
364 J. KUBAK, J. STASTNY, P. SOVKA, AN EMBEDDED IMPLEMENTATION OF DISCRETE ZOLOTAREV TRANSFORM . . .

An Embedded Implementation of Discrete Zolotarev
Transform Using Hardware-Software Codesign

Jan KUBAK, Jakub STASTNY, Pavel SOVKA

Dept. of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague

jankubak@gmail.com, stastnj1@seznam.cz, sovka@fel.cvut.cz

Submitted October 14, 2020 / Accepted March 19, 2021

Abstract. The Discrete Zolotarev Transform (DZT) brings
an improvement in the field of spectral analysis of non-
stationary signals. However, the transformation algorithm
called Approximated Discrete Zolotarev Transform (ADZT)
suffers from high computational complexity. The Short Time
ADZT (STADZT) requires high segment length, 512 samples,
and more, while high segment overlap to prevent information
loss, 75% at least. The STADZT requirements along with the
ADZT algorithm computational complexity result in a rather
high computational load.

The algorithm computational complexity, behavior, and
quantization error impacts are analyzed. We present a so-
lution which deals with high computational load employing
co-design methods targeting Field Programmable Gate Ar-
ray (FPGA). The system is able to compute one-shot DZT
spectrum 2 048 samples long in ≈ 22ms. Real-time STADZT
spectrum of a mono audio signal of 16 kHz sampling fre-
quency can be computed with overlap of 91%.

Keywords
Discrete Zolotarev Transform (DZT), Approximated
Discrete Zolotarev Transform (ADZT), embedded
hardware, hardware-software co-design, Field Pro-
grammable Gate Array (FPGA), VHDL

1. Introduction
The Discrete Zolotarev Transform (DZT) [1], [2] shows

promising results in field of non-stationary signal analysis.
The transform employs Zolotarev polynomials [3] in its ba-
sis. To evaluation the DZT spectrum Approximated DZT
(ADZT) along with Short Time ADZT (STADZT) were de-
veloped [1, 2, 4, 5]. The STADZT provides interesting re-
sults analyzing different kinds of non-stationary signals, for
more details see [2, 5–7]; it has been shown recently that the
STADZT performs well detecting faults in rotating machin-
ery, bearings, in comparison with other methods [8]. We
wanted to be able to demonstrate STADZT capabilities in
real-time and have a powerful tool for application experi-
ments. However, the ADZT algorithm leads to relatively

high computational load compared to other spectral analysis
methods, e.g. FFT algorithm.

The STADZT improvement becomes apparent for high
segment lengths; 512 samples and higher. In general, longer
the segment the better [6]. It is recommended to use seg-
ment overlap at least 75% segment length, 90% ideally, to
prevent information loss [6]. Large segment length, large
segment overlap, and structure of the ADZT algorithm leads
to significantly high computation load. Therefore, software
implementation runtime of the algorithm is relatively long.
We decided to design an embedded solution, which both
satisfies our needs and enables application in an embedded
system. We kept in mind main goals of embedded system:
low area requirement and low power consumption, and ap-
proached to the system design with co-design methods. The
algorithm is implemented on hardware (HW) device with
encapsulated processor; main computational stress is loaded
on HW units allowing processor to be simple, small and low
power. We chose Field Programmable Gate Array (FPGA) as
HW platform: the FPGA is widespread nowadays and can be
easily integrated into a large System on Chip (SoC). Further-
more, the FPGA power consumption is low especially with
non-volatile devices.

This paper presents the first embedded implementation
of theADZT transform. The system requirements are to com-
pute real-time STADZT spectrum of following parameters:

• the input signal is mono audio signal with sampling rate
of fs = 16 kHz,

• maximal segment length is NDFT = 2 048 samples,

• segment overlap of 80% at least, 90%, if possible.

This paper is organized as follows. Section 2.1 intro-
duces the ADZT algorithm in brief description. Section 2.2
shows the algorithm time complexity analysis followed by
the algorithm computational model in Sec. 2.3. Section 2.4
describes the system level design and Section 2.5 the design
verification. Section 3 presents the parameters of imple-
mented system and Section 4 concludes the article.

DOI: 10.13164/re.2021.0364 CIRCUITS



RADIOENGINEERING, VOL. 30, NO. 2, JUNE 2021 365

2. Methods
2.1 The ADZT Algorithm

The ADZT algorithm [2], [5] can be divided into three
steps, see Fig. 1, of which descriptions follows.

Step 1 The first step is DFT spectrum computation
using FFT algorithm of length NDFT. Since the algorithm
works only with real signal, it is sufficient to work with one-
sided spectrum of length N = NDFT

2 .

