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Abstract. The critical relevance of ensuring the excita-
tion’s causality in electromagnetic (EM) simulations is vali-
dated via theoretical arguments and simulation results. Two
families of model pulses with an implicitly causal behavior,
namely thewindowed-power (WP) and the power-exponential
(PE) ones, are elaborately discussed. After introducing their
unipolar prototypes, the relevant families are supplemented
with monocycle and ringing variants, and are used for build-
ing signatures with almost rectangular spectral contents.
Their utility is evidenced by contrasting their performance
with that of other types of excitations that are habitually em-
ployed in antenna simulations. The WP pulse is also shown
to be an almost exact replica of signatures generated by phys-
ical circuitry and to be singularly expedient for improving the
effectiveness of EM computational packages.
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1. Introduction
Causality is a fundamental property of macroscopic

electromagnetic (EM) fields, stating that the electric field
strength K (r, C) and the magnetic flux density H(r, C) at
any instant C are the effect of causes that acted before C [1].
Causality, as accounted for throughout this study, clearly con-
trasts locality (ormicrocausality) that is a quantum theoretical
concept. From a special relativity perspective, causality is
a distinctive property of time-like phenomena (with classi-
cal EM falling decidedly under this category), as opposed
to the space-like phenomena encountered within quantum
mechanics [2]. From a theoretical viewpoint, causality is
crucial to demonstrating the uniqueness of the EM initial
value problem. In this respect, [3] has indisputably shown
that uniqueness hinges upon the one-to-one correspondence
between the causal time-domain (TD) EM field components
and constitutive relations, on the one hand, and their time
Laplace transforms, on the other hand (this argument will
be reiterated later). Moreover, applying the reciprocity the-
orem (another fundamental EM result) to the case of un-

bounded domains requires, again, the use of causal sources
with a bounded spatial support [4].

The macroscopic EM field theory finds its prime practi-
cal application in the wireless (digital) transfer and, in partic-
ular, in antenna engineering (AE). The role played by causal-
ity in this case was stated in [5] that insisted on the detri-
mental effect of non-causal excitations in studies concerning
antennas radiating in unbounded domains. Furthermore, [6]
stressed the necessity to enforce causality for ensuring the
physical realizability of any pulse.

Upon zooming-in on AE, it is noted that the ultra
wideband (UWB) technology is decisive to pursuing the ad-
vance in digital wireless applications [7], a trend that gained
momentum after the Federal Communications Commission
(FCC) released in 2002 the 3.1–10.6 GHz band for low-level,
unlicensed use in UWB applications [8]. Due to the intrin-
sic technological intricacies in producing UWB (antenna)
systems, their design and performance prediction depends
critically on increasingly sophisticated software simulation
tools. Many authors resort to this end to frequency-domain
(FD) instruments – this choice is justified by compatibility
with measurement equipment capabilities (network analyz-
ers operate in FD) and by the use of traditional concepts in
AE, such as the operational bandwidth �. However, digi-
tal communication occurs essentially in TD, and overlooking
this aspect may result into the well-known detrimental effect
of intersymbol interference [9] that can render ineffective the
communication in channels inwhich the radiated power levels
are well above the expected signal-to-noise-and-interference
(SNRI) thresholds. As a result, the EM simulation tools of
choicewithin the realmofUWBantennas should be of the TD
variety, with [10–12] offering relevant such examples. Sur-
prisingly, these tools employed manifestly non-causal pulses
as excitation: Gaussian pulses [10], or the square root raised
cosine (SRRC) pulse [11, 12]. In fact, although the intrinsic
perils entailed by violating causality were already signaled
in [13], non-causal excitations are still to this day the norm
in TD EM simulations.

With this in mind, the present study will advocate the
use of strictly causal excitations in TD EM simulations for
(UWB) antenna design. Thiswork relies on the author’s quest
for developing various classes of causal model pulses. More-
over, some of these pulses were cogently shown to (almost
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exactly) replicate pulses produced by (solid-state) pulse gen-
erators. For brevity, except for a small number of elements
that were insufficiently covered in previous publications, the
discussion will be confined to conceptual foundations, with
technical details being intentionally left out – all these aspects
are covered in great detail in the cited references.

After introducing some definitions, the account will
proceed by introducing the two basic unipolar prototypes of
the pulses to be discussed and their immediate monocycle
descendants. Two uniquely opportune classes of pulses will
be subsequently inferred from these prototypes. Some im-
portant implications of the use of these causal excitations will
then be catalogued. Conclusions will be drawn at the end.

