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Abstract. Efficient simulation of stochastic memristors and
their networks requires novel modeling approaches. Utilizing
a master equation to find occupation probabilities of network
states is a recent major departure from typical memristor
modeling [Chaos, solitons fractals 142, 110385 (2021)]. In
the present article we show how to implement such master
equations in SPICE – a general purpose circuit simulation
program. In the case studies we simulate the dynamics of ac-
driven probabilistic binary and multi-state memristors, and
dc-driven networks of probabilistic binary and multi-state
memristors. Our SPICE results are in perfect agreement
with known analytical solutions. Examples of LTspice code
are included.
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1. Introduction
SPICE simulation [1,2] is a powerful tool in the hands of

an electrical engineer. In the last decade significant progress
has been made in developing SPICE models of memristive
devices [3–14], as well as memcapacitive and meminduc-
tive elements [9, 15]. The common feature of these previous
approaches is the use of differential equations to describe
the deterministic evolution of internal state(s) of memory
devices [16, 17].

However, there is a strong indication that the deter-
ministic description fails when applied at least to certain
realizations of resistors with memory [18–20]. In particular,
it was shown experimentally that when a constant voltage
is applied to such devices, their state changes in a step-like
fashion at random times. In one group of devices, a Poisson
distribution of switching times was observed [18–20]. Fur-
thermore, another group of devices is characterized by a log-
normal distribution [21]. Several theoretical models were
pushed forward to account for the randmoness in the mem-

ristor switching [22, 23]. The dynamics of networks with
discrete-state memristors can be imagined as a sequence of
transitions between network states. Recently, we have intro-
duced a master equation approach for the occupation proba-
bilities of the network states [24] that can be used to describe
circuits that include binary and multi-state memristors, re-
sistors, voltage and current sources, and possibly some other
components 1. The master equation was solved analytically
for networks containing # binary memrstors connected in-
series or in-parallel driven by a constant voltage source [24].
It has been demonstrated in Ref. [24] that the master equa-
tion solution allows to calculate many quantities of interest
including various mean switching times, mean current, re-
sistance, etc. There are two major advantages of the master
equation compared to stochastic/Monte Carlo simulations:
8) in principle, the master equation can be solved analyti-
cally (see [24] for examples), and 88) using the master equa-
tion, many network characteristics can be found in a single
calculation without the need for averaging. In the case of
symmetries in the circuit, the additional benefit of the mas-
ter equation is its compactness. This means that a single
degree of freedom is required to describe equivalent circuit
configurations. In this article (which is our second work
in a series dedicated to probabilistic memristive networks),
we introduce a methodology to simulate the probabilistic
memristive networks in SPICE. The paper is organized as
follows. We start with an overview of the master equation
in relation to binary and multi-state probabilistic memristor
networks. This is followed by a description of the SPICE
implementation scheme supplemented by several examples.
In particular, we consider individual probabilistic binary and
tri-state memristors driven by ac-voltage, and dc-driven net-
works thereof. LTspice codes for some of our examples are
provided in the Appendix. The approach presented in this
work is relatively general and can be used to model networks
combining resistors, probabilistic memristors, constant and
time-dependent voltage and current sources. The application
of the master equation to probabilistic memristor networks is
a paradigm change in the probabilistic memristor modeling,
and its SPICE implementation makes it affordable to students
and researchers working in the field.

1A generalized approach is needed for circuits combining probabilistic memristors and capacitors/inductors.
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2. Probabilistic Memristors and Mas-
ter Equation

2.1 Binary Memristors
Binary memristors are described by two states, 0 (off)

and 1 (on). These states correspond to the resistance states
'off and 'on with 'on < 'off. The switching between these
states is defined by a probabilistic lawwith voltage-dependent
switching rates (inverses of the mean switching times) given
by [18–20]:

W0→1 (+) =
{ (

g01e−+ /+01
)−1

, + > 0
0 otherwise

, (1)

W1→0 (+) =
{ (

g10e−|+ |/+10
)−1

, + < 0
0 otherwise

. (2)

Here, g01(10) and +01(10) are constants and + is the voltage
across the device. The probability of switching for a mem-
ristor initially in state 0 to state 1 within small time interval
ΔC is W0→1 (+)ΔC. Similarly, the probability of switching for
a memristor initially in state 1 to state 0 within small time
interval ΔC is W1→0 (+)ΔC. The master equation is written
with regard to the occupation probabilities of network states.
The network state is defined by a specific combination of the
off- and on-states of memristors. For a system containing #
binary memristors, there exists 2# such states. The network
evolution consists of a chain of consecutive switchings of
memristors (simultaneous switchings can be neglected). On
average, such a process is described by the master equation
with form:

d?Θ (C)
dC

=

#∑
<=1

(
W<Θm

?Θm (C) − W<Θ ?Θ (C)
)

