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Abstract. Automatic modulation classification (AMC) 
represents an important integral part of modern communi-
cation systems. While novel AMC algorithms based on 
complex neural network structures showed significant 
performance improvements, in practical applications low 
algorithm complexity of AMC algorithms based on higher-
order cumulants still makes them very attractive. AMC 
algorithm based on sixth-order cumulants showed very 
good performance in this context, especially when it comes 
to distinguishing Binary Phase Shift Keying (BPSK) sig-
nals from complex constellations. Still, no further analysis 
of expected performance with other real constellations was 
presented for this algorithm so far. In this paper, the per-
formance was explored in a wider context of real signals 
classification, by observing various Pulse Amplitude Mod-
ulation (PAM) constellations, whose statistical features are 
presented for the first time. Their classification perfor-
mance was tested via Monte Carlo simulations, and ex-
plained through the presence of bias under conditions of 
strong additive white Gaussian noise channel, reported in 
this paper for real signals for the first time. One new ap-
proach in AMC is proposed, which ensures improvement in 
the classification of real signal constellations. Achieved 
improvement is confirmed in many Monte Carlo experi-
ments, where the proposed new AMC scheme is tested 
versus the most popular standard higher-order cumulants-
based algorithms. 

Keywords 
Automatic modulation classification, feature-based, 
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1. Introduction 
Automatic modulation classification (AMC) is a tech-

nique commonly connected with wireless systems and 
applications, standing for modulation format recognition 
process and further demodulation of a priori unknown 
signals at the receiver side. It has found importance in 

electronic warfare, surveillance, and countermeasures, but 
also in many civilian communication applications, like 
software-defined radio, spectrum management, cognitive 
radio, smart reconfigurable transceivers, intelligent mo-
dems, and Internet of Things (IoT), [1–5].  

There are two approaches in AMC algorithms devel-
opment widely used by many authors: likelihood-based 
(LB) methods, which are leading to optimal solutions at the 
price of high computations, and feature-based (FB) meth-
ods, characterized with lower computational complexity, 
but still able to show performance close to optimal when 
properly designed [6]. FB algorithms are based on pattern 
recognition approach, extracting various instantaneous 
features of the received communication signal, and very 
frequently using complex classifiers for extended perfor-
mance, such as neural networks [7], or deep-learning 
methods [3], [8]. Many modern algorithms perform extrac-
tion of several different features simultaneously and com-
bine their classification properties. 

Higher-order statistics – cumulants and moments, are 
especially popular as features of interest in FB AMC 
schemes. Simple structures of fourth-order cumulants [9] 
or sixth-order cumulants [10] are still considered as the-
state-of-the-art of AMC [11]. Sixth-order cumulants 
showed significantly better performance than fourth-order 
cumulants [12]. They also show to be superior in low com-
plexity, memory requirements, and inference time when 
compared with other up-to-date AMC algorithms, like 
neural networks (with difference measured in several or-
ders of magnitude) – but requiring additional performance 
improvements to remain competitive with those algorithms 
[5]. Published research of cumulant-based AMC algo-
rithms are mostly focused on complex signal constella-
tions, like various Quadrature Amplitude Modulation 
(QAM) schemes. When it comes to real signal constella-
tions, those are quite rarely considered in research, with 
some exceptions: Binary Phase Shift Keying (BPSK) sig-
nals are included in many research works; Pulse Amplitude 
Modulation (PAM) formats from PAM-4 to PAM-64 were 
considered in classical work of Swami [13] under fourth-
order cumulants AMC, and also in [2] under complex net-
work classifier; PAM-4 signals were considered in [14] 
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under deep learning aided classification method, and [15] 
under fusion neural network classifier; BPSK and PAM-4 
in [16] under LB classifier, and [17] under Convolution 
Neural Network (CNN) classifier; PAM-4 and PAM-8 in 
[18] under CNN classifier, and [19] under multi-layer sup-
port vector machine classifier.  

