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Abstract. A fully analogue implementation of training
algorithms would speed up the training of artificial neural
networks. A common choice for training the feedforward
networks is the backpropagation with stochastic gradient de-
scent. However, the circuit design that would enable its
analogue implementation is still an open problem. This pa-
per proposes a fully analogue training circuit block concept
based on the backpropagation for neural networks without
clock control. Capacitors are used as memory elements for
the presented example. The XOR problem is used as an ex-
ample for concept-level system validation.

Keywords
Fully analogue, analogue circuit, neural network, neu-
romorphic, backpropagation

1. Introduction
The edge computation architecturesminimise themove-

ment of the data by performing the computations close to
the sensors. The significant computing power in this domain
comeswith themotivation to design hardware for near-sensor
data analysis, which is not affected by the von Neu-mann
bottleneck [1–4]. This field has also been influenced by
the recent advancement of the Internet-of-Things (IoT) de-
vices [5–7].

Neuromorphic computing draws inspiration from Ar-
tificial Neural Networks (ANNs), where learning is done in
analogue ormixed-signal domain [1,3,8,9]. Training of these
networks requires a learning algorithm such as backpropaga-
tion using gradient descent [7,10–13] to implement hardware
for real-time training [2, 7, 14, 15]. Despite the widespread
use of digital backpropagation for the training of ANNs, its
analogue implementation is still an open problem [7], [10].

While hardware-based ANNs currently exist, their
training has to be performed with specialised software and
FPGA-based units. An analogue implementation of the back-
propagation would enable the creation of fully hardware-
based ANNs, which could be trained on-chip [2], [15]. Even

though this can diminish structural flexibility, it also offers
a significant speed-up in the training process of artificial neu-
ral networks [7, 10, 11].

For that, it is necessary to use an electronic component
that can work as analogue memory and is possible to up-
date. For this, state of the art articles are using memristors or
memristive crossbar arrays [2–4, 6, 7, 10, 16]. Unlike CMOS
technology, memristors cannot yet work precisely for large-
scale multi-level simulations [7], [10]. That is why in this
proposal of block concept, capacitors are used as memory el-
ements. Capacitors in VLSI occupy a lot of space, but for fast
near-sensor application it is not always necessary to use large
neural network structures. The capacitors can be changed to
other technologies with transistor-level designing.

A large number of designs of an on-chip learning pro-
cesses are done in steps [7, 10, 11]. This allows to use more
flexible structure, but it slows down the learning process and
disables the usage of the analogue input from sensors with-
out sampling. That is why this design does not use any clock
control. It avoids synchronization signals, and it makes this
concept fully-analogue and fully-parallel [2], [15].

For above-mentioned reasons, this article presents and
verifies the novel concept of a fully analogue training process
of an artificial neural network circuit implementation inspired
by the backpropagation and based on the gradient descent.

2. Background
The speedup of the training process of a neural network

is based on several principles in this article. The training
process is designed to be fully parallel [2, 7, 15]. Further,
any clock control that holds back the propagation signal is
avoided. The training process is realized by analogue elec-
tric circuit feedback; thus, it is fully analogue [15]. The
design consists of two parts: forward propagation and back-
ward propagation. Inputs, outputs and weights of a classical
neural network [12] are represented by: input xi as Vini ,
output ŷi as Vouti , target yi as Vouti and weight wi as Vwi .
For the transistor-level implementation, current can be used
instead of voltage for xi , ŷi and yi .
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The forward propagation of the designed neural network
is defined at the level of a single neuron by

Vout = S

(
N∑
i=0

VwiVini

)
(1)

where Vout is the output signal (here, the voltage of this neu-
ron), S(·) is the activation function of this neuron, Vini is one
of the input signals of this neuron and Vwi is the weight for
input i, where for i = 0 the Vin0 is a bias input.

There are two parts to the backpropagation between
layers. The first part solves the calculation of an error at the
output layer of a neural network (Type1). It is possible to
define an error of the NN’s output layer as a Mean Square
Error (MSE) [12], [17] by

E =
1
2

N∑
i=0
(Vouti − Vtargeti )

2 (2)

where E [V2] is the error, N is the number of outputs, Vtargeti
is the ideal output and Vouti is the obtained output signal.
The second part solves the backpropagation of the error be-
tween the hidden layers of a neural network (Type2).

The backpropagation circuit implementation is based on
a well-known backpropagation algorithm with the stochas-
tic gradient descent method where the update of the
weight [12], [13] is defined by

wk+1 = wk − η
∂E
∂wk

(3)

where wk is a weight at step k ∈ N, E is the error and η is
a learning rate.