Step 2 In the second step the ADZT basis selectiv-
ity refinement takes place. The algorithm works in spectral
domain for each `th spectral line, ` = {1, . . . ,N}. The DZT
spectrum Z(`) can be decomposed [1] in stationary part and
non-stationary (N-S) part. The stationary part S(`) is `th
DFT spectral line. The N-S part

N(`,m) =
m∑̀
′=1
(−1)`

′

S(` − `′) (1)

is parametrized by bandwidth1 m of approximated polyno-
mial. The transformation selective feature is comprised in
the N-S part. The transformation selectivity refinement is
administered by varying the non-stationary part using the
bandwidth. Optimal bandwidth is estimated according to

mopt(`) = arg min
m′

{
1

m′
N(`,m′) sgn(S(`))

}
,

m′ = {1,2, . . . ,N − 1} (2)

where m′ is tested bandwidth. The optimal N-S part Nopt(`)
is acquired from (1) using estimated optimal bandwidth (2).

Step 3 The DZT spectrum is composed from the
stationary and the N-S part for each `th spectral line,
` = {1, . . . ,N}. At first the signs of each part are com-
pared with each other. Based on the result of the comparison
one of the following three cases is taken: the first case is to
suppress spectral line Z(`) = 0; the second one is to preserve
DFT spectral line Z(`) = S(`); the third one is to determine
a new spectral line value according to

Z(`) = norm(`)
{
S(`) + k(mopt(`))N(`)

}
(3)

where
norm(`) =

1√
1 + mopt(`)k2(mopt(`))

(4)

is the normalization coefficient

k(m) =

√
1 − σ2

mσ2 (5)

is the non-stationarity index (N-S index) and σ is the degree
of the N-S part suppression. The parameter σ has a value in
interval σ ⊂ (0,1); it is chosen according to user needs.

The algorithm works separately for real and imaginary
spectrum part; after each part is processed the complex DZT
spectrum is recomposed.

XN SN ZN

SN

{Nopt}N
Nopt(`) - eq. (1)
mopt(`) - eq. (2) Z(`) - eq. (3)

DZT spectrumnon-stational part
optimizationDFT

FFT

computation

Step 1 Step 2 Step 3

Fig. 1. The ADZT algorithm diagram; blocks with double line
border are implemented in HW and with single line in
SW.

2.2 Asymptotic Complexity of the ADZT
At first we did an estimation of the computational power

necessary to execute ADZT transformation with parameters
given by the system requirements. The analysis of the ADZT
algorithm asymptotic complexity for each step follows.

Step 1 Computation of the NDFT-point DFT spec-
trum S(`). The DFT spectrum is computed using the
FFT algorithm. NDFT is constrained to be the power
of 2. Thus the asymptotic complexity of this step is
O1 = O(NDFT log2 NDFT).

Step 2 Estimation of the optimal bandwidth mopt(`)
by minimization (2) of the N-S part (1) for one-sided DFT
spectrum of length N . The asymptotic complexity of this
step is O2 = O(N2).

Step 3 The DZT spectrum composition according
to (3); this step has constant time complexity of O3 = N .

Hence the asymptotic complexity of the ADZT algo-
rithm is OADZT = O(N2). Step 2 is the most time consuming
one. Compare this with FFT algorithm asymptotic complex-
ity of OFFT = O(N log2 N).

Based on the structure of the algorithm we also did
a more precise estimation of necessary system-level com-
putation power in MIPS (million instructions per second).
The estimation takes into account the system requirements
specifications in Sec. 1. We assume a standard Harvard DSP
CPU architecture with three buses (instruction, data bus X,
and data bus Y), divider with DIV operation, and Multiply
And Accumulate (MAC) unit; such that MAC operation unit
is able to load two operands simultaneously. Computational
powers needed for the algorithm steps are stated in Tab. 1.

Based on the above we can say that real-time STADZT
of NDFT = 2 048 samples with 80% overlap needs a CPU
with performance at least ≈ 210 MIPS, and perfomance of
≈ 420MIPS for 90% overlap.

Approximate processor requirements are as follows.
A 32 bit fixed-point DSP processor withMAC requires clock-
ing frequency of 300MHz or 600MHz, for 80% or 90%
overlap, respectively. A general purpose processor with-
out a MAC unit requires clocking frequency of 400MHz or
800MHz, for 80% or 90% overlap, respectively; the lack of
a MAC unit raises power requirements by ≈ 30%.

1The term bandwidth is different from frequency bandwidth.



366 J. KUBAK, J. STASTNY, P. SOVKA, AN EMBEDDED IMPLEMENTATION OF DISCRETE ZOLOTAREV TRANSFORM . . .

Algorithm step Operation Inst. per iteration Time complexity Comp. power [MIPS]
Overlap (OV): 80 % OV: 90 %

1(FFT) complex MULT 4 2 NDFT/2 × log2(NDFT) ≈ 2 ≈ 4
complex ADD 2 NDFT × log2(NDFT) ≈ 2 ≈ 4

2 (N-S opt) (1), (2) 5 3 N2 ≈ 206 ≈ 413
3 (DZT spec.) (5), (4), (3) 19 + 18 + 3 4 N ≈ 2 ≈ 3

Total: ≈ 210 ≈ 420
2 four MAC operations
3 (1): one MAC operation, (2): one DIV and two MULT operations, arg min search in one operation
4 (5): three multiplications, one subtraction, one division, and fifteen operations for 32 bit square root using Newton’s method; (4): three multiplications,
one subtraction, one division, and fifteen operations for 32 bit square root using Newton’s method; (3): one addition and two multiplication operations

Tab. 1. The estimation of computational power in MIPS needed for the STADZT real-time computation with segment length of NDFT = 2 048
samples and sampling frequency of fs = 16 kHz for segment overlaps of 80% and 90%.