2. General Definitions
Throughout this study, position is specified by the co-

ordinates {G, H, I} with respect to a background Cartesian
reference frame with origin$ and three mutually orthogonal
unit vectors {ix, iy, iz} that, in this order, form a right-handed
system. The position vector is r = G ix+Hiy+Iiz, with |r | = A ,
and the time coordinate is C. (Partial) differentiation is de-
noted by m. The one-sided Laplace transform of a causal
function 6(C) is

L[6] (B) =
∫ ∞

C=0
[exp(−BC) 6(C)] dt, (1)

with B ∈ R and B > 0. This choice ensures via Lerch’s the-
orem [14], [15] that only one causal time-domain original
corresponds to its related transform and is at the core of the
uniqueness proof of the EM initial value problem [3]. The
Fourier transform of a function ℎ(C) that satisfies the needed
conditions is

F [ℎ] (jl) =
∫ ∞

C=−∞
[exp(−jlC) ℎ(C)] dt, (2)

in which l = 2c 5 (with 5 ∈ R being the frequency). When-
ever applicable, F [ℎ] (jl) will be inferred from (1) by taking
B = jl. For compactness, the alternative notation �̂ will also
be used for denoting the Fourier transform of ℎ(C). � (·) will
denote the Heaviside unit step function.

3. Causal Pulse Definitions
As stated in the Introduction, at the core of this study

are some pulse prototypes that, via suitable transformations,
allow deriving classes of pulses of concrete practical rele-
vance. The design of these model pulses relies on the general
guidelines delineated in [16] namely:

• start from a strictly causal unipolar prototype;

• define that prototype by using an as small as possible
number of parameters that should have a clear technical
interpretation and, preferably, be easily put in corre-
spondence with standardized definitions;

• ensure a controlled time-differentiability of the proto-
type – infinite time-differentiability is undesirable since
it cannot be replicated via physical circuitry.

Starting from these precepts, this section will discuss two ba-
sic unipolar prototypes, namely the windowed-power (WP)
and the power-exponential (PE) ones. Since antenna systems
are practically always fed by means of signals with no DC
component in their spectral diagram, immediate descendants
of the prototypes will then be derived by time differentiation,
this yielding the corresponding mCWP and mCPE monocycle
signatures, respectively. This section is supplemented with
a quick review of other causal pulses encountered in EM
(numerical) analyses.

3.1 Model Pulses with Finite Temporal Support
Temporal boundedness is an important feature of pulsed

feeding. For example, timed array antennas [17] use purpose-
fully designed modulations of a single-tone feeding signal
for shaping their radiation patterns. Inspired by a (mechani-
cal) on/off switching, such arrays use standardly rectangular
time-windowed sinusoidal excitations. However, one must
observe that the far-field EM field radiated by antennas is at
least the time-derivative of the feeding signal’s signature [18]
(the received signal in a loop-to-loop transfer being the third
order time-derivative of the feeding current [19]). As a re-
sult, an on/off switched sine feeding renders the radiated EM
field at least discontinuous, thus non-physical.

To remedy this situation, [21] introduced thewindowed-
power (WP) unipolar prototype having the expression

WP(a, C) = C ′a (2 − C ′)a� (C ′)� (2 − C ′) (3)

in which a = 2, 3, 4, . . . is the pulse rising power and C ′ = C/Cr,
with Cr > 0 being the pulse rise-time, namely the interval be-
tween the onset and the instant when the pulse peaks. This
pulse is causal and has a finite temporal support 2Cr. The sup-
port of its first a time-derivatives is also 2Cr. The pulse and its
first a − 1 time-derivatives are continuous at both onset and
end, with the choice a > 2 ensuring this type of continuity
at least for mCWP(a, C). The WP prototype is normalized to
unity. Another interesting feature of this model pulse is that
its Fourier transform is analytical, namely

ŴP(a, jl) = exp(−jlCr) Cr 2aa!
√
2c
�a+½ (lCr)
(lCr)a+½

(4)

in which �=+½ is the Bessel function of the first kind and
fractional order [20, Section 10.1] (see the full proof of this
result in Appendix 1). Note that |ŴP(jl) | = |ŴP(−jl) |
since WP(a, C) is real. Examples of both TD signatures and
their corresponding spectra are given in [21]. Moreover,
that publication also evidenced this pulse’s exceptionally low
spectral leakage (SpL), an essential figure of merit of any
apodization function [22].