While none of the research published so far considers 
a wider set of PAM signals classification under sixth-order 
cumulants (or other, higher-order cumulant structures), 
these constellations are still being of interest in modern 
communication systems, like IEEE 802.3 gigabit Ethernet 
[20–22], digital television [23], gigabit optical fiber links 
[24], [25], or free-space optical systems [26]. PAM signal 
constellations are presented in Fig. 1. 

In this paper we discuss the classification perfor-
mance of classical sixth-order cumulants-based AMC algo-
rithm for a wide set of PAM constellations, present their 
error variances and parameters for efficiency in distin-
guishing particular constellations, for the first time. These 
parameters are compared with those corresponding with 
fourth-order cumulants-based AMC algorithm, under the 
same set of PAM constellations, and tested in Monte Carlo 
simulations. Very good performance of sixth-order cumu-
lants in distinguishing PAM constellations from complex 
signal constellations is further explained with the presence 
of bias under strong AWGN conditions, which is also re-
ported for the first time. A novel AMC scheme is then 
proposed, which provides both: good performance in dis-
tinguishing PAM constellations from complex signal con-
stellations, and mutual distinguishing of various PAM 
constellations, simultaneously. This novel scheme is based 
on the convenient manipulation over the basic formula for 
the real signal cumulant value estimation (unlike the one 
based on the modulation order reduction [5], which is not 
applicable to real signals due to their properties presented 
in this paper). In comparison with complex state-of-the-art 
AMC algorithms, our resulting solution remains superior in 
low complexity, memory requirements, and inference time. 

The rest of the paper is organized as follows: in Sec. 2 
we present standard sixth-order cumulant-based AMC algo- 

 
Fig. 1. PAM signal constellations: a) PAM-2, b) PAM-4, 

c) PAM-8, d) general PAM-M. 

rithm and its statistics calculated for PAM constellations. 
Performance tests of standard cumulant-based algorithm in 
distinguishing real from complex constellations is pre-
sented in Sec. 3, while in Sec. 4 we propose our novel two-
stage AMC scheme. This novel scheme was tested via 
simulations presented in Sec. 5, along with analysis of 
achieved results. Corresponding conclusions are given in 
Sec. 6.   

2. AMC Algorithm Based on Sixth-
Order Cumulants 
In a standard communication system model where the 

received signal is corrupted by AWGN only during the 
propagation (as explained in [5], for instance), the received 
signal sequence y(n) can be represented by:  

 y(n) = x(n) + g(n) (1) 

where x(n) stands for transmitted symbols of an unknown 
modulation, and g(n) represents AWGN with a zero mean 
and variance of σg

2. For zero-mean random variable x, 
associated with transmitted data sequence x(n), the second-
order cumulant C21,x = cum(x, x*) is given by: 

 
2

21, ( ).xC E x  (2) 

The sixth-order cumulant of the same random variable x 
C63,x = cum(x, x, x, x*, x*, x*) is given by [10]: 
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while the self-normalized sixth-order cumulant is derived 
from the previous two equations as: 

 3
63, 63, 21,

ˆ /( ) .x x xC C C  (4) 

The cumulants of random variable y, associated with 
received sequence y(n), can further be expressed in the 
following manner: 

 63, 63, ,y xC C  (5) 

 2
21, 21, g .y xC C    (6) 

Consequently, the following relation is established between 
the cumulants’ values: 

 
63,

63, 2 3
21, g

ˆ .
( )

y
x

y

C
C

C 



 (7) 

While the noise power σg
2 can be measured at the receiving 

point, the calculation of cumulants of a received signal in 
practice is executed via the calculation of mean-values over 
an ensemble of collected signal samples, which is 
implementable quite easily. If the number of samples is 
represented with N, equation (7) in its practical realization 
takes the form of: 
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In practice, estimated values of normalized cumulants 
are always shaped with some portion of dispersion around 
expected (theoretical) values. This phenomenon was ex-
plored and described originally in [13], for fourth-order 
cumulants, which are calculated as: 

 
24 2 2 2

42, ( ) ( ) 2 ( )xC E x E x E x   , (9) 
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42, 42, 21,

ˆ / ( )x x xC C C  (10) 

where the variance of the sample estimates of C42,x for 
complex constellations, with N samples, is given by: 