2.3 Computational Model

To be able to analyze behaviour of the algorithm and
to verify HW implementation effectively and reliably we de-
veloped models on several levels of abstraction; each model
more detailed, closer to physical implementation than pre-
vious one. The most abstract is the first, behavioral, model
of the algorithm written in Matlab, which was already avail-
able at [9]. The behavioral model in Matlab uses 64 bit
wide floating-point arithmetics, which HW implementation
is rather inefficient in terms of resources and power consump-
tion. For an efficient HW implementation the fixed-point
representation is more suitable. We implemented the algo-
rithm functional model using Nb = 32 bit wide fixed-point
variables and arithmetics written in C language; the model
proper functionality was verified against the original behav-
ioral model. The functional model also allows us to simulate
behaviour of the algorithm in fixed-point arithmetics with
relatively large set of input stimuli. Such simulation would
not be possible in the latter design phase, Register Transfer
Level (RTL): it would be too time consuming to run it. The
functional algorithm model is able to process signal segment
of maximal length NDFT = 2 048 samples. The descriptions
of computation methods used in the functional algorithm
model in each algorithm step in Fig. 1 follow.

Step 1 We used Fast Fourier Transform (FFT) dec-
imated in frequency (DIF) as DFT computation algorithm.
The FFT uses radix-2 with 32 bit fixed-point arithmetics. As
precaution measure to prevent overflows each stage output is
divided by 2, see [10]. The FFT has Nstages = log2(NDFT) =
11 stages in case of maximal signal segment length; the out-
put is 11 times shifted right. The overflow does not necessar-
ily occur in every stage. We carried out a simulation5 showing
that the average count of overflows NOF is 4 and 7 in the worst
case. Thus the 32 bit FFT result has 25 Less Significant Bits
(LSB) non-zero (Nb − Nstages + NOF = 32 − 11 + 4 = 25
bits) in average and 28 LSB non-zero in the worst case
(Nb − Nstages + NOF = 32 − 11 + 7 = 28 bits).

Step 2–1 The N-S part is computed according to (1).
Equation (1) can be rewritten into recurrent form

N(`,m) = N(`,m − 1) + (−1)m S(` − m) (6)

which is more suitable for computation. An overflow can
occur log2(m) times in the worst case where m = N − 1. The
DFT coefficients have 6 Most Significant Bits (MSB) in zero
on average case. The saturation must be applied after each
addition. Non saturated overflown result could lead to false
minimal N-S part detection in the next step; this would result
in a distorted DZT spectral line value. If a result is saturated,
it will be the largest one in tested set of bandwidths. The
result will not be, most likely, selected as minimal and its
value will be discarded. In a nutshell, saturated N-S part
does virtually no harm. Moreover, no overflow had occurred
in N-S part computation during conducted simulation using
32 bit wide variables and segment length of NDFT = 2 048.

Step 2–2 Estimation of optimal bandwidth according
to (2); theN-S part, computed in previous step, is weighted by
weighting coefficient 1

m′ and sgn(S(`)) for each m′. The min-
imal value is being selected simultaneously. The weighting
coefficient 1

m′ in (2) for each m′ is precomputed in memory
in order to multiply by 1

m′ rather than divide by m′. The
weights 1

m′ are ≤ 1 for each m′; after division by 2 overflow
is not an issue here.

Step 3 The DZT spectrum composition according to
(3) can be rewritten using (4) and (5) to

Z(`) = σS(`) + K(mopt(`)) N(`) (7)

where K(m) = σ k(m). There are two reasons why the
rewritten form is more suitable for fixed-point arithmetic
computation. Firstly, by pre-computing coefficient K(m) for
each bandwidth the N-S is actually multiplied only ones;
thus, reducing round-off error. Secondly, the range of K(`)
is (1,0), which allows us to avoid normalization; thus there
is no signal to quantization noise ratio drop.

5The stimuli of the simulation were composed of few musical tracks of different genre, several minutes of spoken language, and several segments of
Gaussian noise.



RADIOENGINEERING, VOL. 30, NO. 2, JUNE 2021 367

2.4 System Design
Today’s embedded systems are composed of both SW

(software) and HW (hardware) components, each one has its
pros and cons:

• Fully SW product solution, for instance [11], [12], is
easy to develop as well as debug. Risk of a costly bug
in the final products is low. Later modifications can be
applied easily; software is very flexible. On the other
hand, the software runtime is often unnecessarily long
and requires considerable resources. Also the power
consumption is often high.

