ {1,2, . . . ,Ng}. As
a result the channel model as per (7) modifies with
α =

√
MtxMtyMrxMry/ρ[α1, α2, . . . , αNg ]T having non-zero

channel gains at the corresponding azimuth and elevation
angles at both ends.

In [20], the grid angles are defined in a non-uniform
manner where θ ∈ [0, π] for the antenna array response of
ULA. The resulting antenna array response matrix is orthog-
onal for Ng ≥ N , where N is the number of antennas at the
transmitter/receiver.

In case of UPA for mm-wave massive MIMO with
critically spaced elements i.e, d = λ

2 , having Mx rows
and My columns of antenna elements, the azimuth angle
θ ∈ [−π/2, π/2] and elevation angle φ ∈ [−π/2, π/2] are
shown in Fig. 2. The azimuth angle grid Gθ = θi (for
i = 1,2, . . . ,Ngθ and Ngθ ≥ Mx) and elevation angle grid
Gφ = φk (for k = 1,2, . . . ,Ngφ and Ngφ ≥ My) are de-
fined in a non-uniform manner in {− π2 , π2 }, such that sin(θi)
and sin(φk) are well defined for the entire grid and remain
uniformly distributed in [−1,1]. Specifically, θi and φk are
determined to satisfy:

sin(θi) = 2
Ngθ
(i − 1) + 1, sin(φk) = 2

Ngφ
(k − 1) + 1. (8)
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Fig. 2. Uniform planar array.

From (5), the antenna array response for critically spaced
elements (d = λ

2 ) having azimuth angle θi and elevation
angle φk can be written as:

a(θi)= 1√
Mx

[
1,e−jπ sin(θi ),e−jπ sin(θi )2, . . . ,e−jπ sin(θi )(Mx−1)

]T
,

a(φk)= 1√
My

[
1,e−jπ sin(φk ),e−jπ sin(φk )2, . . . ,e−jπ sin(φk )(My−1)

]T
.

(9)

Collectively, the antenna array response for azimuth and el-
evation angles taken from their respective grids Gθ and Gφ
are given as:

A(θ) = [a(θ1) a(θ2) . . . a(θNgθ )],
A(φ) = [a(φ1) a(φ2) . . . a(φNgφ )].

(10)

Correspondingly, the overall antenna array response is given
as A = A(θ) ⊗ A(φ). The Kronecker product a(θi, φk) is
given as:

a(θi, φk) =
1√

MxMy

[{
1,e−jπ sin(φk ),e−jπ sin(φk )2, . . . ,e−jπ sin(φk )(My−1)}T

,

e−jπ sin(θi ){1,e−jπ sin(φk ),e−jπ sin(φk )2, . . . ,e−jπ sin(φk )(My−1)}T
,

e−jπ sin(θi )2{1,e−jπ sin(φk ),e−jπ sin(φk )2, . . . ,e−jπsin(φk )(My−1)}T
,

...

e−jπ sin(θi )(Mx−1){1,e−jπ sin(φk ),e−jπ sin(φk )2, . . .

. . . ,e−jπ sin(φk )(My−1)}T
]
.

Accordingly, the transmitter antenna array response matrix
AT and receiver antenna array response AR are given as:

AT =
[
a(θt

1, φ
t
1) a(θt

1, φ
t
2) . . . a(θt

1, φ
t
Ngφt
) a(θt

2, φ
t
1) . . .

. . . a(θt
Ngθt

, φt
Ngφt
)
]
,

AR =
[
a(θr

1, φ
r
1) a(θr

1, φ
r
2) . . . a(θr

1, φ
r
Ngφr
) a(θr

2, φ
r
1) . . .

. . . a(θr
Ngθr

, φr
Ngφr
)
]
(11)

where (θt
i, φ

t
k
) represent the transmitter (azimuth, elevation)

angles (with grid resolutions Ngθt,Ngφt ) and (θr
i, φ

r
k
) represent

the receiver (azimuth, elevation) angles (with grid resolutions
Ngθr,Ngφr ) respectively.