The fully Analogue Artificial Neural Network (AANN)
does not operate by separate and distinct steps. The proposed
design for the update of the weight uses

Vw(t) = Vw(t0) − η
∫ t

t0

∂E(τ)
∂Vw(τ)

dτ (4)

where Vw(t) is a function of weight at continuous time t ∈ R.

3. Circuit Design
The proposed AANN is based on a structure that al-

lows the construction of most types of neural networks such
as RNN, CNN etc. Each of these structures consists of the
same cells, called neurons. The proposed hardware con-
cept of a fully analogue neuron with training is illustrated
in Fig. 1. The signals can be realised by voltages or cur-
rents depending used technologies. For example, a multi-
plier can be implemented in both voltage and current mode.
However the capacitors are necessary to charge by current
and voltages of capacitors are used as a memory quantity,
see Sec. 3.2. It consists of voltage multipliers, capacitors
representing weights of a neuron, and blocks representing
activation function and its derivative. The green boundary

indicates the forward propagation part of the circuit. The blue
boundary indicates the backpropagation part of the circuit.

Themultiplier block has the schematic symbol shown in
Fig. 2. It is a functionwhichmultiplies two voltages [19], [21]
and whose output is a current calculated by

Iout = Km · Vin1 · Vin2 (5)

where Km [A/V2] is the ratio of output to the product of
inputs.

Figure 3 shows the schematic symbol of the block rep-
resenting an activation function. A sigmoid is the most com-
monly used activation function, which is described by

Vout =
Vamp

1 + e−Iin/Iref
(6)

where Vamp is a constant determining the maximum possible
voltage and Iref is a referential current.

Vteach

VE

Vout

∂Vout
∂net

∂net
∂Vw1

Vbias

Vw1

Vw2

∂net
∂Vw2

IE1

IE2

Vin1

Vin2

Vw0

∂E
∂Vout

Forward propagation

Backpropagation

Type2

Inet

Fig. 1. The block implementation of an analogue neuron with
learning and two inputs.
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Iout

Fig. 2. Symbol of multiplier.

Iin Vout

Fig. 3. Symbol of activation function.

Vin Vout

Fig. 4. Symbol of derivation of activation function.
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Figure 4 shows the schematic symbol of the block rep-
resenting the derivative of an activation function. In the
sigmoid activation function, the block is described by

Vout = Km
eVin/Vref

(eVin/Vref + 1)2
(7)

where Km is a proportionality voltage constant and Vref is
a referential voltage.

3.1 Implementation of Forward Propagation
There have been many solutions to the problem of hard-

ware implementation of forward propagation of neural net-
works [1,7–10,15,18,19]. The whole behaviour is described
by (1), and the analogue design is shown in Fig. 1 in the
green area. The weights correspond to the voltages of capac-
itors [15]. Each input is connected to the multiplier, whose
output is a current given by (5). The activation function is
applied to the sum of these currents Inet [18].

The crucial element in this type of implementation is
the capacitor. Each neuron has N + 1 capacitors as weights,
where N is the number of input. For example, neural network
in Fig. 7 has 17 capacitors. However, bigger chip area and
higher current consumption are required for bigger structures.
The exact implementation depends on the technologies, but
there could be tens of thousands of capacitors on a 1mm2 of
a chip. That is sufficient for a large number of fast near-sensor
applications.

3.2 Implementation of Backpropagation
The training process is described by (4). The weight

update is implemented by charging a capacitor, which is de-
scribed by

Vw(t) =
1
C

∫ t

t0

I(τ)dτ + Vw(t0). (8)

For this implementation, the current is denoted as
Icharged and defined by

Icharged = −Kη
∂E
∂Vw

(9)

where Kη [S] is the conductance coefficient. Substitution
of (9) to (8) gives

Vw(t) = Vw(t0) −
Kη
C

∫ t

t0

∂E(τ)
∂Vw(τ)

dτ (10)

where t is the continuous-time and C is the capacitance.
Comparison of (10) and (3) leads to the definition of learning
rate as Kη

C ≡ η. The process of a weight update is illustrated
in Fig. 5.

The partial derivative of the error with respect to
a weight Vw is calculated using the chain rule twice

∂E
∂Vw

=
∂E
∂Vout

∂Vout
∂net

∂net
∂Vw

(11)

where net =
∑N

i=0 VwiVini [V2].

C

Icharged

Vw

Vin

K · Vin · Vw

Fig. 5. Analogue implementation of a weight.