• Fully HW solution is dedicated to perform specific task
effectively with respect to time, area resources, and
power consumption (e.g., [13–15]). However, to im-
plement and verify such a solution is time consuming.
There is a considerable risk of a bug in the final prod-
uct, and even a minor modification can result in a time
consuming architecture change. Hardware solution is
rather optimized but not very flexible.

SW parts of the system are suited to implement
decision-like taskswhere data throughput is not an issue often
in higher levels of system hierarchy (e.g., control communi-
cation protocol, control blocks governing data path blocks).
On the other hand HW system parts are best in tasks where
many operations with many data are required as fast as pos-
sible; data throughput is a key issue (e.g., data path blocks,
MAC blocks). We used co-design methods [16], [17] to
achieve trade-off between advantages and disadvantages of
both SW and HW solutions. Our design goals were speed,
simplicity, and possibility of future minor changes.

The first step in the system level design was to draw
the boundary between HW and SW part of the system. We
started the system design as fully SW based on the functional
algorithm model using general-purpose processor; we ex-
ploited SW versatility and were able to debug system quickly
and effectively. Then we confirmed the computation bot-
tlenecks, which were revealed by the algorithm asymptotic
complexity analysis in Sec. 2.2. The first algorithm step,
the FFT algorithm, we implemented as HW solution. The
FFT algorithm is a well covered topic, see [12, 14, 18]. The
second algorithm step is the most time complex one. The
step is comprised of addition, multiplication, and minimum
search in (2). Thus the step can be easily implemented by
HW: addition andmultiplication are common operations, and
minimum search requires only one decision. The third algo-
rithm step has linear time complexity; this is not an issue from
the computational complexity standpoint. Furthermore, the
step comprises of several decisions. Hence the third step
is implemented by SW. Figure 1 depicts the algorithm steps
implemented by HWwith double line border and by SWwith
single line border.

The architecture of the system is outlined in Fig. 2.
It is composed of Plasma processor [19], external address
decoder, FFT coprocessor, Non-Stationary (N-S) part copro-
cessor, and interface. The interface unit stands for bridge
between the bus and external world. The address decoder se-
lects an external unit and connects its buses to the processor
as well as handles simple DirectMemory Access (DMA).We
favored 32 bit RISC processor Plasma [19] with MIPS ITM

instruction set [20]. The processor has free licence terms,
free C language compiler, and it is written in VHDL. The
Plasma processor has 8 kB internal memory for program and
data. The SW program, which implements the algorithm
Step 3 and schedules the execution of both coprocessors, size
is ≈ 2.8 kB. The data memory is mainly occupied with pre-
computed values of K(m) for each m in (7): utilizing 4 kB.
Thus the processor internal memory size is sufficient for our
needs.

The system is separated into two clock domains. The
N-S part coprocessor, part of the FFT coprocessor, and the
interface are clocked at 100MHz. The Plasma processor and
the radix-2 butterflies within the FFT coprocessor are clocked
at 50MHz. The address decoder serves as a bridge between
the two clock domains. The main reason to introduce two
clock domains is to speed up the N-S part coprocessor; thus
to reduce the Step 2 runtime. The coprocessor accesses the
FFT coprocessor memory via DMA during the execution.
This requires the address decoder and the FFT coprocessor
to be in the same clock domain as the N-S part coprocessor is.
However, the butterflies would require additional pipelining
to reach the higher clocking frequency. This is not necessary
since the FFT computation speed up would not yield a signif-
icant runtime reduction of the whole system. The solution is
to keep the butterflies in the slower clock region. The resyn-
chronization between the domains is relatively simple. The
faster clock domain has exactly twice the slower clock domain
frequency. The two clock signals have aligned rising edges.
Sufficient adaptation is to lengthen control signals leading
from the faster to the slower domain to two clock cycles.

All of the system units has been written in VHDL
language.

PLASMA

CPU
DMA

DECODER

ADDR

IN
T

E
R

F
A

C
E

FFTN−S PART

COPROC. COPROC.

RADIX−2

W

clock 50 MHzclock 100 MHz

Fig. 2. System top level architecture. Dashed lines depicts dis-
tinct clock domains.



368 J. KUBAK, J. STASTNY, P. SOVKA, AN EMBEDDED IMPLEMENTATION OF DISCRETE ZOLOTAREV TRANSFORM . . .

2.4.1 FFT Coprocessor

The hardware design methods to implement an FFT co-
processor have been described previously, see [12, 14, 18].
The FFT coprocessor is composed of a pair of radix-2 but-
terflies, a pair of double port RAM for each butterfly, and
dedicated address generator. Twiddle factors are stored in
a pair of 2 048 × 32 bit ROM; its size is 16 kB. Each butter-
fly uses 32 × 32 bit wide complex multiplier with two stage
pipelining. The unit holds complex input samples and output
DFT complex spectrum in the memory pair. Real Imaginary
Alternate (RIA) format [21] is used. The memory pair has
total depth of 2 × 2 048 = 4 096 depth (2 represents real and
imag. part, NDFT = 2 048); the memory size is 16 kB. The
memory is accessible through the system bus, and it is used
as data memory for the whole system. The unit total mem-
ory requirement is 32 kB. The unit computes one-shot DFT
spectrum of length NDFT = 2 048 in ≈ 5 700 clock cycles
of the slower clock domain. The FFT coprocessor has been
designed as part of master’s thesis [22].

