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Abstract. Real-time monitoring solution is essential for the 
perishable food to estimate the food quality and to predict 
its shelf life. In this paper an on-chip temperature sensor 
which is applicable for UHF RFID passive tag is proposed. 
MOSFET is used as the sensitive element to the tempera-
ture. Since the transistors are biased in sub-threshold re-
gion, the power consumption is decreased. To converting 
proportional-to-absolute-temperature (PTAT) and compli-
mentary-to-absolute-temperature (CTAT) voltages to the 
digital code, the delay generator and 8-bit ripple counter 
are utilized. For designing binary counter, a low power 
and high speed D-flip flap (D-FF) based on gate diffusion 
input (GDI) technique is employed. The proposed temper-
ature sensor dissipates 110 nW power while the supply 
voltage is 0.5 V. Simulated in TSMC 0.18 µm CMOS 
technology, the total chip area is 0.0104 mm2 and the error 
is –0.3/0.7°C in the temperature range of –20°C to 10°C.  

Keywords 
UHF RFID, on-chip temperature sensor, low power 
consumption, perishable food, CTAT, PTAT  

1. Introduction 
Nowadays using of sensor in the RFID tag is devel-

oped in order to increase the level of controlling systems. 
The temperature sensor is one of the RFID sensors that 
have a variety of various applications such as the tempera-
ture control of patients [1], [2] and the perishable foods 
temperature control [3–5]. The temperature sensors are 
designed for the various temperatures based on their appli-
cations. In these sensors the sensitive element to the tem-
perature can be the resistor [2], BJT transistor [6–9], or 
MOSFET transistor [5, 10, 11]. Among such sensitive ele-
ments to the temperature, MOSFETs have the lowest 
power consumption and acceptable error. To design the 
sensor, two signals, which are proportional to absolute 
temperature and complementary to absolute temperature 
[5] or dependent and independent on the temperature [6–9], 

should be created in order to measure the temperature with 
the comparison of these two signals.  

The design of sensor with CMOS technology can be 
categorized into three groups: the temperature sensor based 
on analog to digital converter [6–8], the temperature sensor 
based on delay propagation and time to digital converter [5], 
[12] and the temperature sensor based on ring oscillator and 
frequency to digital converter [2, 11, 13]. The temperature 
sensor based on the analog to digital converter (ADC) 
dissipates about 80% of its power in ADC block, while it 
has high chip area. Therefore, despite the high accuracy, it 
has high power consumption and chip area which makes it 
unsuitable for using in RFID applications. Usually, temper-
ature sensors based on ring oscillator and delay propagation 
are utilized for the purpose of having low chip area and 
power consumption. In the temperature sensor based on the 
ring oscillator, the signal which is dependent on the tem-
perature is converted into the frequency and then with the 
help of frequency to digital converter (FDC) the digital 
data dependent on the temperature is created. In the tem-
perature sensor based on the delay propagation, the signals 
dependent on the temperature are converted to the delay 
and then it is changed into the digital data by the time to 
digital converter (TDC). In general, the sensors based on 
the delay generator and TDC have lower power consump-
tion and higher accuracy than the sensors based on the ring 
oscillator and FDC.  

In this paper, the RFID passive temperature sensor 
with very low power dissipation, chip area and error is 
proposed. The sensitive element to temperature is 
MOSFET and for converting the PTAT and CTAT voltages 
to the output digital data, the delay generator and 8-bit 
counter with 2.5 MHz clock frequency are used. The con-
sidered temperature range is –20°C to 10°C which is com-
monly suitable for controlling the foodstuffs and depraving 
foods. 

In Sec. 2, the designed temperature sensor is pro-
posed. The simulation results are presented in Sec. 3 and 
finally the conclusion is stated in Sec. 4. 

2. Materials and Methods 
Figure 1 shows the systematic configuration of the 

temperature sensor. It includes four parts: the current source, 
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Fig. 1.  The block diagram of the proposed temperature sensor of the RFID tag. 
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Fig. 2.  The current source [15]. 