 42,

2 3
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with mk,m = E[yk–m(y*)m]. For real constellations, the vari-
ance of the sample estimates of C42,x in [13] is given by: 

 42,
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var( )

[ ] 6 [5 2 3 ].

xN C
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
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The similar conclusion was reported for sixth-order 
cumulants in [27], where the variance of C63,x for complex 
signals with N samples, is given with: 

2 2 2 2
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while for real constellations, this variance is given by: 
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Reported error variances are directly proportional 
with sample size N and take different values for different 
modulation formats. While variances of the sample esti-
mates of fourth-order cumulants for various PAM constel-
lations were published in [13], we calculate variances of 
the sample estimates C63,x for the first time in this paper. In 
Tab. 1 the theoretic cumulant values and corresponding 
variances for various modulation constellations are shown. 

The decision-making process for modulation recogni-
tion is based on a comparison of obtained values of nor-
malized cumulant estimates with predefined thresholds. It 
was shown, on the basis of  intensive computer simulations, 

 

Constellation 
63
Ĉ  63,

var( )
x

N C  
42
Ĉ  42,

var( )
x

N C

BPSK 16.0000 5040.00 –2.0000 36.00 
PAM-4 12.1600 4612.00 –1.3600 34.72 
PAM-8 11.7600 4455.00 –1.2381 32.27 
PAM-16 11.6817 4419.70 –1.2094 31.67 
PAM-32 11.6632 4411.00 –1.2023 31.52 
PAM-64 11.6587 4409.00 –1.2006 31.49 
QPSK 4.0000 576.00 –1.0000 12.00 

QAM-16 2.0800 332.31 –0.6800 9.54 
QAM-64 1.7970 289.38 –0.6190 8.82 

Tab. 1. Theoretical cumulant statistics for various constella-
tion types, and variances of their sample estimates. 

that optimal comparison threshold values are positioned at 
the middle of intervals between expected (theoretical) 
values corresponding with particular modulation formats [5]. 

3. Performance in Distinguishing Real 
Constellations from Complex 
Constellations 
In order to compare the expected classification per-

formance of fourth and sixth-order cumulants-based algo-
rithms, in [27] a ratio of standard deviation and mutual 
distance of nearby values was used, for both C42,x and C63,x, 
as a measure of the algorithm’s selectivity. Based on this 
parameter’s value, distinguishing BPSK from QPSK was 
reported to be better with sixth-order cumulants criteria, 
and confirmed with the simulations through 2000 Monte 
Carlo trials and N = 250 received data samples collected 
for AMC in each trial. An algorithm with C63,x features was 
simulated along with an algorithm based on C42,x features 
in non-dispersive channel conditions (AWGN only), and 
with noise power σg

2 considered to be known. Correct 
classification probability PCC was calculated versus SNR, 
with two scenarios of modulation candidates considered 
from the set {BPSK, QPSK}. These results are presented in 
Fig. 2. 

From Tab. 1 it can be clearly noted that cumulant val-
ues of QPSK signals, among all complex constellations, are 
the closest to cumulant values of all considered real con-
stellations. Thus, the ability of both fourth- and sixth- order 
cumulants-based algorithm to distinguish a particular real 
constellation from complex signals can be evaluated through 

 

No. of simulation trials 2000 

Data samples within each trial N = 250 

Channel model AWGN 

Modulation candidates 
QPSK, PAM-4. PAM-8,        
PAM-16, PAM-64 

Simulation software MATLAB R2015a 

Hardware platform i3-5005 CPU, 2.00 GHz 

Tab. 2. The main simulation parameters. 



RADIOENGINEERING, VOL. 30, NO. 1, APRIL 2021 207 

 

the ability of distinction from QPSK, as the border case. By 
calculating the values of the same comparison parameter  
(a ratio of standard deviation and mutual distance of cumu-
lant’s theoretical values) for PAM signals, the same con-
clusion of better classification with sixth-order cumulants 
criteria can be easily established. To test this expectation, 
we carry out the simulations through 2000 Monte Carlo 
trials and N = 250 received data samples collected for 
AMC in each trial. All simulations are executed in the 
Matlab software package, with the main simulation param-
eters presented in Tab. 2. 