(3)

where ?Θ (C) is the occupation probability of state Θ, Θm is
the network state obtained fromΘ by flipping the state of<-th
memristor, W<

Θ
is the switching rate for<-th memristor in the

configuration Θ, and W<
Θm

is defined similarly. The switching
rate W<

Θ
equals the one ((1) or (2)) for <-th memristor in the

stateΘ. To demonstrate (3), consider two in-series connected
identical memristors subjected to a voltage waveform +a (C).
There are 4 possible network states that we denote as 00, 01,
10, and 11. In 00, both memristors are in the off-state, in 01,
the first is in the off-, while the second is in the on-state, etc.
Equation (3) has the form:

d?00 (C)
dC

= W101?01 + W
2
10?10 − 2W

1
00?00, (4)

d?01 (C)
dC

= W100?00 + W
2
11?11 − W

2
01?01 − W

1
01?01, (5)

d?10 (C)
dC

= W200?00 + W
1
11?11 − W

1
10?10 − W

2
10?10, (6)

d?11 (C)
dC

= W201?01 + W
1
10?10 − 2W

2
11?11. (7)
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Fig. 1. Transition scheme for (a) single three-state memristor,
and (b) network of two three-state memristors.

The similarity of memristors is taken into account by
relations like W100 = W200, W

2
01 = W110, ?01 (C) = ?10 (C), etc.

Therefore, Eqs. (5) and (6) are the same and the total number
of equations that need to be solved reduces by one. In our no-
tation, W100 describes the switching rate from state 00 with the
flipping of the 1-st memristor. The corresponding switching
rate is given by Eq. (1) with + = +a (C)/2, etc. Importantly,
the computation of the switching rate involves the voltage
across the switching memristor in the given configuration at
the time moment C.

2.2 Multi-State Memristors
It is assumed that in a  -state memristor the switching

between its boundary states ('on and 'off) occurs consec-
utively through  − 2 intermediate resistance states. The
master (3) preserves its form for multi-state memristor net-
works, but the network configuration space becomes more
complex. Now the indices 8, 9 , : , and so on, in the set
Θ = (. . . : 98) denoting the states of the first memristor, the
second one, and so on, in the network can have more than two
values. Generally, this leads to the exponential growth of the
number of network states and, correspondingly, the number
of independent equations for occupation probabilities ?Θ (C)
when # , the number of memristors, increases. Luckily, the
number of nonzero switching rates W, corresponding to the
nonzero terms in the right hand side of the master equation
(3) for a given network configuration Θ, does not typically
grow as fast.

In order to account for potential change in parameter
values between resistance states, equations (1) and (2) are
modified to:

W8→ 9 (+) =
{ (

gĳe−+ /+ĳ
)−1

, + > 0, 9 = 8 + 1
0 otherwise

, (8)

W 9→8 (+) =
{ (

gjie−|+ |/+ji
)−1

, + < 0, 9 = 8 + 1
0 otherwise

, (9)

with gĳ(ji) and +ĳ(ji) being the constant values describing the
resistance switching from 8( 9)-th to 9 (8)-th memristor state,
and 8 changes from 0 to  − 1.

It is convenient to represent the interdependencies be-
tween different occupation probabilities in the master equa-
tion using transition schemes. As an example, Figure 1 shows
the transition schemes for a single three-state memristor (a)
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Fig. 2. Ac-driven probabilistic binary memristor: (a) simulated circuit, (b) schematics of SPICE model, and (c) example of current-voltage curves
found with SPICE simulations. The listing of SPICE model is given in Tab. A.1.
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Fig. 3. Dc-driven network of five probabilistic binary memristors: (a) simulated circuit, (b) schematics of SPICE model.

and two such memristors connected into network. An impor-
tant feature of these schemes is the sequential change in the
state of multi-state memristors that approximates the sequen-
tial growth of filaments in physical devices. Additionally,
we emphasize that the transition schemes in general do not
depend on the specific connections of memristors in the net-
work. The transition rates contain those details. In practice
some of the transitions may be almost or entirely forbidden.
For instance, when a positive voltage is applied to memristor
described by equation (1) and (2), the transition 1 → 0 is
forbidden as it occurs at negative voltages. If one neglects
low rate and/or forbidder transitions, we obtain the reduced
transition scheme, which simplifies the solution of the master
equation (3) (see [24] for some examples).