The resulting antenna array response matrices for trans-
mitter and receiver have full rank which is proven in Ap-
pendix 1.

Lemma 1 Let the azimuth angle grid (Gθ ) and elevation
angle grid (Gφ) satisfy (8), the number of row and column el-
ements at the transmitter and receiver be Mtx, Mty, Mrx, Mry
respectively, the grid resolution for azimuth and elevation
angles at the transmitter be Ngθt ≥ Mtx and Ngφt ≥ Mty,
the grid resolution for azimuth and elevation angles at the
receiver be Ngθr ≥ Mrx and Ngφr ≥ Mry, while the elements
of the antenna array are critically spaced i.e, d = λ

2 , the
antenna array responses fulfill,

ATAH
T =

Ngθt Ngφt

MtxMty
INT and ARAH

R =
Ngθr Ngφr

MrxMry
INR (12)

where INT and INR are identity matrices.

The antenna array responses for the transmitter AT and
receiver AR form part of the dictionary for the system and
their orthogonality allows minimized coherence of the sens-
ing matrix for efficient compressed sensing (CS) based prob-
lem formulation.

3. Channel Formulation and
Estimation
The estimation of geometric mm-wave channel model

for UPA given in (4) calls for finding an estimate of the az-
imuth and elevation AoD from the transmitter and azimuth
and elevation AoA at the receiver along with the complex
gain vector for each of the paths. The limited scattering na-
ture of mm-wave leads to fewer paths in the channel, which
makes the complex gains vector sparse.

3.1 Sparse Channel Formulation
In order to formulate the sparse channel, the channel

model (7) formed by orthogonal transmit and receive an-
tenna arrays is substituted in the collective channel received
vectors matrix form given in (3) as:

Y =
√

PWHAR diag(α)AH
T X +WHN. (13)

To highlight the sparse nature of the channel [22], the
matrix Y is vectorized as:

yvec =
√

P vec(WHAR diag(α)AH
T X) + vec(WHN),

yvec =
√

P (XTA∗T ⊗WHAR)︸                ︷︷                ︸
F

α + vec(WHN). (14)
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In CS formulation, the mutual coherence of a matrix
provides sufficient recovery guarantee of a sparse vector. The
coherence of a sensing matrix F which is based on the Kro-
necker product is given as [25]:

µ(F) = max
{
µ(XTA∗T), µ(WHAR)

}
. (15)

This decoupling of the Kronecker product allows us to
focus on individual coherences of the precoding matrix XT

with orthogonal transmitter antenna array response A∗T as de-
fined in Section 2.3 for a particular azimuth/elevation angular
grids Ngθt/Ngφt , and similarly for combining matrixWH with
orthogonal receiver antenna array response AR.

3.2 Channel Estimation
The reconstruction of the complex gains sparse vector

α leads to the recovery of azimuth and elevation angles of de-
parture/arrival respectively. The reconstruction of the sparse
vector based on (14) is given as:

min
α̂,θ̂

t
,φ̂

t
,θ̂

r
,φ̂

r
‖α‖0, such that

yvec − Fα

F

(16)

where α̂ is the estimated complex gains vector, the estimated
AoD azimuth angles vector θ̂

t, the estimated AoD eleva-
tion angles vector φ̂

t, the estimated AoA azimuth angles
vector θ̂r and the estimated AoA elevation angles vector φ̂r

respectively.

4. Pilot Beams Design
Mutual coherence of a sensing matrix is an important

attribute and itsminimization improvesCS performance [26].
Measurement matrices are adapted or coherence optimized
with respect to dictionaries in [27], [28].