Again, the algorithm with C63,x features is simulated 
along with an algorithm based on features C42,x in AWGN 
channel conditions, with noise power considered to be 
known. Correct classification probability was calculated 
versus SNR, under five scenarios of different sets of 
modulation candidates considered: (i) {PAM-4, QPSK}, 
(ii) {PAM-8, QPSK}, (iii) {PAM-16, QPSK}, (iv) {PAM-
32, QPSK} and (v) {PAM-64, QPSK}. Simulation results 
for scenario (i) are presented in Fig. 3, results for scenario 
(ii) are shown in Fig. 4, for scenario (iii) in Fig. 5, scenario 
(iv) in Fig. 6, while results for scenario (v) are presented in 
Fig. 7. The simulation results are essentially in agreement 
with theoretical arguments: the algorithm based on C63,x 
features shows better performance than the one based on 
C42,x features, in all cases considered. 

Furthermore, results could be even commented as su-
perior in the case of a sixth-order cumulants-based algo-

rithm. Careful inspection of estimated 
63,
ˆ

x
C  values 

achieved under low SNR conditions leads to one very inter-

esting conclusion: a presence of bias in estimated 
63,
ˆ

x
C  

values for PAM constellations can be noted, which in-
creases these estimates’ values, leading to more accurate 
classification. While a similar effect was reported for 
BPSK signals in multipath channel conditions in [10], for 
PAM signals in AWGN it is reported here for the first 
time. This effect is illustrated in Fig. 8, where resulting 
histograms of sixth-order cumulant values estimated in 
Monte Carlo trials are presented at SNR = 20 dB and 
SNR = 10 dB, for scenario (v). 

 
Fig. 2. Correct classification probability in {BPSK, QPSK} 

scenario, N = 250, [27]. 

 
Fig. 3. Correct classification probability in {PAM-4, QPSK} 

scenario, N = 250. 

 
Fig. 4. Correct classification probability in {PAM-8, QPSK} 

scenario, N = 250. 

 
Fig. 5. Correct classification probability in {PAM-16, QPSK} 

scenario, N = 250. 

As it can be noticed from Fig. 8, while cumulant 
estimates of complex (QPSK) constellation are strictly 
unbiased, lower SNR values introduce stronger bias for 
PAM-64 signal’s cumulant estimates. This effect is present 
for all PAM constellations simulated and represents the 
reason for the excellent classification performances 
presented above. Since both theoretical cumulant values and 
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their error variances for all considered PAM constellations 
are mutually very similar (Tab. 1), distinguishing from 
complex (QPSK) signals in all particular simulations 
comes with approximately the same superior performance, 
being errorless at all SNR > 2 dB values, and providing 
improved PCC values even at very low SNR. Approximately 
the same error variances of PAM signals are being com-
pensated with an approximately same bias of mutually 
close theoretical values, thus resulting in approximately the 
same AMC performance.  

An explanation for this effect can be found in the 
structure of the used C63,x formula (3). While that formula, 
originally proposed in [10], is being used by some authors, 
other authors also report and use different structures for 
C63,x in their work: for example, in [3, 5, 18, 28] all mutu-
ally different formulas were used. In fact, these formulas 
mostly represent an approximation, simplified forms of the 
theoretical cumulant formula, which are correct for some 
constellations but not in the general case. 

The exact sixth-order cumulant formula of random 
variable x can be expressed from the joint cumulant 
formula [29]: 

 
Fig. 6. Correct classification probability in {PAM-32, QPSK} 

scenario, N = 250. 

 
Fig. 7. Correct classification probability in {PAM-64, QPSK} 

scenario, N = 250. 

 
Fig. 8. Resulting histogram of sixth-order cumulant values 

estimated in Monte Carlo trials at SNR = 20 dB (up) 
and SNR = 10 dB (down), corresponding with PAM-64 
(red) and QPSK (blue) transmitted signal. 