The first partial derivative from (11) is denoted in Fig. 1
as voltage VE :

∂E
∂Vout

= VE . (12)

The last partial derivative from (11) is solved as
∂net
∂Vw

= Vin. (13)

The remaining partial derivative cannot be solved gen-
erally. However, this is a derivative of the activation function.
If the activation function is known, it is possible to calculate
and implement this partial derivative as a separate sub-circuit.

The voltage Vteach determines if the error is propagated
and weights are updated in the neuron. If this voltage is set to
0V, only the forward-propagation part of the circuit is active.
IfVteach > 0, the weights are being updated and the network is
learning. The magnitude of Vteach determines the magnitude
of the analogue learning rate. In simulations in Sec. 4, Vteach
is set to 0V for the forward-propagation mode and to 1V for
the learning mode.

3.3 Implementation of Backpropagation
Between Layers
For simplicity, the whole circuit of the analogue neuron

shown in Fig. 1 will be represented by the symbol shown
in Fig. 6.

An example of an AANN composed of these neurons
is presented in Fig. 7, which demonstrates a neural net-
work with three layers. It contains two input signals rep-
resented as voltage sources Vin1 and Vin2 . The hidden layer
in the figure is created by three neurons N2

1 , N2
2 and N2

3 .
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e

out
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Fig. 6. Symbol of a analogue neuron with n inputs.
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Fig. 7. The block implementation of analogue neural network with two inputs, three neurons in the hidden layer and two outputs.

The output layer is created by neurons N3
1 and N3

2 . The blue
area on the right side (denoted as Type1) represents the error
propagation for the output layer. It comes from the first partial
derivative of (11) for the output layer and can be calculated
as

∂E
∂Vout

= Vout − Vtarget. (14)

The backpropagation of each neuron in the hidden lay-
ers is dependent on the errors of all neurons that indirectly
connect it to the output. So, for the hidden layers, the first
partial derivative from (11) cannot be calculated directly as in
the output layers. This partial derivative is then calculated as

∂E
∂Vout

=
∑
n

∂E
∂Voutn

∂Voutn
∂netn

∂netn
∂Vout

(15)

where n is a neuron connected to the output. The sum is
again implemented as summation of currents IEn shown in
Fig. 6. It is then converted to voltage VE as shown in the
Type2 area in Fig. 7.

Implementation of the first two partial derivatives in
the sum in (15) is shown in Fig. 1 in the top part of the
backpropagation circuit. The last one is solved as

∂netn
∂Vout

= Vwn (16)

which is implemented in Fig. 1 in the Type2 area.

4. Circuit Simulation
The aim of the simulation is to verify that the learn-

ing process of the designed concept of the neural network
works. For this purpose, it is not necessary to implement and
simulate the circuit on the transistor level. That is the rea-
son why the blocks are defined by mathematical expressions.

The whole concept is designed for analogue near-sensor ap-
plications. It means that it is not essential to compare the
accuracy results with non-analogue neural networks. At the
same time, it is not necessary to use complicated datasets
such as MNIST for this verification. Spice OPUS is used
as an engine to analyze the behaviour and parameters of the
resulting AANN structure.

4.1 Learning Process
The first simulation demonstrates the learning process

of a designed neural network by transient analysis. The simu-
latedAANN ismade up of three parts; one input, two neurons
in a hidden layer and one output. The dataset contains two
rows. For illustration, after each epoch, the Vteach is toggled.
The result of this simulation is shown in Fig. 8. It shows how
the voltage Vout converges to the voltage Vtarget as the weights
are updated. The speed of the training process is described
in Sec. 4.4.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t [ps]

V
[V

]

Vtarget Vout Vteach

Fig. 8. Transient simulation of training process with dataset with
two rows.
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4.2 XOR Simulation
One part of verification is tested on AANN the XOR

problem training, which is often used with analogue back-
propagation [7], [15]. The simulations show how the training
process of the designed neural network works. It is illustrated
with the learning curves. As an example, an AANNwith two
inputs, eight neurons in a hidden layer and one output was
simulated. The results of the analysis follow.

Each simulation was run ten times with different ini-
tial weights. At the end of each training epoch, the MSE
was calculated. The results are shown in Figs. 9, 10 and 11,
where each figure corresponds to a different choice of the
learning rate η and each line of a different colour represents
a different set of the initial network weights. It is possible to
vary the learning rate by changing the value of Vteach, time
given for training on one row of a dataset or other deep circuit
parameters.

The simulations show that the proposed concept of
AANN converges. The speed and stability depends on set
of hyperparameters. Furthermore, classical neural networks
behave in a similar way [7], [15].
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Fig. 9. AANN learning curve with small analogue learning
rate (0.01 ps).
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Fig. 10. AANN learning curve with optimal analogue learning
rate (0.1 ps).
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Fig. 11. AANN learning curve with big analogue learning
rate (1 ps).