 
the core of sensor, PTAT and CTAT delay generators and 
the digital part of the sensor. The current source supplies 
the bias current of the sensor core. First, two signals which 
are VPTAT and VCTAT are produced in the sensor core by the 
variation of the temperature. By passing of delay genera-
tors the modulated voltage signals to the temperature are 
converted to the time. The output pulse widths of PTAT 
and CTAT delay generators are proportional to and inverse 
of temperature, respectively. In this process, by imple-
menting XOR function on two output pulses the non-linear 
part of these signals which is dependent to the temperature 
is eliminated. Finally, the output pulse width is propor-
tional to the voltage difference between VPTAT and VCTAT 
and also is dependent on the temperature linearly. Then the 
XOR output is changed into the digital code in the digital 
part of the sensor by the binary counter which counts the 
rising edge of clock along the pulse width during one pe-
riod of sampling. The sampling period independent on the 
temperature is determined by the reader [14]. Then the 
digital code is saved in the memory of the tag digital core 
in order to provide the temperature data for the reader when 
it is necessary. For reducing the power dissipation, the 
analog part of the sensor is deactivated after each conver-
sion and the sensor becomes ready for the next conversion.  

2.1 The Reference Current Circuit  

Figure 2 shows the presented nano-ampere reference 
current source [15] which supplies the required current for 
PTAT and CTAT voltage generators. This structure in-
cludes the start-up circuit, the current source, PTAT volt-
age generator and biasing voltage circuit. Unlike M9 which 
works in deep triode region, the rest of the transistors work 
in sub-threshold region. M9 and M17 have the same size and 
are biased with the equal current. According to [16], the 
reference current is calculated as 

 2
REF REF0

mI I T   (1) 

where IREF0 is independent of the temperature and m is the 
temperature exponent of the carrier mobility 
(μ = μ0(T0/T)m), which is a process-dependent parameter.  

2.2 The Design of the Sensor Core 

For designing of the proposed temperature sensor, 
first two VPTAT and VCTAT signals are produced with sensor 
core that by comparing these two signals, the temperature 
is determined. Two different structures of the PTAT voltage 



RADIOENGINEERING, VOL. 30, NO. 2, JUNE 2021 383 

 

     
                 (a)                                                         (b) 

Fig. 3.  (a) The classic circuit of PTAT voltage generator [17]; 
(b) the differential pair PTAT voltage generator [15]. 

generators are shown in Fig. 3. The classic PTAT voltage 
generator [14], in which the transistors work in sub-thresh-
old region by employing the low supply voltage, is shown 
in Fig. 3(a). The PTAT voltage is the voltage difference 
between Vgs of MN1 and MN2, which are biased in sub-
threshold region. If W/L of MN1 is k (k > 1) times more than 
that of MN2 and Vds,N1,2 > 4VT, VPTAT,a is calculated as 

 
PTAT,a gs,N1 gs,N2 T lnV V V V k    (2) 

where η is the sub-threshold slope, VT is the thermal 
voltage and Vgs is the gate-source voltage of the transistor.  

Figure 3(b) shows the PTAT voltage generator pre-
sented in [15]. This circuit includes the differential pair 
with the current mirror circuit. When the MOSFETs work 
in sub-threshold region, VPTAT,b is achieved as 
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where I0 (= μCox (η – 1)VT
2) is a process-dependent param-

eter and Vth is the threshold voltage. Therefore VPTAT,b is 
gained with the condition of k´> 1. The PTAT voltage 
generator of Fig. 3(b) has more linear behavior than that of 
Fig. 3(a). In addition, it is more controllable for adjusting 
the PTAT voltage, since not only the size of differential 
pair transistors, but also the size of active load transistors 
effects on the PTAT voltage value. Figure 4 shows the 
proposed sensor core. This design consists of the reference 
current circuit and the PTAT and CTAT voltage genera-
tors. In the proposed sensor core the combination of the 
primary cores presented in Fig. 3, the classic and differen-
tial pair voltage generators, is used for generating PTAT 
voltage. 

In order to increase the PTAT voltage level, the sizes 
of differential pair and active load transistors can be in-
creased, which culminates in decreasing the chip area. Thus 
three stages of the differential pair are employed to this 
design for the purpose of ameliorating the voltage level. 
Knowing that all transistors operate in subthreshold region, 
VPTAT is achieved as 

 
 

   
   

2

1

( 2 1) T( 4 4 )

P ( 2 ) T ( 4 6 )

4

PTAT gs,P(2 ) gs,P(2 1)
1

M

M

T
4

M M

2 M M

T

( )

ln

.

ln .