A monocycle signature can be easily obtained from (3)
by taking its time-differential. Its normalized expression is

mCWP(a, C) = # (a) (1 − C ′)C ′a−1 (2 − C ′)a−1� (C ′)� (2 − C ′)(5)



RADIOENGINEERING, VOL. 30, NO. 1, APRIL 2021 3

with # (a) = 21−a (a − 1)1−a (2a − 1)a−½. The WP mono-
cycle has a zero-crossing at C = Cr and extrema at Cex;± =
Cr

[
1 ± (2a − 1)−½]

, respectively. Its Fourier transform fol-
lows from (4), by multiplication by # (a) jl. Examples for
both TD signatures and their corresponding spectra can also
be found in [21]. The mCWPpulsewas shown in [23] to almost
perfectly replicate the signature generated by the solid-state
pulse generator described in [24].

Higher-order time-differentiated versions of the WP
pulse, as required, for instance, by evaluating the expres-
sions in [19] or for implementing the algorithm in [25], can
be easily derived. Here, the controlled differentiability of the
prototype turns out to be extremely beneficial.

3.2 Model Pulses with Infinite Temporal Sup-
port
New classes of causal pulses can be constructed by re-

laxing the temporal finiteness requirement. Two such classes
were introduced in [16], out of which the power-exponential
(PE) is highly relevant for AE applications. The unipolar
prototype reads

PE(a, C) = C ′a exp [−a (C ′ − 1)] � (C) (6)

in which a and C ′ have the same significance as in (3). This
pulse is also causal but has an infinite tail. Its conventional
pulse width Cw defined according to [16, Eq. (23)] is interre-
lated with a and Cr as

Cw = Cr
Γ(a + 1) exp(a)

aa+1
(7)

with Γ(·) denoting the Euler gamma function. This prototype
too has controlled differentiability at its onset. Its Laplace
transform is

L[PE] (B) = Cr
Γ(a + 1) exp(a)
(B Cr + a)a+1

for<(B) > −a/Cr (8)

with its Fourier transform P̂E following by taking B = jl
in (8) – the condition <(B) > −a/Cr guarantees the validity
of this choice. Examples of both TD signatures and their
corresponding spectra are given in [16].

As with the WP, a monocycle is derived from (7) by
taking the first time-differential, the relevant expression being

mCPE(a, C) = # (1 − C ′) C ′a−1 exp [−a (C ′ − 1)] � (C) (9)

in which the normalization by

# (a) = a1/2
(
a1/2

a1/2 − 1

)a−1
exp

(
−a1/2

)
(10)

ensures a unit amplitude. The Laplace transform of mCPE
and, implicitly, its Fourier transform m̂CPE, follow by mul-
tiplying L[PE] (B) in (8) by # (a) B. Examples of both TD
signatures and their spectra are also given in [16].

Despite their infinite tail, the very simple expressions
of these pulses made them attractive for several EM formu-
lations. For example, the PE excitation was used in [26] and
the mCPE variant was used in [25, 27].

3.3 OtherModel Pulses Employed inAnalytical
EM Frameworks
Apart from causality, the WP and PE pulses offer some

additional beneficial features, such as the finite temporal sup-
port of WP, and their controlled differentiability at the onset
(and the endpoint, for WP). However, their expression may
be, occasionally, excessively complicated and other pulses
may prove more appropriate.

A popular such choice is the triangular pulse, a supe-
rior alternative to the rectangular pulse with its jump dis-
continuities at endpoints. As with the WP and PE classes,
the triangular pulse comes in unipolar and monocycle (bipo-
lar) variants. While having an evidently simpler expression,
the triangular signatures are discontinuous already in their
first time-derivative, this making them unsuitable for formu-
lations as that in [19]. However, its convolution with a large
class of functions (for example testing functions in a Method
of Moments context or a Green’s function) can be carried out
analytically, which is undoubtedly advantageous. As a result,
the unipolar triangular excitation was used in [28, 29] while
its bipolar variant was used in [30, 31].

Another option is offered by the unipolar bell-shaped
excitation. An appealing property of this type of excitation is
that it can be obtained by convolving rectangular and triangu-
lar pulses [32,33] or by convolving two triangular pulses [34].
This procedure ensures a sufficient degree of smoothness at
the pulse’s endpoints. Another interesting observation is
the remarkable similarity between the WP and mCWP signa-
tures, on the one hand, and (combinations of) suitably chosen
unipolar bell-shaped excitations, on the other hand.