2.4.2 Non-stationary Part Coprocessor

The N-S part coprocessor top level schema is in Fig. 3.
The unit realizes computation of the N-S part according to (6)
and searches for an optimum according to (2) for the current
`th spectral line. The actual computation is implemented
in the N-S core block. The address generator generates ad-
dresses of DFT coefficients stored in the FFT coprocessor as

S_addr`(m′) = (` − m′) × 2 + is_imag,

m′ = {0,1, . . . ,N − 1} . (8)

Since the algorithm works separately for real and imaginary
part, the address is multiplied by 2 in order to select real or
imaginary part only (according to used RIA format). The real
or imaginary part is computed, while the variable is_imag is
set to 0 or 1, respectively. The address is routed through the
system bus to the FFT coprocessor, which output supplies
the N-S core unit with stationary part values. The unit is
mounted to the system bus as its master via DMA during the
unit execution. Input current spectral `th line and variable
is_imag are stored in the register bank. The register bank
also holds results supplied by the N-S core block, optimal
bandwidth, and N-S part. Controller block controls access
to the register bank and the system bus as well as schedules
execution of the other blocks.

Principal schema of the N-S core block architecture is
in Fig. 4. The MEM blocks stand for a simple synchronous
memory composed of a multiplexor and a synchronous reg-
ister. SIGNMUX 1, adder, and ALT SUMMEM implement
(6); both SIGNMUX and ALT SUMMEM form aMAC unit
with multiplication coefficient of (−1)m′ . The weighs 1

m′ in
(2) are stored in ROM (32 bit wide, N depth: the 4 kB size)
and aremultipliedwithN-S part by 32×32 bit multiplier. The
result of the multiplication is rounded to 32 bit wide signal.

SIGNMUX2 stands for sgn(S(`)) in (2). If a provisionalmin-
imal value is found, MIN value is updated; the current m′(`)
and N(`,m′) are stored in the register bank. Since the unit
core works in five pipeline stages, it has its own Finite State
Machine (FSM) controller. The unit runtime for N = 1 024
for arbitrary `th spectral line is ≈ 1 038 clock cycles.

CORE

N−S

CTRL

N−S

data_DFT

REG BANK

ADDR_DFT

S
Y

S
T

E
M

 B
U

S
E

S

ADDR

GEN

m

estimated N

`

estimated m

Fig. 3. Non-stationary part coprocessor top level architecture;
dashed lines denote control signals, wide lines denote
buses. All buses are 32 bit wide. Clock and global
asynchronous reset signals are omitted in the schema.

>

SIGN

MUX 2

update
MIN

M_FRAC

WR

R
E

G
 B

U
S

ADDR

MIN

data_DFT

m’

m’(LSB)

STAGE 1

STAGE 4

ROM

M_FRAC

STAGE 2

STAGE 5

MEM

STAGE 3

MUX 1

SIGN

MIN MEM

SATURATION

ALT SUM

1
m′

Nopt(`)

mopt(`)

1
m′ N(m′, `)

Fig. 4. Non-stationary coprocessor CORE architecture. MEM
clock and global asynchronous reset signals are omitted
in the schema. The gray dashed lines denote pipeline
stages and the gray dots pipeline registers.



RADIOENGINEERING, VOL. 30, NO. 2, JUNE 2021 369

Algorithm step System unit Runtime [clock cycles]

1 FFT coproc. ≈ 5.7 k
2 N-S coproc. ≈ 539 k
3 Plasma proc. ≈ 318 k

2 & 3 simultaneously N-S + Plasma + DMA ≈ 570 k

Tab. 2. Algorithm cumulative runtime (the algorithm steps 2 and 3 are executed N times for arbitrary `) for segment length NDFT = 2 048; clock
cycles values are given with respect to the 50MHz clock domain.

2.4.3 HW&SW Scheduling
This feature can accelerate the algorithm runtime. The

runtime for each of algorithm step pertaining to particular
system unit is stated in Tab. 2. Runtime of the FFT copro-
cessor (Step 1) is negligible compared with the other ones.
Runtime of the N-S coprocessor and the algorithm SW part
in processor (Steps 2 and 3) are comparable. Moreover,
both algorithm steps are executed N-times for an arbitrary
`. Therefore, it is suitable to exploit HW&SW parallelism
in Steps 2 and 3. Scheduling scheme is to execute the N-S
coprocessor to pre-compute (l + 1)th spectral line during the
SW part computes lth one. Using this scheduling the total
runtime depends virtually on HW N-S coprocessor runtime.