The overall coherence of the channel model (15) de-
pends on as low coherence as possible between precoder
matrix XT and the orthogonal transmitter antenna array re-
sponse matrix A∗T and similarly for combiner matrix WH and
the orthogonal receiver antenna array response matrix AR.
The antenna array matrices A∗T and AR are the transmitter
and receiver dictionaries for the system. The coherence min-
imization problem with RF processors as unitary matrices
(XRF/WRF) is difficult, therefore, proposed coherence mini-
mization focuses on adaptation of baseband precoder (XBB)
and combiner (WBB) with respect to their respective dictio-
naries. Grassmannian codebook generation algorithm given
in [29] is adapted for dictionary adaptation of the baseband
precoder/combiner matrix. The algorithm optimizes the co-
herence of initial random complex matrix U ∈ CZ×C with
Z < C. It performs Lagrange based optimization of the
objective function,

g(U, λ) =
∑
b,s

(
|〈ub,us〉|2 − β2µ2

bd

)p
+

C∑
b=1

λb(‖ub ‖2 − 1)
(17)

where ub,us are column vectors of matrix U, λ are the La-
grange multipliers with unit radius, p ∈ {21,22 . . . ,29} is the
free parameter, β = 0.5 is the factor to improve stability dur-
ing convergence of the algorithm and µbd is the lower bound
on coherence of matrix U [29], given as:

µbd(U) =




√
C−Z

Z(C−1) , if C ≤ Z2

max
(√

1
Z ,

√
2C−Z2−Z
(Z+1)(C−Z) ,1 − 2C

−1
Z−1

)
,

if Z2 < C ≤ 2(Z2 − 1)

max
(√

2C−Z2−Z
(Z+1)(C−Z) ,1 − 2C

−1
Z−1

)
,

if 2(Z2 − 1) < C.

(18)

The force vector to cover the cumulative effect of all
other vectors on each vector is derived by finding the equi-
librium conditions for (17) as:

f(δ)
b
= −2

∑
b,s

(���〈u(δ)b
u(δ)s 〉

���2− β2µ2
bd

)p−1
〈u(δ)s ,u(δ)

b
〉u(δ)s (19)

where underlining highlights normalization and u(δ)
b

repre-
sents unit norm vector at index b in δth iteration.

After application of the forces on each vector the ma-
trix is updated. Sequential optimization process moves
to the next value of p causing coarse to fine adjustments
of vectors to achieve better convergence, once condition
‖u(δ)

b
− u(δ−1)

b
‖ < ε is met.

In order to modify the algorithm for dictionary adapta-
tion of the baseband precoding matrix XT

BB ∈ CNx×NT with
respect to dictionary A∗T ∈ CNT×NgθNgφ while having fixed
RF component XT

RF as unitary matrix, the rows of an initial
random uniformly distributed phase matrix XT

rd ∈ CNx×NT

should become as incoherent to the columns of dictio-
nary A∗T as possible. To achieve this, a new input matrix
B ∈ CNT×{Nx+NgθNgφ } is formed by concatenating initial ran-
dom matrix Xrd with the dictionary matrix A∗T. The concate-
nated matrix B is formed in a manner where once given as
input to the modified algorithm provides an opportunity to
make precoding vectors incoherent with themselves as well
as the dictionary vectors.

In Algorithm 1, Line 8 [29], the conditions for progres-
sion of the iterative process to next value of free parameter
p are set where either the number of iterations δ reaches
maximum iterations i.e., δmax or all column vectors of the
prospective precoding matrix (bδi representing ith column
with i ∈ {1,2, . . . ,Nx} of matrix B in δth iteration) converge
onto themselves and fulfill the condition ‖b(δ)i − b(δ−1)

i ‖ ≤ ε .
This modified condition for the loop for each value of free
parameter p allows convergence of only precoding matrix
part of the concatenated matrix B. In Algorithm 1, Line 9,
the resultant force vector for each column vector (1 : Nx)
involving contributions from all other vectors is calculated.
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The interim matrix is partially updated after dampened ap-
plication of force (Algorithm 1, Line 10). The update of the
matrix in each iteration only alters the initial Nx columns of
the matrix which correspond to the baseband precoding ma-
trix and keeps the dictionary part unaltered. Even though the
dictionary is orthogonal, the adapted algorithm has slower
convergence due to updation of a limited part of the matrix.
Correspondingly, the error threshold used to measure conver-
gence of the precoding matrix part of the matrix B is lowered
from 10−10 in [29] to 10−12 and the maximum iterations δmax
for each value of free parameter p is increased from 105 to
5×105 to avoid premature advancement of the algorithm and
achieve better convergence. Dictionary adapted pilot vectors
matrix XBB (baseband precoding matrix) is taken as output
of the algorithm by extracting initial Nx columns of matrix B
after final convergence. The same algorithm can be used to
adapt WH

BB (baseband combining matrix) with respect to its
dictionary AR.