4. Special Features of Pulsed Excita-
tions
In this section, two additional special features that can

be provided by pulsed excitations will be examined.

4.1 Pulses with Rectangular Spectral Content
Electronic circuitry operates over a limited bandwidth,

only. All pulses discussed in Sec. 3 have infinite spectra
and, while expedient for numerical analyses, they cannot
be exactly generated and manipulated by physical circuits.
The intrinsic bandwidth limitation inherently affects wire-
less transmissions where it induces unwanted artifacts in the
employedmodulation schemes [9], with intersymbol interfer-
ence as one of the most detrimental effects in digital commu-
nications. To control these artifacts, signals are filtered prior
to modulation via filters with an as flat as possible transfer in
the passband.
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Upon acknowledging the consequences of band limi-
tation, antenna systems are often simulated via excitations
having a spectral content that closely mimics a rectangular
one. A customary choice in UWB antenna simulation is the
square root raised cosine (SRRC) pulse [12] (that, in turn, is
based on [9])

SRRC(C) = 2V
c
√
)s

cos [(1 + V)cC ′] + sin[ (1−V) cC
′ ]

4VC′

1 − (4VC ′)2
(11)

where )s = 1/'s, with 's being the symbol rate, C ′ = C/)s,
and V is a dimensionless roll-off factor for bandwidth con-
trol. An example of the relevant TD signature and its spec-
trum is given in [12], respectively. The SRRC is not causal
and it needs being truncated. This situation was highlighted
in [9], that also commented that the truncation effect is ac-
ceptable within the realm of wireless communications due to
the pulse’s sharp decay. However, when used as an excitation
in a TD EM simulation, turning on a SRRC via a Heaviside
unit step function will result in a jump discontinuity (as it
will be documented below) and this can severely impact on
the validity of the obtained results.

Another quite widely employed band-limited pulse is
the approximate prolate wave function [35] – this type of
signature is more frequently used for windowing purposes.
Nonetheless, this pulse is also non-causal and suffers from
the same disadvantages as an SRRC excitation.

The need for causal pulses with an almost rectangu-
lar spectral content was resolved in [5, 21] that advocated
a simple, but effective strategy for equipping the PE and WP
families with this property. By denoting as � an intended
frequency bandwidth with upper and lower limits 5h and 5l,
respectively, and center frequency 5c = ( 5l + 5h)/2, applying
that strategy yielded the PE modulated-sinc-cosine (PE−sc)
pulse [5]

PE−sc(a,  sc, 5c, C)
= sinc [ sc (C ′ − 1)] cos [2c 5cCr (C ′ − 1)] PE(a, C) (12)

and the WP modulated-sinc-cosine (WP−sc) pulse [21]

WP−sc(a,  sc, 5c, C)
= sinc [ sc (C ′ − 1)] cos [2c 5cCr (C ′ − 1)]WP(a, C). (13)

 sc in (12) and (13) is a scaling coefficient interrelating � and
Cr as � =  sc/Cr ( sc > 3 for practical applications). Exam-
ples of both TD signatures and their corresponding spectra
are available in [5, 21]. The therein provided examples con-
cerned raising powers a > 2, such values being however
recommendable for ensuring sufficient smoothness at onset
(and the endpoint). The spectral behavior of both pulses
was shown (i) to approximate increasingly well a rectangular
shape as  sc increases, while the influence of a on its shape is
minimal and (ii) to have an approximately −6 dB attenuation
at both 5l and 5h. These properties immediately entailed easy
design rules: by taking  sc > 3, Cr and 5c follow from the in-
tended 5l and 5h, with a being chosen more or less arbitrarily
for ensuring a certain pulse ‘smoothness’.

Fig. 1. Comparison between the SRRC pulse shown in [12,
Figs. 1 and 2], and the PE−sc and WP−sc pulses mim-
icking its characteristics. (a) Time domain signatures;
(b) spectral content. The solid vertical lines in (b) indi-
cate the limits of the −41.3 dBm mask for indoor UWB
systems, as specified in [36], and the dashed vertical line
marks the targeted 6.85GHz center frequency. The insets
in (a) are zoom-in around C = 0 ns and C = 2Cr = 3 ns.

