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Abstract. This paper presents a compact ultra-wideband 
frequency selective surface (FSS) with band stop response. 
The proposed single layer FSS is printed on FR-4 substrate 
with a unit cell periodicity of 0.138λ0 × 0.138λ0, corre-
sponding to its lowest operating frequency. The developed 
FSS exhibits stable response for plane waves with normal 
and oblique incidence with TE and TM polarization for 
angles varying from 0° to 60°. The FSS offers –10dB 
bandwidth of 141 % covering the entire ultra-wideband 
frequency range from 2.39 GHz to 13.67 GHz. The struc-
tural parameters are optimized, and an equivalent circuit 
is modelled to analyze the performance of FSS. The simu-
lated results are validated by the measured values. 
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1. Introduction 
The frequency selective surfaces (FSS) are 2D or 3D 

periodic structures exhibiting pass band or stop band filter 
response. Basic configurations of FSS with design concept 
are considered by Munk [1]. The periodic structures can be 
designed as spacial filters to select or reject a set of fre-
quencies. A periodic structure with narrow band acting as 
a partial reflecting surface was reported by the authors [2]. 
The filter response of FSS differs from microwave filters in 
terms of its dependency in design structure, incident angle 
and polarization of the electromagnetic signal. Extensive 
survey on various FSS designs were investigated [3], [4]. 
Narrow, wide and ultrawideband nature of FSS fits them in 
diverse fields including radar cross section (RCS) reduc-
tion, electromagnetic shielding and antenna application. 
Single layer and dual layer FSS are reported in literature 
[5–7]. Simple circular slot FSS with active and passive 
components are capable of single or dual band operation 
[8], [9]. A quad band switchable FSS with pin diodes oper-
ating in ISM frequency range, improves the isolation be-
tween indoor wireless devices [10]. A miniaturized dual 
layer UWB FSS with dielectrics AD300A and AD600 

separated by three parts of metallic elements consisting of 
rotated cross dipoles has 60° angular stability [11]. The 
low-profile dual layer FSS reflector [12] covers the UWB 
band from 3.5 to 11.45 GHz. As FSS are designed with 
half wavelength, the percentage bandwidth is limited and 
they generate grating lobes reducing the performance in the 
upper band. Though multilayer FSS produce broad 
bandwidth, they are inefficient in terms of size and cost. 
FSS for RCS reduction and antenna application are dis-
cussed in earlier works [13–16]. Different polarization 
independent UWB FSS designs were analyzed [17–22]. 
Single layer dual sided FSS with UWB coverage are re-
ported with polarization independence and higher incident 
angle stability [23–25]. The electromagnetic behavior of 
FSS structures can be analyzed using tedious mathematical 
modelling techniques. A relatively simple approach is to 
develop an equivalent circuit with inductive and capacitive 
reactance, which characterize the electromagnetic behavior 
of FSS. The LC equivalent circuit models of various peri-
odic structures are documented [26–28]. The demand for 
UWB FSS with stable operation in modern high-speed 
communications aims at designing a novel FSS structure. 

In this paper, a compact novel FSS with angular and 
polarization stability for UWB application is presented. 
Compared to the available FSS in the literature, the pro-
posed structure has maximum percentage bandwidth on 
a single layer design. To operate in the UWB frequency 
band a combination of square and circular loop with load-
ing strips and cross dipoles are used. With the transmission 
response of –10 dB, the designed FSS has a stable opera-
tion in TE and TM polarization for an incident signal of 
variable angles up to 60°. A simple equivalent circuit 
model is developed to match the response of FSS design. 
The FSS designs were simulated using CST microwave 
Studio. The frequency domain solver option of CST with 
Floquet’s boundary conditions for unit cell geometry is 
chosen to compute the parametric analysis of the designed 
UWB FSS. The equivalent circuit values were theoretically 
calculated and the schematic is modelled using ADS soft-
ware. The LC components of the circuit with matched 
terminations on either side are analyzed by tuning and the 
S parameter results in terms of reflection and transmission 
are plotted.  
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2. Design of the Proposed UWB FSS 
The designed FSS is aimed to operate in the FCC 

regulation UWB frequency band ranging from 3.1 GHz to 
10.6 GHz. The four main groups of FSS designs [1] were 
analyzed and the hybrid combinations of them are used to 
propose the new UWB FSS design. In this paper a single 
layer, compact UWB FSS with angular and polarization 
stability is designed. This reduces the cost and complexity 
of the design compared to multilayer designs. The pro-
posed FSS structure is designed on FR-4 dielectric sub-
strate with parameters εr = 4.4, tan δ = 0.025 and height  
h = 1.6 mm. The thickness t of the copper conductor is 
0.035 mm.  