2.5 Verification of The Design
To be certain of proper functionality of the design has

been achieved the verification of the design ismandatory. The
verification plan goal on the system level is to validate the
system output DZT spectral lines series against the compu-
tational model output. The verification uses coverage-driven
constrained random-based approach [23]. The functional
coverage requirement of the plan is to coverage all three
cases in Step 3 of the ADZT algorithm, see Sec. 2.1.

Since the DZT is indented for spectral analysis of non-
stationary signals, the test data must have non-stationary
character. The test data were 40 segments of length NDFT
samples consisting of music of different genders (pop music,
metal, classical music), vocal recordings, and few segments
of Gaussian noise. The test data were selected as a sub-
set of the computational model simulation test data set in
Sec. 2.3. The system level verification environment is de-
picted in Fig. 5. Under Test (DUT) is encapsulated in the
verification environment written in behavioral VHDL code.
The environment generates system clock, initializes global
reset, and stimulates the DUT with test data. The test data
are loaded in Matlab and introduced to the DUT by file I/O
interface. The computational model serves as behavioral
model, and it is executed in Matlab. The DUT output is
compared in Matlab. The system was validated on both RTL
and gate levels. The unit level verification was performed
for each coprocessor using similar scheme as system level
verification. Each coprocessor was verified using its own
verification environment and behavioral model on both RTL
and gate levels. Real system HW realization was validated
on development board [24] using parallel interface [25] as
system interface.

COPROC.

N−S

DMA

ADDR

DECODER

VERIFICATION RESULTS

COPROC.

FFT

CPU

PLASMA

MODEL

BEHAVIORAL

DATA

TEST

DESIGN UNDER TEST (DUT)

FILE I/O

INERFACE

MATLAB

SIMULATION

FILE

Fig. 5. The system level verification schema of the system.

3. Results

3.1 Physical and Functional Parameters
The system error performance has been measured on

the computational model against the original floating-point
algorithm version. Themeasurement was performed as a part
of the simulation in Sec. 2.3 with the same test data set. The
performance is quantified using Signal to Noise Ratio (SNR)

SNRdB(n) = 10 log10

(
X(n)2

{X(n) − XDUT(n)}2

)
(9)

and mean SNR

SNRmean = 10 log10

(
1
N

N∑
n=1

X(n)2

{X(n) − XDUT(n)}2

)
(10)

where X(n) is the floating-point model output value, and
XDUT(n) is tested system output value computed using 32 bit
fix point arithmetics. The fixed-point version of the algorithm
adds quantization noise equivalent to SNRmean = 160 dB
and min(SNR) = 58 dB. None of computed bandwidths was
selected incorrectly, which means that the fixed-point algo-
rithm always selected correct bandwidth and non-stationary
part according to (2).



370 J. KUBAK, J. STASTNY, P. SOVKA, AN EMBEDDED IMPLEMENTATION OF DISCRETE ZOLOTAREV TRANSFORM . . .

The system runtime for one-shot spectrum computa-
tion has been already measured in Sec. 2.4.3 to support
HW&SW scheduling. The total runtime for segment length
of NDFT = 2 048 is 570 k clock cycles of the 50MHz clock
domain, see Tab. 2; thus, approximately 11.4ms, see Sec. 3.2.
The system is capable of computing the STADZT results in
real-time with ≈ 91% overlap considering given segment
length and signal sampling frequency, see Sec. 1. Note that
fully SW solutions running on the Plasma processor has run-
time of ≈ 400ms, 206 clock cycles. The required computa-
tional power for fully SW solution for given STADZT param-
eters estimation is 470MIPS. Employed Plasma processor
computational power is 50MIPS of general purpose instruc-
tion set: maximum clocking frequency is 50MHz [19]. The
difference in computational power of ≈ 420MIPS is over-
come by HW parallelism.

3.2 Implementation Results
We chose Xilinx Spartan 6 FPGA [26], since we had

several development boards [24] with it at our disposal.
The design implemented for maximum segment length of
NDFT = 2 048 on targeted device XC6SLX45-3 utilizes 1 164
(≈2%) of the device slice registers and 5 492 (20%) of the
device LUTs.

The FFT coprocessor memory utilizes 8 blocks of
1 024 × 32 bit dual-port block RAMs: twiddle factors ROM
is implemented as a block RAM. The Plasma registers and
RAM are utilized as distributed memory, and both are com-
prised in the device LUTs utilization. The N-S coproces-
sor memory is implemented as one 1 024 × 32 bit block
RAM. Hence the design utilizes 22 (≈18%) of the device
RAMB16BWER block RAMs. The design total memory
utilization is 44 kB, of which 4 kB pertain to the N-S part
coprocessor.

DSP48A1 blocks are used as 32 × 32 bit multipliers
in both coprocessors. 32 × 32 bit multiplier is assembled
from four DSP48A1 blocks: each block has one 18 × 18 bit
multiplier [27]. The FFT coprocessor employs 24 DSP48A1
blocks: two radix-2 butterflies, where each one has one com-
plex multiplier composed of three real multipliers [27]. The
N-S coprocessor has only one real multiplier. Hence the total
number of used DSP48A1s blocks rises up to 28 (48% the
device utilization).