The superiority of theWP−sc or PE−sc pulses over the
SRRC one for (TD) EM numerical formulation ends is com-
pellingly demonstrated in Fig. 1 that juxtaposes the excitation
in [12] with WP−sc and PE−sc pulses tailored to provide
an approximately flat spectral content over a frequency range
between 5l = 3.1GHz and 5h = 10.6GHz (corresponding to
the−41.3 dBm part of the spectral mask for indoor UWB sys-
tems, as specified in [36]). Both theWP−sc and the PE−sc
pulses have Cr = 1.5 ns (tuned to the SRRC signature in [12]),
a = 4 and  sc = 10.9, the last parameter entailing a near-
perfect match of the −6 dB points in the spectral diagrams
of all 3 pulses. The plots demonstrate the remarkable con-
currence between the in-band spectral contents of all three
pulses. Nonetheless, the spectral leakage is largely improved,
from −44 dB for SRRC, to −52.2 dB for PE−sc and to an ex-
ceptionally low −64.7 dB forWP−sc. The benefits are most
apparent in the TD signatures in Fig. 1(a). While the overall
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behavior is largely similar, the non-causality of the SRRC is
evident in the zoom-in around C = 0. Although one may ar-
gue that the SRRC value at 0 is small, its patent deviation in
even a minute vicinity of 0 implies that any inaccuracy in its
turning on may lead to significant step discontinuities. Here,
one must recall that marching-on-time numerical schemes
will demand staggered time sampling and, thus, some nu-
merically evaluated values are bound to be affected by the
relevant step discontinuities. A similar situation is apparent
at C = Cr that, apart from illustrating the inferiority of a SRRC
excitation, also highlights the benefit of the time-windowed
WP−sc pulse.

4.2 Ringing Pulses
Ringing is frequently manifest in feeding circuits and

antennas – such occurrences are common in pulsed radar ap-
plications but are also likely to surface in baseband, digital
transfer (see [37]). For facilitating the study of this phe-
nomenon in antenna (numerical) experiments, [16] endowed
the PE family with a ringing pulse defined as an amplitude-
modulated cosine or sine function of carrier frequency 50, its
envelope being provided by the PE unipolar signature in (6).
For increased flexibility, a normalized time-derivative vari-
ant of this pulse was also introduced. Examples of both TD
signatures and their spectra are available in [16].

Although themathematical expression of these pulses is
rather intricate and, thus, their use in analytical formulations
may be cumbersome, they prove to be extremely convenient
for purely numerical formulations. Moreover, these pulses
were shown in [16] to present a high degree of similarity with
pulses effectively generated by physical circuits.

A ringing pulse based on the WP unipolar prototype
was not yet presented in the literature. For maintaining this
account’s focus, this topic is deferred to future publications.

5. Feature Practical Benefits

Sections 3 and 4 focused on the conceptual benefits of
using the causal WP and PE families of pulses and high-
lighted their propitious effect when used in certain compu-
tational EM frameworks. This section will concentrate on
practical situations that can particularly leverage the charac-
teristic properties of these families.

5.1 Time-Windowed EM Simulations
Present-day antenna designs critically depend on nu-

merical studies of increasing complexity, with commercial
EM computational tools becoming an omnipresent element
of any design methodology. Such approaches push the avail-
able hardware resources to their limits and drastic simplifi-
cations must often be accepted for making those simulations
tractable. One of the additional, significant complications

induced by antenna simulations is the necessity to ensure
their unimpeded radiation into an unbounded embedding.
This is particularly testing in the case of the finite-difference
or finite-element (type) methods that can only be applied to
bounded domains of computations. Several strategies were
proposed for precluding reflections from the boundary, the
most popular being the absorbing boundary conditions intro-
duced in [38] (and complemented in [39]) and the perfectly-
matched layers (PML) introduced in [40–42] (with its coor-
dinate stretching alternative [43]). From the two, the later
has become the norm in most of the prevalent (commercial)
software packages. However, as shown in [41], these domain
termination methods are plagued by spurious reflections, pri-
marily from waves reaching the boundary at slanting angles.
Moreover, the specific transformations required by imple-
menting these methods are only compatible with one single
type of embedding, this all but ruling out the direct incor-
poration of multi-layer configurations that can only be reli-
ably examined by introducing a homogeneous buffer between
a truncated version of the layered arrangement and the PML
boundary. Apart from the evident perturbation of the inves-
tigated structure, this choice places an additional penalty on
the computational resources that need to also calculate field
values in the essentially useless buffer zone.