The UWB FSS design consists of a square loop inte-
grated with thin strips and a cross dipole convoluted circu-
lar loop to achieve ultra-wideband frequency coverage. 
Figure 1(a), (b) shows the top and side view of the pro-
posed single layer unit cell FSS design. Initially a square 
loop with a circumference of λ at lower frequency of 
3.1 GHz is calculated. To accommodate the upper fre-
quency band of 10.6 GHz, a circular loop is placed at the 
center of the square loop. The combination of square and 
circular loops provides two independent bands resonating 
at 3.64 GHz and 11.49 GHz respectively. The branch 
loading of the loops with four narrow strips at the middle 
of square edges merged the resonance bands offering 
a bandwidth of 7.65 GHz ranging from 2.43 GHz to 
10.09 GHz of UWB band. To expand the higher frequency, 
two dipoles of λ/2 at center frequency is placed diagonally 
convolving with the circular loop. This improved the 
bandwidth to 11.28 GHz with 8 GHz as the center fre-
quency. The optimized FSS operates within the frequency 
band between 2.39 GHz and 13.67 GHz. The proposed 
FSS unit cell has an optimized periodicity of 0.138λ0 and 
overall height of 0.0127λ0, where λ0 is the free space 
wavelength at the lower cut off frequency. The design 
parameters of proposed UWB FSS unit cell are summa-
rized in Tab. 1. 

 
                              (a)                                                (b) 

Fig. 1. The geometry of proposed UWB FSS unit cell. (a) Top 
view. (b) Side view. 

 

P L s x r r1 h t 

17.4 17 3 0.5 3.1 4 1.6 0.035 

Tab. 1. Dimensions of the proposed UWB FSS unit cell in 
mm. 

3. Design of the Proposed UWB FSS 
The LC equivalent circuits are simple solutions to 

find the resonance frequency of any complex structures. 
The equivalent circuits for square and circular loop FSS are 
based on the solutions given in [26–28]. Figure 2 shows 
the layout of a simple printed square and circular loop FSS 
with period p, width w, side length d and the inter element 
gap between adjacent squares in a periodic array g. The 
equivalent circuit of printed square or circular loop would 
have a series combination of lumped inductor L1 and ca-
pacitor C1 connected in shunt between the free space im-
pedance Z0 of 377 Ω as in Fig. 3(a). 

The reactance XL and susceptance BC of (1), (2) based 
on [26–28] are used to solve the values of L1 and C1 of the 
equivalent circuit: 
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Here θ and λ are the angle and wavelength of the incident 
signal. The correction term G (p, w, λ, θ) is given by 
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The reactance leading to inductance of a circular loop 
with the same period p, strip width w and gap g of the 
square loop has a modified equation, as it has a variable 
circumference with diameter d as a function of πd com-
pared to 4d in square loop. Thus, equation (1) includes 
an additional factor of π/4 for the circular loop which re-
duces the reactance by a factor d/p. The susceptance owing 
to the capacitor is calculated based on two adjacent circular 
loops acting as the parallel plates separated by the average 
gap distance ga, effective dielectric constant of the sub-
strate εeff and half the loop length πd/2. This leads to a factor 
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Fig. 2. The layout of square and circular loop FSS.  

 
(a) 

 
(b) 

Fig. 3. The equivalent circuit of the FSS unit cells. (a) Single 
square or circular loop. (b) The proposed UWB FSS.  

of π/2 in (2). The modified equations for reactance XL and 
susceptance BC of circular loops are given by (3) and (4) 
from which the lumped inductance L1 and capacitance C1 

are computed: 
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In (4) the average gap ga between the circular elements is 
given by  
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The outer square loop and inner circular loop forms 
two narrow band resonances at lower and higher 
frequencies of UWB range. When both loops are combined 
the reactance and susceptance are calculated as a parallel 
combination of individual elements, and the two resonance 
curves merge together to form a wideband response with 
L1, C1, L2 and C2.  

In the proposed FSS design the square and circular 
loops are loaded with four metallic strips at the middle of 
the square arms and two diagonal dipoles across it. This 
makes two additional LC pairs. The branch loading and  
the mutual coupling effects  further  expand the operational 

 
(a) 

 
(b) 

Fig. 4. The performance comparison of different FSS unit 
cells with their equivalent circuits: (a) Transmission 
coefficient; (b) reflection coefficient. 

frequency band on either edge. Figure 3(b) shows the 
equivalent circuit of proposed UWB FSS. The values of 
LC pairs calculated are tuned using ADS software to match 
the simulated response of CST studio which also account 
for the coupling effects of lumped parameters. 