3. SPICE Modeling Approach
Let " be the number of non-equivalent equations for

the occupation probabilities (like the set of Eqs. (4), (5), and
(7)) for a network of # memristors with  memristor states.
The supremum of " is  # . However, in practical cases "
can be much smaller than  # . For example, an in-series net-
work of # identical binary ( = 2) memristors has" =  +1
(see [24]).

In the SPICE environment, we model each differential
equation (such as (4)) by a 1 Farad capacitor charged by

a voltage-controlled current source. The occupation proba-
bilities are represented by capacitor voltages. Each source
current depends on the voltage across some of the capaci-
tors which forms the right-hand side of the master equation.
These circuits are shown in the top rows of SPICE models
in Figs. 2, 3, 5 and 6. The voltage-dependent switching rates
(Equation. (1), ( 2)) are accounted for by including " copies
of the network with memristors in non-equivalent combina-
tions of states. These circuits (shown in the bottom row in
Figs. 2, 3, 5 and 6) are connected to the input voltage. The
voltages across memristors in these circuits are utilized to
calculate the transition rates between the states. To calcu-
late the mean current, we use a voltage-controlled current
source connected by a resistor to ground to provide a current
path. For instance, in the case of in-series connected binary
memristors, the current source output is defined by:

〈�〉 (C) ≡
#∑

<=0

(
#

<

)
�m (C)?m (C) (10)

where the number of states with the same number of mem-
ristors in the on-state is taken into account by the binomial

coefficients
(
#

<

)
, and �m (C) is the current through the net-

work with < memristors in the on-state. The switching time
(or any other integral) can be evaluated numerically with
a capacitor-voltage-controlled current source. Examples of
such calculations can be found below.
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4. Simulation Examples

4.1 AC-Driven Binary Memristor
In this simulation, a single binary memristor driven by

an ac source is considered as seen in Fig. 2(a). Fig. 2(b)
contains the schematic for the SPICE implementation and
the corresponding SPICE code can be found in appendix
A.1. The memristor has two possible states, 'on and 'off,
with resistance values of 1k and 10k Ohms respectively. We
used the model parameter values g01 = g10 = 3 · 105 s and
+01 = +10 = 0.05 V. The ac source, +a (C), has a peak voltage
of 1 V and is driven at various frequencies. The memristor
is initialized in the off-state and will continue switching
between the resistance states until the simulation has ended.
The current is calculated using B4 and R4 components in
Fig. 2(b). The current-voltage curves generated through
SPICE simulation can be seen in Fig. 2(c) and they show
the frequency behavior typical to deterministic memristive
devices [16, 17]. We verified that Fig. 2(b) SPICE model
reproduces some previous results found throughMonte Carlo
simulations [24].

4.2 DC-Driven Binary Memristor Network
For this next simulation, we consider a network of bi-

nary memristors connected in-series as shown in Fig. 3(a).
The network is composed of five memristors driven by
a dc source with a voltage of 5 V. Figure 3(b) contains the
schematic for the SPICE implementation. Each memristor is
identical to one another, meaning the model parameters and
the two states are equivalent from memristor to memristor.
The memristors have two possible states, 'on and 'off, with
resistance values of 1 k and 10 k Ohms respectively. We
used the model parameter values g01 = g10 = 3 · 105 s and
+01 = +10 = 0.05V. Each memristor starts in the off-state and
as time progresses each will switch to the on-state. When
a memristor switches to the on-state, the drop in resistance
causes an increase in the voltage across the off-state memris-
tors increasing the probability of switching for the off-state
memristor.
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Fig. 4. Current as a function of time (black solid line), and calcu-
lation of the network switching time (red dashed line) in
the dc-driven network of five probabilistic binary mem-
ristors.

According to the analytical theory [24], the network
mean switching time can be calculated as

〈)N〉 =
#−1∑
9=0

1
(# − 9)Wj

. (11)

For the parameters of simulations in Figs. 3 and 4, the
above equation gives 〈)5〉 = 126 `s. Numerically, the same
quantity can be evaluated using the following integral

∞∫
0

C5W501111?01111 (C)dt. (12)

Technically, the integration is done by the components
B8 and C7 in Fig. 3, so that the averaged switching time
corresponds to the saturation limit of + (Vt) curve in Fig. 4.
We emphasize that the analytical and numerical (SPICE)
values for 〈)5〉 are in full agreement.

