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Abstract. This paper focuses on the design of matched
filters with low peak sidelobe level as well as mismatched fil-
ters with low loss in processing gain and peak sidelobe level,
for phase codes. We propose an algorithm which employs
the least-pth norm minimax based on the genetic algorithm,
and a method based on the semidefinite programming to deal
respectively with the resulting matched and mismatched op-
timization problems. A framework is also presented to design
mismatched filters that are robust to Doppler shifts. Sim-
ulation results show that using the proposed methods for
finding matched filters leads to better peak sidelobe level
and integrated sidelobe level for binary and polyphase codes
compared to previous works. In addition, the mismatched
filters designed by the proposed methods have very low peak
sidelobe level in the binary and polyphase cases.
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1. Introduction
The matched filter is the optimal filter to detect a single

target in the Gaussian noise such that the Signal-to-Noise Ra-
tio (SNR) at the reception side is maximized [1]. Although
matched filters benefit from the maximal processing gain,
they suffer from the relatively high autocorrelation function
sidelobes that impresses the detection ofmulti-target inwhich
weak targets are masked in the sidelobes of stronger targets or
a strong clutter. This problem appears in many applications
such as classic radar range/Doppler ambiguity functions [2].
Based on the waveform used at the transmitter, such as lin-
ear chirp signals and particularly phase codes, some sidelobe
reduction techniques are used at the receiver. One possible
solution to suppress the sidelobe level for linear chirp signals
is to apply a weighting window such as Hamming at the re-
ception [3], which imposes some resolution loss due to the
mainlobe broadening and some loss in the processing gain.

For phase codes such as Binary Phase Shift Keying (BPSK),
weighting windows cannot be applied, however, it is possible
to find optimal filters that optimize the Peak Sidelobe Ratio
(PSLR) parameter [4]. The waveform design in transmit sig-
nals and received filters is one of the most important issues
in radar systems. There exist lots of research to find optimal
filters based on various criteria [5–8]. The first study in the
generation of filters for the sidelobe reduction was framed
in [9] where the main goal is to minimize the sidelobe energy
over multiple input sequences.

The non-dominated sorting genetic algorithm-II is used
in [10] to generate biphase pulse compression codes from
length 49 to 100 taking PSL and ISL as the objective func-
tions. In [11], an efficient method is presented to reduce the
computational complexity of nearest-neighbor search-based
optimization algorithms of a phase coded waveform. A mis-
matched filter design for MIMO radars is proposed in [12]
that minimizes the interference and jamming power at the
filter output, while the peak sidelobe and cross-correlation
levels for all Doppler frequencies are constrained to desired
values. This method employs the semidefinite relaxation to
obtain a convex optimization problem. The authors in [13]
show that gradients for a large variety of cost functions can
be computed very efficiently in the gradient descent-based
approach compared to sequence design. The authors in [7]
propose two schemes to further suppress sidelobe levels in
distributedMIMO radars, i.e., orthogonal phase-codedwave-
forms with an expanded mainlobe and its mismatched fil-
ters design. New sequence set design methods with accu-
rately controlled autocorrelation and cross-correlation side-
lobe levels were developed in [14] for the design of uni-
modular sequences with accurately controlled correlation
properties within the lag interval of interest. The concept
of majorization-minimization in combination with the sec-
ond order cone programming and semidefinite programming
was used in [15] to design waveforms for Time-Division-
Multiplexing (TDM) MIMO radar systems. Using a differ-
ent approach, a frequency domain expression was presented
in [16] for the waveform autocorrelation. Then, using the
proximal multiplier process, minimum local PSL waveforms
were designedwith correlation and spectral constraints. Note
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that the mismatched filter design for a particular transmitted
code is a convex optimization problem, while the matched
filter design with unit modulus constraint is a non-convex
problem. According to these concepts, the attention of re-
searchers has been devoted to proposing efficient algorithms
to solve optimization problems in designing matched and
mismatched filters. Note that in most literature, the key em-
phasis is on the design of low ISL-based codes due to the
complexities occur in the design of PSL-based codes. Moti-
vated by the above considerations and to design the matched
filters with low PSL, we transform the matched filter problem
into an optimization problem and propose an algorithm that
uses the least-pth norm minimax based on the genetic algo-
rithm to solve it. An optimization problem is constructed to
design the mismatched filters and solved through exploiting
the semidefinite programming which uses efficient interior
point methods. Toward this goal, we consider the follow-
ing criteria: 8) minimization of PSL, and 88) minimization
of Loss in Processing Gain (LPG). Simulation results show
that using the proposed method for finding matched filters
results in better PSL and Integrated Sidelobe Level (ISL) for
polyphase codes compared to previous works. In addition,
the mismatched filters designed by the proposedmethod have
the lowest PSL.

The rest of the paper is organized as follows. In
Sec. 2, we present the matched and mismatched filter de-
sign procedure with the mentioned criteria and the mis-
matched filter with the Doppler constraints by solving
optimization problems. In Sec. 3, comprehensive simu-
lation results are provided. In Sec. 4, an overview of the
results and some conclusion remarks are presented.

2. Signal Model
Matched Filter Design: Consider an active sensing

system which transmits a complex pulse coded waveform
s = [B0, B1, ..., B!−1]T with B8 = exp(ji8), where i8 de-
notes the phase of 8th transmitted pulse coded waveform
B8 and ! indicates the transmitted waveform code length.
The corresponding matched filter coefficients are defined as
s̃ = [B!−1, B!−2, ..., B0]H and the output result of matched
filtering is obtained as r = s ⊗ s̃. To facilitate our analysis,
we reform the convolution operation ⊗ into the matrix mul-
tiplication form in which @th element of r can be defined as
A@ = sHJ@s, where the element A@ ,∀@ ≠ 0, indicates the range
sidelobes, A0 denotes the mainlobe, and J@ is the shift matrix
defined by [17]

J@ =

[
0(!−@)×@ I(!−@)×(!−@)
0@×@ 0@×(!−@)

]
!×!