The optimized values of equivalent LC pairs are Ll = 
2.3 nH, L2 = 2.6 nH, L3 = 2.158 nH, L4 = 2.207 nH, C1 = 
0.17 pF, C2 = 0.130 pF, C3 = 0.001 pF and C4 = 0.16 pF. 
Figures 4(a), (b) represent the simulated transmission and 
reflection characteristics of square loop FSS, circular loop 
FSS and the proposed UWB FSS using CST studio along 
with their LC equivalent circuit response. The simulated 
results show good matching with the equivalent circuit 
response, except at higher frequencies above 12.5 GHz for 
circular loop FSS which may be due to deviation in LC 
value on tuning than theoretically calculated.  

4. Performance Analysis of FSS 
The structural parameters P, s, x, r and r1 are opti-

mized to accomplish the ultrawideband operation. The 
period P of the unit cell is 17.4 mm. The length of the 
square loop is maintained at 17 mm and the width s is var-
ied from 0.5 mm to 3 mm in steps of 0.5 mm. The results 
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show a right shift in resonance frequency with wider 
bandwidth. The circular loop radii r and r1 are varied from 
3 mm to 3.5 mm and 3 mm to 5 mm, respectively. Stable 
response with wider bandwidth is obtained at r = 3.1 mm 
and r1 = 4 mm. The variation of the width of the cross 
dipoles and the strips x from 0.1 mm to 0.7 mm resulted in 
shift of the center frequency to a higher value with increase 
in x. At x = 0.5 mm the center frequency is 8 GHz with 
a stable response and wider bandwidth. The theoretical re-
sults and the investigation of the optimization plots reveal 
that the bandwidth and center frequency of the FSS is in-
fluenced with the periodic cell size and structural dimen-
sions. 

The optimized reflection and transmission response of 
the proposed UWB FSS for TE and TM mode are plotted 
in Fig. 5. The absolute value of S11 in log magnitude format 
for TE and TM mode is close to zero for the entire fre-
quency band as required. The transmission coefficient S21 
shows a value of –50.58 dB at 8 GHz frequency and is 
below –10 dB from 2.39 GHz to 13.67 GHz achieving 
UWB operation. The phase of the reflection response var-
ies linearly from –180° to 180°, within the entire frequency 
band from 1.389 GHz to 15.144 GHz as depicted in Fig. 6.  

 
Fig. 5. The optimized performance of the proposed unit cell in 

terms of transmission and reflection coefficients.  

 
Fig. 6. The reflection phase performance of the proposed unit 

cell.  

 
(a) 

 
(b) 

Fig. 7. Transmission characteristics of the proposed FSS for 
varying angles: (a) θ optimization; (b) φ optimization. 

 

Incidence 
angle (Deg) 

Lower cut off 
frequency at  

–10 dB (GHz) 

Upper cut off 
frequency at  

–10 dB (GHz) 

0 2.39 13.67 

15 2.368 13.312 

30 2.56 13.08 

45 2.88 12.28 

50 3.4 12.24 

60 4.23 12.256 

Tab. 2. The cut off frequency limits of the proposed UWB FSS 
for different angle of incidence for TE polarization. 

The response of the FSS resembles the characteristics of 
a band stop filter at 8 GHz with a bandwidth of 5.2 GHz at 
an attenuation level of 20 dB. 

The proposed UWB FSS is also analyzed for polari-
zation and angular stability of the incident signal. The 
simulated results of transmission characteristics for various 
incident angles are plotted in Fig. 7(a), (b). The incident 
angles are varied in terms of θ and φ from 0° to 60°. Ta-
ble 2 represents the lower and upper cutoff frequencies for 
different incident angle of TE polarized signal on the pro-
posed UWB FSS with reference to –10 dB level. The re-
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sults of Fig. 7 and Tab. 2 easily justify that the designed 
FSS is stable for different angular variations of incident 
signal. The FSS reflection response is stable for θ and φ 
variations indicating TE and TM mode of polarization. The 
S parameters exhibit a similar response for TE and TM 
mode due to the symmetrical design of FSS structure. This 
enables the polarization independent operation of the FSS 
design within the operational band. The start and stop fre-
quencies of the transmission curve with –10 dB reference 
are 2.39 GHz and 13.67 GHz covering the ultra-wideband 
range and achieve 141% bandwidth with respect to center 
frequency of 8 GHz. To the best of authors’ knowledge, 
the proposed UWB FSS has the highest % bandwidth with 
polarization and incident angle stability compared to the 
existing similar works.  