4.3 Multi-State Memristors
The first multi-state simulation considered is a single

tri-state memristor driven by an ac source. The ac source has
a peak voltage of 1.5 V and is driven at various frequencies.
Fig. 5(a) contains the schematic for the SPICE implemen-
tation and the corresponding SPICE code can be found in
appendix A.2. The memristor now has three possible states,
off-, intermediate, and on-state. To account for the added
resistance state, a new copy of the memristor network is nec-
essarily added to the SPICE implementation. These states
have resistance values of 10 k, 3 k, and 1 k Ohm respectively.
The model parameters, gĳ and +ĳ, are as specified in the
SPICE model schematics (Fig 5(a)). The memristor is ini-
tialized in the off-state and will continue switching between
the resistance states until the simulation has ended. Fig. 5(b)
shows the current-voltage curves generated by this SPICE
simulation. This next simulation is a network of two tri-state
identical memristors driven by a 1.5 V dc source shown in
Fig. 6(a). The resistance states and model parameters are
identical to the memristor used in the previous configuration.
Fig. 6(b), the SPICE schematic used for this simulation is
shown. The SPICE model is designed according to the tran-
sition scheme in Fig. 1(b). The memristors are initialized in
the off-state and will switch to the intermediate state before
switching to the on-state during the simulation.

The evolution of resistance state probabilities for this
network is shown in Fig. 6(c) and the mean current as a func-
tion of time for this SPICE simulation is shown in Fig. 6(d).
The mean current increases in two steps because of the dif-
ferent time scales for the 0 → 1 and 1 → 2 memristor
switchings.
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Fig. 5. Ac-driven probabilistic three-state memristor: (a) schematics of SPICE model, and (c) example of current-voltage curves found with
SPICE simulations. The listing of SPICE model is given in Tab. A.2. The simulated circuit is the same as in Fig. 2(a) with the difference
of different memristor type used.
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5. Summary
In summary, the use of the master equation in proba-

bilistic circuit modeling [24] offers significant benefits com-
pared to the routine Monte Carlo/stochastic simulations.
Many circuit characteristics can be found on average in
a single run and the master equation can be, in principle,
solved analytically, with several analytical solutions already
known [24]. In this work, we have shown how to implement
the master equation in SPICE. Our examples include simula-
tions of binary and multi-state probabilistic memristors and
their circuits subjected to ac- and dc-voltages. We expect that
our approach will be useful to a broad range of researchers
working in the area of emerging memory devices.
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Appendix A: SPICE Code Examples
B1 0 p0 I=-gm(tau01,V01,V(Va))*V(p0)*u(V(Va))+gm(tau10,V10,-V(Va))*V(p1)*u(-V(Va))
B2 0 p1 I=gm(tau01,V01,V(Va))*V(p0)**u(V(Va))-gm(tau10,V10,-V(Va))*V(p1)**u(-V(Va))
C1 p0 0 1 IC=1
C2 p1 0 1 IC=.0
R2 Va 0 1k
R1 Va 0 10k
R3 VI 0 1k
B3 0 VI I=I(R1)*V(p0)+I(R2)*V(p1)
V1 Va 0 SINE(0 1 200 0 0 0 0)
.FUNC gm(x,y,z)1/(x*exp(-z/y))
.param tau01=3E5 V01=.05
.param tau10=3E5 V10=.05
.tran 0 .1 0.05 10E-7
.backanno
.end

Table A.1. SPICE code for ac-driven probabilistic binary memristor.

B1 0 p0 I=(-gm(tau01,V01,V(Va))*V(p0))*u(V(Va))+(gm(tau10,V10,-V(Va))*V(p1))*u(-V(Va))
B20p1 I=(gm(tau01,V01,V(Va))*V(p0)-gm(tau12,V12,V(Va))*V(p1))*u(V(Va))+(gm(tau21,V21,-V(Va))*V(p2)-gm(tau10,V10,-
+V(Va))*V(p1))*u(-V(Va))
B3 0 p2 I=(gm(tau12,V12,V(Va))*V(p1))*u(V(Va))+(-gm(tau21,V21,-V(Va))*V(p2))*u(-V(Va))
R1 Va 0 10k
R2 Va 0 3k
R3 Va 0 1k
R4 VI 0 1k
C1 p0 0 1 IC=1
C2 p1 0 1 IC=0
C3 p2 0 1 IC=0
B4 0 VI I=I(R1)*V(p0)+I(R2)*V(p1)+I(R3)*V(p2)
V1 Va 0 SINE(0 1.5 200)
.func gm(x,y,z)1/(x*exp(-z/y))
.param tau01=3E5 V01=.05
.param tau12=3E5 V12=.07
.param tau10=3E5 V10=.05
.param tau21=3E5 V21=.07
.tran 0 .1 .09 1E-7
.backanno
.end

Table A.2. SPICE code for ac-driven probabilistic three-state memristor.