 

 




 

    1

1
cum( ,..., ) ( 1)!( 1) ( )

n i
B i B

x x E x   (15) 

where   runs through the list of all partitions of {1,…,n}, 
and B runs through the list of all blocks of the partition  . 
For zero-mean random variable x, strict developing of all 
members in the sum of (15) for the cum(x, x, x, x*, x*, x*) 
case, leads to the following formula derived here for 
general and unbiased cumulant:  

 

6 4 2

2 2 22 2 2

23

63, _ UNB ( ) 9 ( ) ( )

         +18 ( ) ( ) 6 ( ) ( )

         12 ( ).

xC E x E x E x

E x E x E x E x x

E x
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



  (16) 

For complex signals, E(x2) = 0 stands and equation (16) 
gets reduced to the form of (3). Similarly, other forms used 
by authors who focused on applications with complex 
signals only are derived. However, it is of interest to cover 
applications of real signals as well. When equation (16) is 
used instead of (3) in the AMC algorithm given by equa-

tions (4)–(8), the appearance of bias in estimated 

63, _UNB
ˆ

x
C  

values for PAM constellations under low SNR conditions 
are avoided, but error estimates and mean values of cumu-
lants are much less convenient for AMC application. This 
is illustrated in Fig. 9, where the situation equivalent to the 
one presented in Fig. 8 is shown, now corresponding with 
the application of C63,x_UNB instead of C63,x. 
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Fig. 9. Resulting histogram of sixth-order cumulant values 

estimated in Monte Carlo trials at SNR = 20 dB (up) 
and SNR = 10 dB (down), corresponding with PAM-64 
(red) and QPSK (blue) transmitted signal. 

 

Feature BPSK PAM-4 PAM-8 PAM-16 PAM-32 PAM-64

63_ UNB
Ĉ  16.0000 8.3200 7.1899 6.9381 6.8733 6.8622 

Tab. 3. Theoretical unbiased sixth-order cumulants of real 
constellations. 

While for complex constellations data presented in 
Tab. 1 are also standing with C63,x_UNB, in Tab. 3 the theo-
retic C63,x_UNB values of considered real constellations are 
shown, since they’re different. 

Although the performance in distinguishing real con-
stellations from QPSK (and other complex constellations) 
is clearly better with C63,x formula, the presence of reported 
bias makes mutual distinguishing among various PAM 
constellations practically impossible with this feature: all 
PAM constellations are affected with bias, so using fixed 
threshold values based on theoretical cumulants for deci-
sion - making in AMC is pointless. On the other side, the 
structure C63,x_UNB is relaxed from this issue. Thus, it would 
be of interest to inspect possibilities for a solution which 
will benefit from both: 1) bias of C63,x which provides 
superior separation of real signals from complex signals, 
and 2) unbiased C63,x_UNB structure for the mutual separa-
tion of real constellations. 

4. Novel Two-Stage AMC Scheme 
The formula given in (16) can be rewritten in the fol-

lowing manner:  

63, _ UNB 63,x xC C 2 2 22 2 2

63,

+6 ( ) ( ) 6 ( ) ( )

x

E x E x E x E x x

O


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  (17) 

where C63,x is given by (3), whose simple expansion with 
the values of offset O63,x results in the conversion of biased 
into unbiased sixth-order cumulants. In practical imple-
mentation normalized unbiased sixth-order cumulant can 
be expressed as:  

63, _ UNB 63,

2
22

1 1

22 2

1 1

2 2 3
g

1

63,

ˆ ˆ  

1 1
 + 6 ( ) ( )

1 1 ˆ               -6 ( ) ( ) ( )

1
1

( ( ) )

x x

N N

n n

N N

n n

N

n

x

C C

y n y n
N N

y n y n y n O
N N

y n
N



 

 





          
    

 


 

 

 



 

  (18) 

where 

63,
ˆ

x
C  is given by (8). From (18) novel two-stage 

scheme AMC can be derived, as presented in Fig. 10, 
which is based on exploiting the benefits of both classical 
(biased) and general (unbiased) sixth-order cumulant 
structures. 