Algorithm 1: Coherence optimized pilot beam
patterns.

Let the input matrices Xrd and A∗T be taken using (3) and (11)
Initialize:

1: B = [Xrd A∗T] ∈ C
NT×{Nx+Ngθ Ngφ } . Input Matrix

2: µbd . Coherence bound for precoding matrix (18)
3: αinit ← 0.04, α← αinit . Dampening factor
4: δmax ← 5 × 105 .Max iterations
5: pmax ← 29 , p ← 2, . Free parameter
6: ε = 10−12 . Error threshold
7: i ∈ {1, 2, . . . , Nx } . Column index of baseband precoding matrix

while p ≤ pmax do
δ = 1, . Initialize iteration index

8: while δ ≤ δmax & any ‖b(δ)i − b(δ−1)
i ‖ ≥ ε do

9: Calculate F(δ) = [f(δ)1 f(δ)2 . . . f(δ)Nx ] . Force calculation (19)
10: B(δ)[:, 1 : Nx] =B(δ−1)[:, 1 : Nx] + αF(δ)[:, 1 : Nx]

. Update & normalize
11: δ = δ + 1 . Increase iteration
12: end
13: p ← 2p, α← αinit

(p−1) . Adjust free parameter and dampening
factor

end
Output: XBB = B[:, 1 : Nx] . Dictionary adapted pilot vectors

In Fig. 3a and 3b, the coherence profile of the off-
diagonal values of the Gram matrices based on concate-
nation of RF-beamformer (DFT matrix), baseband precod-
ing/combining matrices and antenna array response matrices
is shown. The random precoding matrix Xrd and combin-
ing matrix Wrd are based on random uniformly distributed
phases. XBB is the baseband precoding matrix adapted to
its dictionary A∗T and WBB is the baseband combining ma-
trix adapted to its dictionary AR. In the distribution, the
efficacy of the algorithm is evident where the worst case
coherence is considerably reduced and the spread of the off-
diagonal values is also narrowed as compared to the random
phases matrices.

In Fig. 3c, the distribution of off-diagonal values of the
Gram matrices based on system transmitter side component
(XT

RFXT
BBA∗T andXT

RFXT
rdA∗T) is given. In Fig. 3d, distribution

of off-diagonal values of the Gram matrices based on system
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Fig. 3. Off-diagonal values distribution based on Gram ma-
trices with NT = NR = 8 × 8, Nx = Ny = 32,
Ngθ = Ngφ = 8, {Xrd,Xop,Wrd,Wop } ∈ C64×32,
{XRF,WRF } ∈ C64×64, AT,AR ∈ C64×64.

receiver side component (WH
RFWH

BBAR and WH
RFWH

rdAR) is
shown. It is revealed that the overall coherence profile of the
system for the dictionary adapted coherence optimized base-
band precoding/combining matrices is lower as compared
to the random phase baseband precoding/combining matri-
ces which merits better sparse channel estimation probabil-
ity. Moreover, if precoding/combining matrices XBB/WBB
are taken as Grassmannian codebooks with the appropriate
dimensions which are optimized from initial random dis-
tributed phase matrices using algorithm in [29] without dic-
tionary adaptation, the resulting coherence profile for the sys-
temwould beworse than the one after coherence optimization
involving adaptation to their respective dictionaries.