An elegant remedy to this deficiency was advocated
in [21] that put forward the use of time-windowed EM sim-
ulations. That approach relies on performing the analysis
within a time-window that is sufficient for allowing the EM
perturbation to propagate through the region of interest D,
but ends prior to any reflection propagating back from the
boundary reached D. Admitedly, this strategy does require
extending the domain of computation for ensuring the needed
safe margin, but (i) allows using elementary boundary condi-
tions (PML-type boundaries are superfluous) and (ii) makes
use of a limited time window, whereas traditional TD anal-
yses require long simulations for ensuring that the entire
input energy effectively leaves the domain of computation.
Moreover, the approach is well-suited for examining layered
configurations, providing the diameter of D is reasonably
small. The essential ingredient for its application is the use
of the causal, time-limited WP excitation.

Time-windowed EM simulations were shown in [21]
to provide excellent results, including for frequency-domain
(FD) studies, while requiring up to 30 times shorter computa-
tion times and comparable memory resources. This approach
was also used for the numerical modeling of CMOS embed-
ded radiating loops of the kind appearing in [25] – a typical
multy-layered configuration example.

5.2 Replication of Effectively Generated Pulses
Both the WP and the PE families of causal pulses were

introduced purely mathematically. While their suitability for
analytical and numerical explorations has been aptly argued,
the question remains to what extent do such pulses resemble
pulses that can be generated by physical circuitry.
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This question was affirmatively answered already in
[16] that evidenced the similarity between suitably con-
structed mCPE and time-differentiated, ringing PE pulses, on
the one hand, and the TD signatures generated by the circuits
presented in [44] and [45], respectively, on the other hand.

The mCWP has an even higher similitude with physically
generated pulses. In this respect, [21] has evidenced its like-
ness with the monocycle generated by the circuit introduced
in [46], whereas [23] has shown its practical identity with the
one generated by the solid-state implementation discussed
in [24]. Based on the latter demonstrated congruence, mCWP
represents the monocycle of choice for modeling UWB an-
tenna systems – any computer simulated prediction has very
high chances of being amenable to a physical implementation
since the feeding pulse generator is readily available.

6. Conclusions
The crucial role played in EM simulations by the exci-

tation’s causality was attested via theoretical arguments and
numerical examples. Upon establishing the need for causal
excitations, two families of pulses were constructed by start-
ing fromwindowed-power (WP) and power-exponential (PE)
unipolar prototypes. These prototypes were then used for de-
riving monocycles and pulses with almost rectangular spec-
tra, and as envelops for constructing ringing pulses. The
account constantly stressed the conceptual and practical ben-
efits entailed by using these pulses and cogently demonstrated
their superiority with respect to other excitations that are reg-
ularly used in antenna systems simulations. Two practical
applications that particularly illustrate the opportunity of the
time-windowed WP family were singled out. Firstly, the
study promoted TD, time-windowed computational schemes
as a means for eliminating the effect of the spurious reflec-
tions from the boundaries of computational domains and/or
for drastically reducing runtimes. Secondly, upon noting the
near-coincidence of this mathematical instrument with signa-
tures that are generated by readily-available, solid-state pulse
generators, the WP monocycle was put forward as an ideal
excitation type in any design framework within the scope of
UWB antenna systems.
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Appendix A: Proof of F [WP(C)]
To begin with, it will be shown by induction that

F
[ [
1 − (G/0)2

]=
Π(G, 0)

]
= 2==! 0

√
2c
�=+½ (l0)
(l0)=+½

=
2=+1=! 0
(l0)= jn (l0) for = = 1, 2, . . . (A1)

in which 0 > 0 is a real constant, 9= is the spherical Bessel
function of the first kind [20] and

Π(G, Gw)
def
= � (G + Gw/2) − � (G − Gw/2)

for G, Gw ∈ R, Gw > 0 (A2)

is the rectangle function. Note that in (A1) use was made of
the definition of jn (·) in [20].