The proposed UWB FSS is also compared with same 
size full metal patch printed on dielectric forming capaci-
tive grids. The reflection magnitude and phase show simi-
lar response. Though the transmission response of full 
metal has an upper cutoff frequency of 15.536 GHz, the 
proposed FSS show smooth symmetrical response with 
respect to the center frequency as shown in Fig. 8. 

The UWB FSS is fabricated using printing technol-
ogy. The fabricated FSS prototype consists of 15 × 15 unit 
cells with lateral dimension of 28 × 28 cm2 as in Fig. 9. 
The performance of the UWB FSS is tested by placing it in 
between two horn antennas separated by a distance of one 
meter apart of FSS in a partial anechoic chamber as de-
picted in Fig. 10. The standardized horn antenna used for 
measuring are, JR-12 double-ridged horn antenna and 
KU5086 horn antenna respectively from Verdant Teleme-
try from Vidyut Yantra Udyog. The measured results of 
FSS are plotted with frequency ranging between 0–12 GHz 
due to the limitations in testing facility. The measured 
transmission response of fabricated FSS for incident angles 
at 0°, 15°, 45°, and 60° are plotted in Fig. 11. The meas-
ured plots show bandstop response from 1.66 GHz at nor-
mal incidence. For all oblique incidence the transmission 
response is well below the reference level of –10 dB. 

 
Fig. 8. The performance of the proposed FSS and metal patch 

in terms of transmission and reflection coefficients. 

 
Fig. 9.  The fabricated prototype of the proposed UWB FSS. 

 
Fig. 10. The experimental setup for measuring the transmission 

and reflection performance of FSS.  

 
Fig. 11. The measured transmission response of the proposed 

UWB FSS at incident angles 0°, 15°,45° and 60°. 

 
Fig. 12. Simulated and measured performance comparison of 

the proposed UWB FSS at normal incidence. 
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Reference No. of layers  
Frequency 

range 
(GHz) 

Center 
frequency 
fc (GHz)  

% 
Bandwidth 

Dielectric 
permittivity εr 

Overall 
height  

Unit cell 
size  

Maximum 
angular 
stability  

[5] 1 3.1–13.3 8.2 124.39  FR4, 4.4 0.0165λ0 0.103λ0 45° 

[11] 2 2.98–10.86 6.92 113.87 
AD300A & AD600, 

3 & 6.15 
0.02λ0 0.064λ0 60° 

[12] 2 3.85–11.23 7.54 122  FR4, 4.4 0.163λ0 0.193λ0 - 

[13] 1 2.6–11.1 6.5 130.77  FR4, 4.4 0.0138λ0 0.095λ0 - 

[18] 1, dual sided 4.71–12.41 8.56 89.95  FR4, 4.4 0.025λ0 0.33λ0 60° 

[21] 1 3.87–11.4 7.63 98.69  FR4, 4.3 0.02λ0 0.18λ0 45° 

[23] 1, dual sided 5–16.5 10.75 107  FR4, 4.4 0.026λ0 0.18λ0 60° 

[24] 1, dual sided 4.6–16 8.7 131.03  FR4, 4.4 0.0245λ0 0.153λ0 60° 

Proposed 1 2.39–13.67 8.04 141  FR4, 4.4 0.0127λ0 0.138λ0 60° 

Tab. 3. Performance comparison of the proposed UWB FSS with few existing works. 

 

Figure 12 shows the simulated and measured compar-
ative transmission performance of the proposed FSS at 
normal incidence. The measured plots have a shift in the 
resonant frequency with respect to the center frequency of 
8 GHz of the simulated results. The plots also show uneven 
edges compared to the smooth simulated plots which at-
tribute to external reflections and inaccuracy in alignment 
during testing. Performance comparisons of designed FSS 
with few existing UWB FSS are tabulated in Tab. 3. The 
performance of the proposed single layer FSS is better 
when compared to the earlier designs in the literature with 
maximum bandwidth and stability. 

5. Conclusion 
A novel low-profile single layer ultra-wideband FSS 

is designed and the performance is experimentally vali-
dated. At normal incidence the UWB FSS offers a stop 
band response of 11.3 GHz with 141% bandwidth. The 
FSS is stable up to 60° incident angle with dual polariza-
tion. The proposed UWB-FSS can be utilized in antennas 
for performance enhancement and for compact wireless 
devices for electromagnetic shielding in stealth technology. 
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