In Fig. 4, the coherence variation of the overall sys-
tem with optimized baseband precoder/combiner matrices is
shown while having varying grid resolutions for each fixed
square (Mtx = Mty = Mrx = Mry) antenna configuration
considered. Each plot shows the coherence variation for
a particular antenna configuration, where the grid resolution
starts with the resolution equivalent to the antenna config-
uration and then progressively finer grid resolutions. It is
revealed that increase in grid resolution for any antenna con-
figuration increases coherence. It is also worth mentioning
that the coherence for antenna configurations with equivalent
grid resolution steadily decreases as larger antenna configura-
tions are considered. The line joining coherence for antenna
array equivalent grid resolution follows an exponential-like
distribution. Based on these observations, an optimum an-
tenna configuration with suitable resolution can be selected
for a particular scenario. Furthermore, the normalized mean
squared error (NMSE) profile for such variation can help
ascertain which configuration is best suited.
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Algorithm 1 depends on the orientation and coherence
of the initial random seed Xrd which is given as input to the
algorithm. For certain configurations, due to the geometry
of the sensing matrix and the dictionary considered, the pro-
gressive algorithm takes longer to converge. At times the
algorithm doesn’t converge to a desirable mutual coherence
level with respect to a given quantized antenna array response
taken as dictionary.
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Fig. 4. Coherence grid comparison µ =

max{µ(XTA∗T), µ(WHAR)} with X ∈ C(Mtx×Mty)×Nx ,
AT ∈ C(Mtx×Mty)×Ngθ Ngφ and W ∈ CNy×Mrx×Mry ,
AR ∈ C(Mrx×Mry)×Ngθ Ngφ .

The algorithm is implemented in Matlab R2017a, and
the machine used has Intel Core i7-6700 CPU @ 3.40GHz
octa-core 64-bit processor with 32GBRAM. In order to high-
light the time complexity of the algorithm, five test trials for
each antenna configuration considered with varying antenna
angular grid resolutions based dictionaries are performed.
In Fig. 5, box plots for the computation times taken by
the three UPA antenna configurations i.e., {X ∈ C(4×4)×8,
AT ∈ C(4×4)×NgθNgφ }, {X ∈ C(6×6)×18, AT ∈ C(6×6)×NgθNgφ }
and {X ∈ C(8×8)×32, AT ∈ C(8×8)×NgθNgφ } are shown. It is
observed that the computation time increases for each config-
uration once finer grid resolutions are considered. Moreover,
the time complexity also increases once larger antenna arrays
are considered.

Table 1 provides comparison of the proposed approach
with the recent work related to TS designing in hybrid mm-
wave massive MIMO.
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Fig. 5. Computation time variation comparison in 5 test trials.

Technique
AOA/AOD

Antenna TS design Complexity Recovery algorithmDistribution Range
θ φ

Ma et al. [17] Continuous {0, 2π } – ULA Coherence Low Block-OMPminimized

Manoj and Kannu [18] Uniform {−π, π } – ULA Random Low Generalized
Block-OMP

Nguyen et al. [19] Uniform {0, 2π } {− π
2 ,

π
2 } UPA

MMSE via OMP Medium
OMPWeighted-MMSE Mediumvia OMP

Lee et al. [20] Uniform Orthogonal – ULA Coherence Low OMPcos(θ) Quantized{0, π } minimized

Proposed
Uniform Orthogonal Orthogonal

UPA
Coherence High Iterative re-weight

sin(θ) and Quantized Quantized optimized super resolution
sin(φ) {− π

2 ,
π
2 } {− π

2 ,
π
2 }

Tab. 1. TS design comparison for mm-wave massive MIMO.
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5. Simulation Results
In this section, the performance of the proposed dictio-

nary adapted precoding/combining matrices with proposed
orthogonal antenna array responses for UPA is evaluated.