As it can be noticed from Fig. 10, in the proposed 
AMC algorithm, within Stage 1, classical sixth-order cu-
mulants of the received signal are estimated and used for 
distinguishing between real and complex constellations. In 
this manner, all the excellent properties reported in Sec. 3 
of this paper are exploited, and very good classification 
performance in this step is provided. As a comparison 
threshold, the “middle of the interval” value between 
QPSK and PAM-64 (Tab. 1) was used, since these two 
constellations represent the border cases of two constella-
tion clusters. 

If the constellation is initially recognized as belonging 
to a cluster of real signals, Stage 2 follows where estimates 
of sixth-order cumulants are first converted into unbiased 
estimates form by adding the value of estimated offset 

63,
ˆ

x
O , and then decision-tree-based recognition of exact 

real constellation is performed. Comparison thresholds 
within Stage 2 are calculated as the “middle of the interval” 
values between neighboring theoretical unbiased estimates 
of PAM (and BPSK) constellations, presented in Tab. 3. In 
this manner, AMC of particular real constellations from the 
wider constellation set is achieved, which is feasible only 
with unbiased cumulants. 

When compared with the structure of standard sixth-
order cumulants AMC algorithm, the one presented in 

Fig. 10 differs numerically only in the estimation of 
63,
ˆ

x
O  

i.e. calculation of 
63, _UNB
ˆ

x
C  (and correspondingly changed 

values for comparison when deciding real signal constella-
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tion). Thus, the only added complexity comes from the 

63,
ˆ

x
O  estimation. The scheme in Fig. 10 and its correspond-

ing equations (17)–(18) are proposed here for the first time. 

At this point it is of interest to highlight the difference 
between the novel AMC algorithm proposed here and the 
one described in [5]: although both solutions provide im- 

 
Fig. 10. Diagram of novel two-stage AMC algorithm based on 

sixth-order cumulants. 

provements in cumulant-based recognition via two-step 
procedure, their nature and applicability is completely 
different. Algorithm described in [5] represents an ad-hoc 
solution for QAM constellations recognition, based on 
modulation order reduction. Important precondition for its 
application lays in absence of any bias in cumulants’ esti-
mates. On the other hand, the presence of strong bias re-
ported for PAM signals in this work makes the solution [5] 
being useless in classification of PAM constellations. In-
stead of any manipulations over the signal structure, here 
we propose the method based on smart switching between 
the fundamental formulas for sixth-order cumulants calcu-
lation, dedicated for PAM signals exactly, as described 
previously in this section. It should be also noted that nei-
ther the algorithm proposed in this paper makes any im-
provement in the classification of QAM signals, meaning 
that two methods remain contributing to completely differ-
ent classes of signal constellations. 

5. Simulations and Performance 
Analysis  
We carried out the simulations through 2000 Monte 

Carlo trials and N = 250 received data samples were col-
lected for AMC in each trial, where the algorithm proposed 
in Sec. 4 was tested in AWGN channel conditions, in sce-
narios with modulation candidates considered from the set: 
(i) {QPSK, PAM-4, BPSK}, (ii) {QPSK, PAM-8, PAM-4, 
BPSK}, and (iii) {QPSK, PAM-64, PAM-32, PAM-16, 
PAM-8, PAM-4, BPSK}. Modulation candidates are se-
lected in order to demonstrate performance in both distin-
guishing real from complex constellations (i.e. from QPSK 
as the border case of complex constellations) and in mutual 
distinguishing among different real constellations within 
the same scenario, with a gradual increase in scenarios’ 
complexity. Similarly as explained previously in Sec. 3, all 
simulations are executed in the Matlab software package, 
using the package’s built-in functions for modeling the 
AWGN channel, with the main simulations’ hardware and 
software parameters presented in Tab. 2. Simulations code 
is open for considerations and use of other researchers, and 
can be found at [30]. 