The design maximal clocking frequency is constrained
by its critical path. In our case the critical path occurs in the
Plasma processor taking 19.059 ns; this allows us to set clock-
ing frequency up to fCLK = 50MHz. The critical path leads
from processor controller through bus multiplexor to RAM.

4. Conclusion
In this article we present the first embedded implemen-

tation of novel selective transform. The ADZT algorithm
asymptotic time complexity of O(N2), which is relatively
high compared with the FFT algorithm, was revealed by its

analysis. We dealt with such high time complexity using
the co-design methods. The analysis of the transformation
algorithm supports the partitioning of SW and HW solu-
tions. Dedicated HW parts bear main computational stress,
while the SW part carries the less demanding calculations
and algorithm decisions. The solution is powerful enough
to compute STADZT spectrum of mono audio signal in real-
time assuming sampling frequency of 16 kHz, segment length
of 2 048 samples and overlap of 91%. Computed real-time
STADZT spectrum does not suffer from excessive informa-
tion loss. Light and low-power processor with 50MIPS
of computational power is employed as a heart of the sys-
tem; the whole solution computational power is equivalent
to 240MIPS processor with Harvard DSP CPU architecture
andMAC unit. The systemmemory utilization is 44 kB from
which the N-S part coprocessor utilizes 4 kB. The platform
can be further adapted to support a simple application exploit-
ing ADZT spectrum; the application can be implemented by
SW on the processor with relatively low additional design
efforts. The design targets FPGA device; therefore, it can be
relatively easily integrated into a larger system on chip.

Acknowledgments
This work is supported by the grant GACR

102-11-1795: Novel selective transforms for non-stationary
signal processing and also by the Student Grant Con-
test (SGS) grant Advanced Algorithms of Digital Sig-
nal Processing and their Applications, grant number
SGS14/191/OHK3/3T/13.

References

[1] JANIK, J., TURON, V., SOVKA, P., et al. A way to a new multi-
spectral transform. In Recent Advances in Signal Processing, Com-
putational Geometry and Systems Theory (ISCGAV’11, ISTASC’11).
Florence (Italy), 2011, p. 177–182. ISBN: 9781618040268

[2] TURON, V., JANIK, J., SPETIK, R., et al. Study of ADZT properties
for spectral analysis. In Recent Advances in Signal Processing, Com-
putational Geometry and Systems Theory (ISCGAV’11, ISTASC’11).
Florence (Italy), 2011, p. 171–176. ISBN: 9781618040268

[3] VLCEK, M., UNBEHAUEN, R. Zolotarev polynomials and optimal
FIR filters. IEEE Transactions on Signal Processing, 1999, vol. 47,
no. 3, p. 717–730. DOI: 10.1109/78.747778

[4] MASA, P., SOVKA, P., VLCEK, M., et al. Using ADZT for a signal
reconstruction. In Proceedings of the European Conference on Cir-
cuit Theory and Design (ECCTD). Dresden (Germany), 2013, p. 1–4.
DOI: 10.1109/ECCTD.2013.6662335

[5] TURON, V. Description of Spectral Analysis Based on Zolotarev
Polynomials (in Czech). Ph.D. dissertation, Czech Technical Univer-
sity in Prague, Faculty of Electrical Engineering, 2016.

[6] TURON, V. A study of parameters setting of the STADZT. Acta
Polytechnica, 2012, vol. 52, no. 5, p. 106–111. DOI: 10.14311/1654

[7] TURON, V., JANIK, J., SPETIK, R., et al. Comparison of two spec-
tral methods for acoustic signal analysis (in Czech). Akustické listy,
2011, vol. 17, no. 4, p. 26–30. ISSN 1212-4702



RADIOENGINEERING, VOL. 30, NO. 2, JUNE 2021 371

[8] BAJPEYEE, B., SHARMA, S. Detection of bearing faults in in-
duction motors using short time approximate discrete Zolotarev
transform. In Proceedings of the International Conference on
Signal Processing (ICSP). Chengdu (China), 2016, p. 1–7.
DOI: 10.1049/cp.2016.1467

[9] Novel Selective Transforms For Non-Stationary Signal Processing.
Available at: http://amber.feld.cvut.cz/selectivetransforms

[10] KUO, S. M., LEE, B. H., TIAN, W. Real-Time Digital Signal Pro-
cessing. John Wiley & Sons, Ltd., 2001. ISBN: 9781118414323

[11] CUPAIUOLO, T., LO IACONO, D. A flexible and fast software im-
plementation of the FFT on the BPE platform. InDesign, Automation
Test in Europe Conference Exhibition (DATE). Dresden (Germany),
2012, p. 1467–1470. DOI: 10.1109/DATE.2012.6176598