5.1 Error Analysis
NMSE is defined as 10 log10

[
E{‖H − Hest‖2/‖H‖2}

]
is compared for UPA in Fig. 6. The channel estimation is
based on iterative re-weight super resolution algorithm [21].
In the simulation XRF/WRF are assumed to be unitary ma-
trices based on DFT matrix for all the variants considered.
In baseband, the proposed dictionary adapted precoding XBB
and combiner WBB matrices based system is compared with
coherence minimized sensing matrix based system [20] and
for hybrid precoding based on random uniformly distributed
phase [21]. The results are observed for 1000 channel realiza-
tions for each level of SNR. In Fig. 6, the transmitter NT and
receiver NR UPA have 8×8 elements, while having RF chains
NRF

T = NRF
R = 8, transmission block NBlock

T = NT
NRF

T
= 8, re-

ceiver block NBlock
R = NR

NRF
R
= 8, transmission and reception

beams Nx = Ny = 32 and number of paths L = 5 respectively.
The signal to noise ratio is defined as Pσ2

α

σ2
n
, where complex

path gains αi are assumed to be normally distributed with 0
mean, σ2

α variance and σ2
n is the noise variance. The pro-

posed technique shows better NMSE performance owing to
lower coherence of the overall system. The NMSE perfor-

mance of the proposed hybrid precoding system for UPA is
similar to the results achieved for uniform linear array in [21].

In order to observe the variation inNMSE for increasing
number of paths, in Fig. 7, the transmitter NT and receiver
NR UPA have 14 × 14 elements, while having RF chains
NRF

T = NRF
R = 14, transmission block NBlock

T = NT
NRF

T
= 14, re-

ceiver block NBlock
R = NR

NRF
R
= 14, transmission and reception

beams Nx = Ny = 98 and number of paths L = {5,10,15} re-
spectively. It is observed that the NMSE performance of the
proposed approach doesn’t deteriorate much with increasing
number of paths.

In order to observe the variation in NMSE for increas-
ing grid size while keeping antenna size fixed, consider
transmitter NT and receiver NR UPA having 8 × 8 elements,
while having RF chains NRF

T = NRF
R = 8, transmission block

NBlock
T = NT

NRF
T
= 8, receiver block NBlock

R = NR
NRF

R
= 8, trans-

mission and reception beams Nx = Ny = 32, number of paths
L = 10 and grid sizes Ngθ×Ngφ ∈ {(8×8), (9×9), (10×10)} in
Fig. 8 respectively. Furthermore, in Fig. 9, transmitter NT and
receiver NR UPAhaving 12×12 antenna elements, while hav-
ing RF chains NRF

T = NRF
R = 12, transmission block NBlock

T =
NT
NRF

T
= 12, receiver block NBlock

R =
NR
NRF

R
= 12, transmission

and reception beams Nx = Ny = 72, number of paths L = 10
and grid sizes Ngθ × Ngφ ∈ {(12 × 12), (13 × 13), (14 × 14)}
respectively are considered. It is observed that the error
profile worsens with increase in grid size for a particular
antenna configuration.
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Fig. 6. NMSE comparison X ∈ C(8×8)×32, AT ∈ C(8×8)×64 and
W ∈ C32×(8×8), AR ∈ C(8×8)×64.
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Fig. 7. NMSE comparison L = {5, 10, 15}, X ∈ C(14×14)×98,
AT ∈ C(14×14)×196 and W ∈ C98×(14×14), AR ∈
C(14×14)×196.
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Fig. 8. NMSE comparison L = 10, X ∈ C(8×8)×32,
AT ∈ C(8×8)×Ngθ Ngφ and W ∈ C32×(8×8), AR ∈
C(8×8)×Ngθ Ngφ .
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AT ∈ C(12×12)×Ngθ Ngφ and W ∈ C72×(12×12), AR ∈
C(12×12)×Ngθ Ngφ .
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Fig. 10. ASE comparison X ∈ C(8×8)×32, AT ∈ C(8×8)×64 and
W ∈ C32×(8×8), AR ∈ C(8×8)×64, L = 5.