P

P

P j j

j j

i i
i

j

V V V

W L

W L
V

W L W L

W L W L

V k





 








 

  
  
    
  
  
    







 (4) 

CTAT voltage of the proposed sensor core is pro-
duced by two diode-connection MOSFETs, MC1 and MC2 
which work in sub-threshold region. Based on I-V charac-
teristic of MOSFET in sub-threshold region and replacing 
(1) in it, equation (5) is achieved 
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 (5) 

in which the temperature dependence of Vgs,C1,2 is stated as 
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Fig. 4.  The core of the proposed temperature sensor. 
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Fig. 5.  PTAT and CTAT delay generators schematic. 
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By the appropriate choosing of transistors W/L, Vgs,C1,2 
has the inverse relation to the temperature. CTAT voltage 
is gained as  
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2.3 The Design of the Delay Generator  

Figure 5 shows the simple schematic of the PTAT and 
CTAT delay generators and its connection to the sensor 
core and digital part. The modulated temperature signals 
VPTAT and VCTAT are changed into time domain from the 
voltage domain by the delay generators. In the CTAT 
(PTAT) delay generator MD1 (MD6) transistor and MD2,3 

(MD7,8) the current mirror, transfer VPTAT, the modulated 
temperature signal, to the CP (CC) and then the buffer 
changes the it to the time, like single_slope ADC. 

At the start of each conversion, Vst is employed and 
activates MD4 (MD9), so CP (CC) can charge to VDD at the 
pre-charge process. The measurement process initiates by 
the rising edge of Vst signal which comes from the tag dig-
ital core. IPTAT and ICTAT discharge CC and CP, respectively. 
XOR gate is employed to the buffer outputs of these two 
PTAT and CTAT delay generators to produce the temper-
ature dependent pulse. The pulse width of XOR output is 
dependent on pulse width of modulated temperature signals 
which are produced from PTAT and CTAT delay genera-
tors. The time delay of the XOR output pulse width is cal-
culated as  

 P C
d-PW

CTAT PTAT

( )
( ) ( )

C V C V
t T

I T I T

 
   (8) 

where ΔV (= VDD – Vth) is the voltage difference between 
VDD and threshold voltage of inverter transistors at the 
input of buffer. The value of ICTAT(T) and IPTAT(T) are cal-
culated as (9) and (10), respectively 

   PTAT PTAT 0 P 0( ) 1 ( ) ,I T I T k T T    (9) 

   CTAT CTAT 0 C 0( ) 1 ( )I T I T k T T    (10) 

where T is the instantaneous temperature, T0 is the refer-
ence temperature, kP and kC are the temperature coefficient 
of IPTAT and ICTAT, respectively. By using (9) and (10) in (8) 
and considering only the first and second term and ignoring 
the rest of the terms, the XOR output pulse width is calcu-
lated as (11): 
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 (11) 

As it is clear from (11), if the output pulse width of 
each delay generator has the non-linear relation to the tem-
perature, after implementing XOR, the non-linear parts are 
eliminated and the output pulse width of the XOR has the 
linear relationship to the temperature. Then by quantizing 
the pulse width with ripple counter the digital temperature 
data is achieved from the same conversion. At the end of 
each conversion, when the edge of XOR pulse signal falls 
the done signal is triggered and makes CP and CC com-
pletely discharged. By sending of this signal, the end of 
conversion is determined and the sensor becomes ready for 
the next conversion. 
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Fig. 6. The configuration of D-FF with GDI cell. 

 

Sensor Core Delay Generator D-Flip Flop 

Transistor W/L 
(µm/µm) 

Transistor W/L 
(µm/µm) 

Transistor W/L 
(µm/µm) 

Transistor W/L 
(µm/µm) 

M20 12/0.18 MT1,5,9 1/0.18 MD1,6 80/0.18 MG1,5,9,13 3/0.18 

M21-24 16/0.18 MT2,6,10 2/0.18 MD2,3,7,8 0.22/20 MG2,6,10,14 7/0.18 

MP1,3,5,7 5.5/0.18 MT3,7,11 3/0.18 MD4,5,9,10 0.22/0.18 MG4,7,12 3/0.18 

MP2,4,6,8 0.5/0.18 MT4,8,12 6/0.18   MG3,8,11 7/0.18 

MC1,2 0.5/0.18       

Tab. 1.  Transistors sizes of the proposed temperature sensor. 