[12] SHETTI, K., KOH, C., AUNG, M., et al. Development and
code partitioning in a software configurable processor. In IEEE
Region 10 Conference (TENCON). Singapore, 2009, p. 1–5.
DOI: 10.1109/TENCON.2009.5396149

[13] BAAS, B. A low-power, high-performance, 1024-point FFT pro-
cessor. IEEE Journal of Solid-State Circuits, 1999, vol. 34, no. 3,
p. 380–387. DOI: 10.1109/4.748190

[14] CHENG, C., PARHI, K. High-throughput VLSI architecture
for FFT computation. IEEE Transactions on Circuits and Sys-
tems II: Express Briefs, 2007, vol. 54, no. 10, p. 863–867.
DOI: 10.1109/TCSII.2007.901635

[15] HE, S., TORKELSON, M. Design and implementation of a 1024-
point pipeline FFT processor. In Proceedings of the IEEE Custom
Integrated Circuits Conference (CICC). Santa Clara (USA), 1998,
p. 131–134. DOI: 10.1109/CICC.1998.694922

[16] TEICH, J. Hardware/software codesign: The past, the
present, and predicting the future. Proceedings of the IEEE,
2012, vol. 100, no. Special Centennial Issue, p. 1411–1430.
DOI: 10.1109/JPROC.2011.2182009

[17] TSAI, T.-H., YANG, Y.-C., LIU, C.-N. A hardware/software co-
design of MP3 audio decoder. Journal of VLSI Signal Processing
Systems for Signal, Image and Video Technology, 2005, vol. 41, no. 1,
p. 111–127. DOI: 10.1007/s11265-005-6254-2

[18] GENTLEMAN, W. M., SANDE, G. Fast Fourier transforms: For
fun and profit. In Proceedings of the AFIPS Fall Joint Com-
puter Conference. New York (NY, USA), 1966, p. 563–578.
DOI: 10.1145/1464291.1464352

[19] RHOADS, S. Plasma - Most MIPS I(TM) Opcodes. 2016. Available
at: http://opencores.org/project,plasma,overview

[20] MIPS TECHNOLOGIES. MIPS32 Architecture For Program-
mers Volume II: The MIPS32 Instruction Set. 2001. Available
at: http://www.mips.com/

[21] CHANG, Y.-N., PARHI, K. High-performance digit-serial complex-
number multiplier-accumulator. In Proceedings of the Interna-
tional Conference on Computer Design: VLSI in Computers
and Processors (ICCD). Austin (TX, USA), 1998, p. 211–213.
DOI: 10.1109/ICCD.1998.727050

[22] PALASCAK, J. FFT Core Implementation (in Czech). Master’s the-
sis, Czech Technical University in Prague, Faculty of Electrical En-
gineering, 2010.

[23] BERGERON, J.Writing Testbenches: Functional Verification ofHDL
Models. 2nd ed. Norwell (MA, USA): Kluwer Academic Publishers,
2003. ISBN: 1402074018

[24] DIGILENT. AtlysTM Board Reference Manual. 2013. Available
at: https://www.xilinx.com/support/documentation/university/
XUP%20Boards/XUPAtlys/documentation/Atlys_rm.pdf

[25] DIGILENT. Digilent Parallel Interface Model
Reference Manual. 2004. Available at:
https://reference.digilentinc.com/_media/reference/software/adept/
adept-2/dpimref_programmers_manual.pdf

[26] XILINX. Spartan-6 Family Overview. 2011. Available at:
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf

[27] XILINX. Spartan-6 FPGA DSP48A1 Slice. 2014. Available at:
www.xilinx.com/support/documentation/user_guides/ug389.pdf

About the Authors . . .

Jan KUBÁK received the M.S. degree in Electrical Engi-
neering from the Faculty of Electrical Engineering of the
Czech Technical University (FEE CTU), Prague, in 2013.
He is currently studying doctoral degree at the Department
of Circuit Theory, FEE CTU. He is engaged in research on
selective spectral transforms. He is FPGA digital circuit de-
signer. His interests include radar signal processing research
and implementation.

Jakub ŠŤASTNÝ was born in Prague, the Czech Republic
in 1978. He received M.Sc. degree in Electrical Engineer-
ing from the Faculty of Electrical Engineering of the Czech
Technical University, Prague in 2002; and received Ph.D. de-
gree in 2006. His current research interests include digital
design architectures for signal processing.

Pavel SOVKA received the M.S. and Ph.D. degrees in Elec-
trical Engineering from the Faculty of Electrical Engineering
of the Czech Technical University (FEE CTU), Prague, in
1981 and 1986, respectively. From 1985 to 1991 he worked
in the Institute of Radioengineering and Electronics of the
Czech Academy of Sciences, Prague. In 1991 he joined
the Department of Circuit Theory, FEE CTU. He worked on
the application of adaptive systems to noise and echo can-
cellation, speech analysis, changepoint detection, and signal
separation. Presently he is engaged in research on biomedical
signal processing and selective spectral transforms.


	FFT Coprocessor
	Non-stationary Part Coprocessor
	HW&SW Scheduling