In order to provide a fair comparison of achieved per-
formance with other comparable algorithms, the AMC 
algorithm based on standard fourth-order cumulants [9] 
was simulated as well, under the same set of modulation 
candidates and sample size N = 250, along with the AMC 
algorithm based on standard (biased) sixth-order cumulants 
[10]. The value of N was selected to match directly with 
the one used in simulations described in [9] and represents 
the main controlling parameter from the aspect of AMC 
performance. It should be also noted that the algorithm [9] 
is unbiased in its nature (i.e. for all simulated signal con-
stellations). The AWGN channel was simulated with noise 
power σg

2 considered to be known. For each particular SNR 
value, and within every particular Monte Carlo trial, the 
same set of N samples was processed by all simulated algo-
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rithms, thus providing the fair comparison under the ex-
actly same channel conditions and over the exactly same 
input data. 

Comparison thresholds for sixth-order cumulants 
AMC algorithm are having the values as previously de-
scribed in this paper, while comparison thresholds for the 
algorithm [9] were selected as the “middle of interval” 
values between the theoretical fourth-order cumulants of 
considered modulation formats (Tab. 1). 

Correct classification probability PCC was calculated 
versus SNR, and Figure 11 illustrates the results of simula-
tion in scenario (i); results in scenario (ii) are presented in 
Fig. 12, while Figure 13 illustrates the results of simulation 
in scenario (iii). 

As can be confirmed from Fig. 11 and Fig. 12, the 
proposed novel two-stage AMC algorithm based on sixth- 
order cumulants shows better performance than the algo-
rithm based on standard fourth-order cumulants, and this 
difference in performance is more significant as the SNR 
value is getting lower. Performance of standard sixth-order 
cumulants is generally poor, due to the presence of bias, as 
described in this paper, but its robustness in the classification 

 
Fig. 11. Correct classification probability in {QPSK, PAM-4, 

BPSK} scenario, N = 250. 

 
Fig. 12. Correct classification probability in {QPSK, PAM-8, 

PAM-4, BPSK} scenario, N = 250. 

 
Fig. 13. Correct classification probability in {QPSK, PAM-64, 

PAM-32, PAM-16, PAM-8, PAM-4, BPSK} scenario, 
N = 250. 

of complex (QPSK) signal remains obvious even at low 
SNR. Achieved classification performance of the proposed 
algorithm comes mainly from this, well-exploited, excel-
lent classification of complex (QPSK) signals, while mod-
erate performance in recognition of real constellations is 
provided at the same time - very similar to the one given by 
the standard fourth-order cumulants. Also, it should be 
noted that as the number of constellations under test rises 
(four constellations in scenario (ii), in comparison with 
three constellations in scenario (i)) general performance of 
all simulated algorithms gets lower in terms of PCC. This is 
especially illustrated in Fig. 13, where a wide set of seven 
constellations was considered in simulation, i.e. all real 
constellations discussed in this paper, along with QPSK. 

From Fig. 13 it can be noted that at SNR = 20 dB the 
most competitive algorithms under the test of seven con-
stellations show the performance of around PCC = 0.55, 
while for the same SNR value in a scenario with four con-
stellations (Fig. 12) their performance was approximately 
PCC = 0.85. Nevertheless, Figure 13 confirms again that the 
proposed novel AMC algorithm based on sixth-order cu-
mulants outperforms the classical algorithms based on 
higher-order cumulants, even in the problem with the wid-
est set of modulation candidates.  

In order to explore the impact of sample size N on 
reported classification performance, we repeat simulations 
in scenario (iii), now with N = 2000 received data samples 
for AMC. The results are presented in Fig. 14. 

As can be concluded from Fig. 14, bigger sample size 
N directly contributes to the classification performance of 
algorithms under test: at SNR = 20 dB the most competitive 
algorithms reach the value of PCC = 0.65 with N = 2000 
samples, which represents an obvious improvement in 
comparison with the same scenario and N = 250 samples 
from Fig. 13. Again, the achieved classification perfor-
mance of the proposed new AMC algorithm based on 
sixth-order cumulants is confirmed as better than of the 
classical algorithm based on fourth-order cumulants. The 
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algorithm based on standard sixth-order cumulant structure 
is outperformed by the others in all considered scenarios. 