4.3 Dependence on Parasitic Properties
The whole article relies on the fact that the neural net-

work can learn with its parasitic properties. However, this
can work only to a certain extent. This simulation presents
the toleration of this concept to some parasitic properties.

The block that most affects the scheme is the multiplier
(Fig. 12). Inaccuracies are introduced into it according to

Iout = KI · tanh(Km · Vin1 · (Vin2 + Voff)) (17)

where KI is a constant determining the maximum current.

The result of this simulation is shown in Fig. 13. The
comparison with Fig. 10 shows that the parasitic properties
affect the proposed concept. However, it does not fundamen-
tally affect its functionality.

Similar simulations such as noise resistance, the influ-
ence of non-linearity of CMOS capacitance, etc. can be
demonstrated only partly with block design level, there are
dependent on used implementation.

4.4 Speed Comparison
One of the main reasons to use a fully AANN instead of

a classical one is the speed of training. This simulation shows
a comparison between the proposed AANN and a neural
network implemented with TensorFlow, an end-to-end open
source platform formachine learning [12]. The computations
are run on Central Processing Unit (CPU), Graphics Process-
ing Unit (GPU) and Tensor Processing Unit (TPU) hardware
obtainable in Google Colab. [20] The NNs are trained and
compared on the same datasets. The configurations are the
most similar to the working flow of AANN described in this
article. Unfortunately, the results of the other analogue im-
plementations are not available for comparison [7], [17].
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Fig. 12. The change of multiplier block for parasitic properties
simulation.
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Fig. 13. AANN learning curve with changed multiplier block
and learning rate (0.1 ps).
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Test 1 Test 2 Test 3 Test 4
CPU 2.017 ± 0.020 s 6.373 ± 0.097 s 54.678 ± 1.215 s 274.644 ± 2.281 s
GPU 4.872 ± 0.264 s 13.599 ± 0.314 s 120.152 ± 1.034 s 624.357 ± 6.211 s
TPU 2.017 ± 0.035 s 6.284 ± 0.190 s 53.910 ± 0.958 s 272.727 ± 2.159 s
AANN 2 ns 10 ns 100 ns 500 ns

Tab. 1. Comparison of time spent on training neural networks.

Test 1 Test 2 Test 3 Test 4
Size of dataset 2 10 100 500
Number of hidden layers 1 2 3 4
Number of neurons 3 5 16 21
Number of epochs 1000 1000 1000 1000

Tab. 2. Size of the dataset and structure of neural networks for
speed comparison.

Four different neural network structures were created,
as is shown in Tab. 2. All these structures were created both
in an analogueway and in a classical way. The result is shown
in Tab. 1. The designed circuit still contains blocks defined
on the formula level. This means that the result in real im-
plementation is expected to be slower. Charging capacitors
is the most time-consuming in this case. Values of capaci-
tors and charging capacitors are depended on final hardware
implementation. For example, in simulations, all capacitors
have the value 0.1 pF and their maximal charged current is
100µA per capacitor. These values will be changed accord-
ing to specific implementation so that the parasitic proper-
ties do not affect the charging process. The block that is
most prone to parasitic properties and therefore, the speed in
this concept is the four-quadrant multiplier, which can tend
to 40GHz [21].

In AANN, the training time depends only on the size
of the dataset and training time of one row of the dataset.
For the classical neural network, the training time depends
mainly on the structure of the network and not only on the
size of the dataset.

The results show that potential real-time speed is around
several orders of magnitude faster as compared to the known
implementation.

5. Conclusion
This article introduces the concept of a novel fully ana-

logue artificial neural network. It presents a block scheme for
the fully-analogue backpropagation algorithm with stochas-
tic gradient descent, which can be used for the supervised
training of feedforward neural networks. This AANN was
designed for the near-sensor application. It requires to be
much faster and rather smaller than the classical neural net-
works and process analogue signals as inputs directly from
sensors. This design is built on an idealized structure sub-
jected to simulations. Simulations have shown that this block
structure works and is around several orders of magnitude
faster than the classical neural networks. It means that a real
structure is expected to be significantly faster too.

Future work will be focused on the preparation of the
transistor-level design. Furthermore, it will be possible to ex-
tend this design of AANN to the other structures, such as Au-
toencoder, Recurrent Neural Network (RNN), Convolutional
Neural Network (CNN), Deep Neural Network (DNN), Long
Short-Term Memory (LSTM) etc. From these structures, the
CNNs seem to be themost useful option because they are used
in applications at the limits of today’s computer power.
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