The expression (A1) is directly verified for = = 1 and
= = 2 by observing that 1−(G/0)2 represents theWelch func-
tion while

(
1 − (G/0)2

)2 the Connes function, their Fourier
transforms being given in [22]. For demonstrating that the
validity of (A1) implies its validity for =+1, the expression is
transformed by applying the similarity theorem in the Fourier
transform [47] that, since 0 > 0, yields

F
[ [
1 − b2

]=
Π(b, 1)

]
= 2=+1=!

jn (l)
l=

(A3)

with b = G/0. By now making use of the identity(
1 − b2

)=+1
Π(b, 1) = −2(= + 1)

∫ b

D=−∞
D(1 − D2)=Π(D, 1) dD

for − 1 6 b 6 1 (A4)

and using well-known properties of the Fourier transform, it
is successively found that

F
[(
1 − b2

)=+1
Π(b, 1)

]
= −2(= + 1) F

[∫ b

D=−∞
D(1 − D2)=Π(D, 1) dD

]
= −2(= + 1) 1

jl
F

[
b

(
1 − b2

)=
Π(b, 1)

]
= −2(= + 1) 1

jl
j
d
dl

{
F

[(
1 − b2

)=
Π(b, 1)

]}
. (A5)

Note that in deriving this equation use was made of the con-
dition F

[
b
(
1 − b2

)=
Π(b, 1)

] ���
l=0

= 0 which follows from
b (1− b2)= being a real, odd function (see [47]). Substituting
(A3) in (A5) now yields

F
[(
1 − b2

)=+1
Π(b, 1)

]
= 2(= + 1) 1

l
2=+1=!

d
dl

[
− jn (l)
l=

]
= 2=+2 (= + 1)! 1

l

[
=

l=+1 jn (l) −
1
l=

d
dl

jn (l)
]

= 2=+2 (= + 1)! 1
l=+1

[
=

l
9= (l) −

d
dl

jn (l)
]
. (A6)

This, by using the formula (10.1.22) in [20], entails

F
[(
1 − b2

)=+1
Π(b, 1)

]
= 2=+2 (= + 1)! jn+1 (l)

l=+1 (A7)

that, after scaling back for the original variable G = 0b, con-
cludes the proof by induction. It must be observed that (A1)
is not defined at l = 0. Once the validity of (A1) was estab-
lished forR\0, the Fourier transform is continued analytically
via Abel’s theorem [14] as

F (0) = lim
l↑0;↓0

F (jl) =
∫ 0

−0

[
1 − (G/0)2

]= dG
= 0
22=+1 (=!)2
(2= + 1)! (A8)

the limits being equal because
[
1 − (G/0)2

]= is a real, even
function (see [47]). By now taking 0 = Cr and by employing
a change of variables G = C − Cr, (A1) implies that

ŴP(a, jl) = exp(−jlCr) Cr 2aa!
√
2c
�a+½ (lCr)
(lCr)a+½

(A9)

that is used in the paper (see Eq. (4)).

The validity of (A8) is established by starting from∫ ∞

C=−∞
WP(a, C)dC =

∫ ∞

C=−∞
(C/Cr)a (2 − C/Cr)a � (C)� (2Cr − C)dC

= C−2ar [Ca� (C)]
(C)
∗ [Ca� (C)]

���
C=2Cr

(A10)

in which
(C)
∗ denotes time convolution. Taking the Laplace

transform of the right-hand side term in (A10) yields

L
[
[Ca� (C)]

(C)
∗ [Ca� (C)]

]
=

(
a!
Ba+1

)2
=
(a!)2

(2a + 1)!
(2a + 1)!
B2a+2

(A11)

that, in turn, implies the inverse Laplace transform

L−1
[
(a!)2

(2a + 1)!
(2a + 1)!
B2a+2

]
=
(a!)2

(2a + 1)! C
2a+1� (C). (A12)
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By now using (A12) in (A10) it follows that∫ ∞

C=−∞
WP(a, C)dC = Cr

22a+1 (a!)2

(2a + 1)! . (A13)

An elementary change of variables and accounting for
Π(G, 0) allows establishing that∫ 0

−0

[
1 − (G/0)2

]= dG = ∫ ∞

C=−∞
WP(=, C)dC (A14)

with Cr = 0, which concludes the proof.

Note that (A13) also readily yields the expression of
the total energy of a unipolar WP pulse (used in [21]). By
observing that∫ 2Cr

C=0
[WP(a, C)]2dC =

∫ ∞

C=−∞
WP(2a, C)dC (A15)

where use was made of (3) and of the finiteness of the pulse’s
support, (A13) entails that∫ 2Cr

C=0
[WP(a, C)]2dC = Cr

24a+1 (2a!)2

(4a + 1)! . (A16)