 

2.4 The Design of Ripple D-FF Counter with 
the GDI Technique  

Figure 6 shows the novel structure of the 14-transistor 
D-Flip Flap (DFF) with Gate Diffusion Input (GDI) tech-
nique. GDI technique is recently developed and is effi-
ciently replaced instead of CMOS and SOI technology in 
the design of logic circuits. Using this technique in the DFF 
structure decreases more delay, number of transistors and 
chip area in comparison with 18-transistor CMOS cell. 
GDI technique in the DFF design dissipates lower power, 
since it reduces the sub-threshold leakage current and the 
components of gate leakage current. Generally employing 
this technique in the ripple counter not only improves the 
power consumption and chip area, but also increases the 
speed of counter in the digital circuits of the sensor.  

3. Simulation Results 
The proposed temperature sensor is designed in 

0.18µm CMOS technology. In this design the values of CP 
and CC are considered 1 pF. Table 1 presents the size of 
transistors used in this design. Figure 7 shows the output 
signals of the sensor core, VPTAT and VCTAT, in the 
temperature range of –20°C to 10°C. 

 
Fig. 7. The simulation results of (a) VCTAT, (b) VPTAT in the 

temperature range of –20°C to 10°C. 

The output of VPTAT and VCTAT delay generators and 
also the XOR output pulse are shown in Fig. 8 at the 
temperature of 10°C. 

Based on (11), by decreasing the temperature the 
pulse width is increased which is shown in Fig. 9(a). In 
addition, Fig. 9(b) shows the output quantized code of 8-bit 
binary ripple counter with 2.5 MHz clock frequency for the 
temperature range of –20°C to 10°C. 

The linearity of the sensor is effected by the PTAT 
and  CTAT modulated temperature  signals  and their  delay 
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Fig. 8. (a) The PTAT delay generator output, (b) the CTAT delay generator output, (c) the output pulse of the XOR. 

 

Reference This Work [2] [5] [9] [12] [18] [10] 
Architecture Type TDC FDC TDC TDC TDC FDC TDC 

Process [μm] 0.18 0.35 0.18 0.18 0.35 0.18 0.18 
Supply voltage [V] 0.5 2.1 0.5 to 1 0.6 to 1 - 1 0.65 

Power Consumption [µW] 0.11 0.11 0.119 0.9 10 0.22 1.3 
Temperature Range [°C] –20 to 10 35 to 45 –10 to 30 –20 to 30 0 to 100 0 to 100 −15 to 65 

Error [°C] –0.3/0.7 ±0.1 –0.8/+1 ±0.8 –0.7/+0.9 –1.6/+3 −0.3/+0.27
Area [mm2] 0.0104 - 0.0416 - 0.175 0.05 0.11 

Tab. 2.  The comparison of the proposed sensor with other schemes. 

 

generators. The process variation and mismatch of the 
sensor core transistors MC1,C2 and MP1-P8, the current mirror 
transistors MT1-T12 and the used capacitors in the delay 
generators are the most important factors in the existence 
of the proposed temperature sensor error. Figure 10 shows 
the Monte Carlo simulation results of the sensor error for 
100 runs that the mean and standard deviation are 0.18°C 
and 0.33°C, respectively. According to Monte Carlo simu-
lation, the measured error of the samples varies in the range 
of –0.3°C to 0.7°C in the temperature range of –20°C to 10°C. 

The comparison of the results of the proposed tem-
perature sensor with some recently designed sensors is 
presented in Tab. 2. In comparison with the other sensors, 
the proposed sensor has the lowest chip area and power 
dissipation as its transistors work in sub-threshold region. 

The layout of the proposed sensor, which occupies 
0.0104 mm2 area, is shown in Fig. 11. 

 
Fig. 9.  (a) The pulse width of the XOR output. (b) The output 

of counter at the temperature range of –20°C to 10°C. 

 
Fig. 10.  The simulated error of  the samples at the temperature 

range of –20°C to 10°C using 100 runs. 

 
Fig. 11.  The layout of the proposed temperature sensor. 
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4. Conclusion 
A low power CMOS sensor is designed for tempera-

ture control of the perishable foods at the temperature 
range of –20°C to 10°C. The sensor core transistors work 
in sub-threshold region. D-FF based on GDI technique is 
employed to the counter instead of conventional D-FF to 
reduce the power dissipation. Considering 0.5 V supply 
voltage and 10°C temperature, the power dissipation of the 
sensor core, delay generator and digital part is only 
110 nW. This sensor which has low power dissipation and 
low chip area is suitable for RFID tag applications. Using 
the Cadence software, the temperature sensor is simulated 
in 0.18µm CMOS technology. 
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