5.2 Spectral Efficiency
The achievable spectral efficiency (ASE) for random

symbols transmitted is defined in [4] as:

R = log2
(
INx +

ρ

Nx
R−1

n W∗BBW∗RFHXRFXBB×
X∗BBX∗RFHWRFWBB

)

where Rn = σ2
n W∗BBW∗RFWRFWBB is the noise covariance

matrix after combining. In Fig. 10, the ASE profile for
transmitter NT and receiver NR UPA having 8 × 8 elements,
while having RF chains NRF

T = NRF
R = 8, transmission block

NBlock
T = NT

NRF
T
= 8, receiver block NBlock

R = NR
NRF

R
= 8, trans-

mission and reception beams Nx = Ny = 32, number of
paths L = 5 is considered. It is observed that the proposed
approach reaches the perfect channel state information (CSI)
case earlier than the existing techniques.

6. Conclusion
In this paper, two dimensional angular grid based (az-

imuth and elevation angle) antenna array representation for
UPA is suggested. It is shown that the array representation
remains full rank for grid resolution equivalent to the number
of antennas in the array or for the casewhere finer grid resolu-
tions are considered. Training vectors are designed to reduce
the overall coherence of the mm-wave hybrid MIMO system.
Lowered coherence of the equivalent sensing matrix for the
system allows better channel estimation. Iterative re-weight
super resolution algorithm is used for open-loop channel esti-
mation and the NMSE profile shows considerable advantage
over existing techniques. Similarly, achievable sum rate effi-
ciency profile reveals that the proposed approach closely fol-
lows and reaches the perfect channel state information case.
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Appendix A: Proof of Lemma 1

Proof 1 The row of AT corresponding to particular row el-
ement x and column element y of the transmitter is given as:

AT(x, y) = 1√
MtxMty

[
e−jπ(x sin θ t

1+y sinφt
1),e−jπ(x sin θ t

1+y sinφt
2) ,

. . . ,e−jπ
(
x sin θ t

1+y sinφt
Ngφt

)
,e−jπ(x sin θ t

2+y sinφt
1),

. . . ,e
−jπ

(
x sin θ t

Ngθt
+y sinφt

Ngφt

) ]

where x ∈ {1,2, . . . ,Mtx} and y ∈ {1,2, . . . ,Mty}.
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Using (8),

e−jπ(x sin θ t
i+y sin φt

k
) = e−jπ

[
x
{

2
Ngθt
(i−1)+1

}
+y

{
2

Ngφt
(k−1)+1

}]

= e−jπ
[

2x
Ngθt
(i−1)+ 2y

Ngφt
(k−1)+x+y

]
.

AT(x, y) = 1√
MtxMty

[
e−jπ(x+y),e−jπ

(
2

Ngφt
y+x+y

)
, . . . ,

e−jπ
(

2y
Ngφt

(Ngφt−1)+x+y
)
,e−jπ

(
2

Ngθt
x+x+y

)
,

. . . ,e−jπ
{

2x
Ngθt
(Ngθt−1)+ 2y

Ngφt
(Ngφt−1)+x+y

} ]
.

Now to check orthogonality, AT(x1, y1)AH
T (x2, y2) is given as:

=
1

MtxMty

Ngθt∑
i=1

Ngφt∑
k=1

e−jπ
[

2
Ngθt

{i(x1+x2)−x1−x2 }
]

e−jπ
[

2
Ngθt

{k(y1+y2)+y1−y2 }+x1+y1+x2+y2 }
]

where x1, x2 are the respective row antenna elements and
y1, y2 are the respective column antenna elements. When
x1 = x2 and y1 = y2,

AT(x, y)AH
T (x, y) =

1
MtxMty

Ngθt∑
i=1

Ngφt∑
k=1

e−jπ
{

2
Ngθt

x(2i−2)
}

e−jπ
{

2
Ngφt

y(2k−2)+2x+2y
}

=
Ngθt Ngφt

MtxMty
.

When x1 , x2 or y1 , y2, AT(x1, y1)AH
T (x2, y2) = 0. The

above statements can also be verified by induction.

ATAH
T =

{
Ngθt Ngφt
MtxMty

, for x1 = x2; y1 = y2,

0, otherwise.

ARAH
R =

Ngθr Ngφr
MrxMry

INR follows similarly.