Reported performance stands in direct correspond-
ence with the ability of a particular algorithm to distinguish 
complex from real signals effectively. Simulations showed 
that distinguishing complex (QPSK) signals from real 
constellations is errorless with fourth-order cumulants and 
N = 250 samples at SNR > 7 dB, while with sixth-order 
cumulants and the same N value distinguishing complex 
from real constellations is errorless even around SNR = 
2 dB. With N = 2000 samples, fourth-order cumulants 
achieve QPSK signal classification without any errors at 
SNR > 4 dB, while the proposed sixth-order cumulants 
algorithm provides an errorless classification of QPSK 
signals even around the values low as SNR = –1 dB. Re-
ported numerical values are stated directly in an observed 
performance presented in Fig. 15. 

Although the only channel disturbance source consid-
ered (and simulated) in these experiments is the noise, the 
nature of cumulants provides that all presented considera-
tions will also stand in the case of the flat-fading channel 
(this property results directly from the definition of self- 

 
Fig. 14. Correct classification probability in {QPSK, PAM-64, 

PAM-32, PAM-16, PAM-8, PAM-4, BPSK} scenario, 
N = 2000. 

 
Fig. 15. Correct classification probability for complex (QPSK) 

signals, in seven – constellation candidates’ scenarios. 

normalized cumulants, as presented in Sec. 2). For more 
complex channel models additional channel estimation 
procedure needs to be introduced in simulated algorithms, 
like [9], [10], representing one of the most important tasks 
for future work and considerations of proposed novel two-
stage AMC, along with the conditions of interference and 
other channel imperfections. 

Achieved performance improvement with the AMC 
algorithm proposed in this paper comes at the cost of some 
added numerical complexity: (N + 1) new multiplications 
and (N + 1) new additions are introduced for the calcula-
tion of offset and conversion of the standard into the unbi-
ased form of sixth-order cumulants, in comparison with 
classical sixth-order cumulants, as described with (18) and 
Fig. 10. Still, those introduce no practical change in the 
overall complexity of the AMC algorithm, meaning that it 
remains very competitive in terms of numerical and 
memory resources, and inference time [5]. Finally, the 
algorithm proposed in this paper can be expanded further 
with more complex classifiers (like various neural network 
structures), in applications where introducing more signifi-
cant overall computational complexity represents an ac-
ceptable cost for providing even higher classification per-
formance. 

6. Conclusion 
In this paper, a novel scheme for improving the per-

formance of AMC based on sixth-order cumulants, in the 
form of a simple two-stage feature extraction structure is 
presented, which exploits benefits from both classical and 
theoretical (unbiased) sixth-order cumulant structures. 
Statistical properties of classical sixth-order cumulants of 
various PAM constellations were analyzed for the first 
time; their superior performance in distinguishing real from 
complex constellations was tested in computer-aided sim-
ulations, and explained through the presence of bias, which 
was reported for the first time for this class of signals. This 
presence of bias was also identified as an obstacle for mu-
tual distinguishing of real constellations with classical 
sixth-order cumulants. The difference in the structure was 
explained between standard sixth-order cumulants and 
theoretical cumulants of the same order, which are relaxed 
from the presence of bias, thus being suitable for the classi-
fication of particular real constellations. This difference 
was then further used for the implementation of a simple 
mechanism for conversion between two cumulant struc-
tures in practical AMC. The same mechanism was incorpo-
rated in the novel two-stage AMC scheme. In computer 
simulations performance of a new classification algorithm 
was compared with the performance of a popular AMC 
algorithms based on standard sixth- and fourth-order cu-
mulants, and better results with the new algorithm were 
reported in several simulation scenarios. Expectations in 
the practical use of tested algorithms were also discussed, 
in the context of SNR and sample size N values. Achieved 
new performance of the proposed algorithm is coming at 
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the price of (some) added complexity, which was also 
discussed, but making no significant impact on the overall 
complexity of sixth-order cumulant structures application 
in AMC, thus providing their well-known competitiveness 
to remain high. The proposed algorithm can be further 
combined with nowadays popular complex structures for 
enhanced feature extraction, like neural networks or deep 
learning methods, for potentially achieving even better 
performance. For future work, the proposed algorithm 
should be tested in propagation conditions that are not 
limited to the presence of noise only, but also consider the 
effects of multipath propagation, interference, and other 
real-world conditions. 
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