, 0 6 @ 6 !. (1)

Note that J@ = JH−@ and A−@ = sHJ−@s = (sHJ@s)H = A∗@ ,
i.e., the sidelobes A@ have the conjugate symmetric relation-
ship; then, |A@ | = |A−@ |. Hence, for the pulse coded wave-
form s, the PSL of the matched filter output is defined as
max
@
|A@ |, 1 6 @ 6 ! − 1. To suppress the PSL, we should

solve the following optimization problem

min
Q
max
@

��A@ (Q)�� , 1 6 @ 6 ! − 1 (2)

whereQ = [i1, ..., i!−1] is the phase vector of pulse coded
waveform s. Recalling that |Bk | =

��ejik �� = 1, : ∈ [1, ! − 1],
the optimization problem (2) is non-convex. To solve this
problem, we propose an algorithm that uses the Least-pth
norm Minimax based on the Genetic Algorithm (LMGA).
In order to apply the LMGA to the problem, it is nec-
essary to transform (2) into a norm form. Stacking all
the sidelobes absolute values of r into a vector, the cost
function (2) is rewritten as min

Q
5?→∞ (Q), where 5? (Q) =

‖ [|A1 (Q) |, ..., |A!−1 (Q) |] ‖ ? . Note that the minimum value
of ‖ [|A1 |, ..., |A!−1 |] ‖∞ can be achieved through increasing
the power ?. The main goal of utilizing LMGA is to find
codes such that their matched filters’ output have as low PSL
as possible. The proposed LMGA includes the initializa-
tion, phase selection, new phases generation, and stopping
criteria steps described in Algorithm 1.

The output of the algorithm consists of the best popula-
tion of chromosomes, i.e., D which denotes the phase vector
by which the transmitted phase code is constructed and the
corresponding fitness function value fi, i.e., the sidelobe level
value of the corresponding matched filter. In summary, the
pseudocode of the LMGA is given in Algorithm 1 and its
glossary is illustrated in Tab. 1.

Mismatched Filter Design: Although a matched filter
is optimal at the receiver in the case of the additive white
Gaussian noise, using a mismatched filter may cause a fur-
ther PSL suppression at the cost of the LPG. Consider an
exactly known pulse coded waveform s = [B0, B1, ..., B!−1]T
obtained from the LMGA.Let the correspondingmismatched
filter coefficients of s be denoted by h = [ℎ0, ℎ1, ..., ℎ"−1]T,
in which " > ! is the mismatched filter length. The output
of the mismatched filter is obtained by 
 = s ⊗ h. For the
ease of our analysis, we choose both ! and " to be even
(or odd) numbers and construct the pulse coded waveform
ŝ as ŝ"×1 =

[
01×("−!)/2 , sT1×! , 01×("−!)/2

]T, where
we added (" − !)/2 zeros at the beginning and at the end
of s. To reform the convolution structure of 
 , we define
a complex matrix K with dimension (2" − 1) × " as

K =



B̂1 0 · · · · · · · · · · · · 0

B̂2 B̂1
. . .

...
... B̂2

. . . 0
...

B̂"
... · · · B̂1 0 · · · 0

0 B̂"
. . . B̂2 B̂1

. . .
...

...
. . .

. . .
... B̂2

. . . 0

0 · · · 0 B̂"
... B̂1

... 0 B̂"
. . . B̂2

...
. . .

. . .
...

0 · · · · · · · · · · · · 0 B̂"

︸                                                  ︷︷                                                  ︸
" columns

. (3)
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Hence, the output of the mismatched filter can be de-
fined by the following matrix multiplication


 = s ⊗ h = Kh = [l −" , l −"+1, ..., l −1, l 0, l 1, ..., l " ]T
(4)

where l 0 denotes the mainlobe, and the range sidelobes of

 can be expressed as

U = [l −" , l −"+1, ..., l −1, l 1, ..., l " ]T. (5)

The following measures can be used to design and eval-
uate the performance of mismatched filters.

PSL: The PSL of a mismatched filter’s output is used
to evaluate the range sidelobe level and can be defined as

PSL = ‖U‖∞ = max
9

��l 9

�� ,−" 6 9 6 ", 9 ≠ 0. (6)

PSLR: This parameter computes the ratio between the
maximum sidelobe level and the mainlobe and is defined as

PSLR =

max
9

��l 9

��
l0

, −" 6 9 6 " , 9 ≠ 0. (7)

LPG: Any mismatched filter results in an LPG ex-
pressed as the ratio between the SNR of mismatched filter
SNRMM, and the optimal SNR at the output of matched filter
SNRM. Given a pulse coded waveform s, and its corre-
sponding mismatched filter h, in the case of zero mean white
Gaussian noise with variance f 2, the LPG is defined as

LPG = 10 log10
(
SNRMM
SNRM

)
= 10 log10

(
(hHs) (hHs)H

/
f 2 (hHh)

(sHs) (sHs)H/f 2 (sHs)

)
= 10 log10

(
|hHs |2

(hHh) (sHs)

)
.

(8)

It is worth mentioning that the SNR at the output of
the matched filter with unit absolute values and mismatched
filters considering the additive zero-mean white Gaussian
noise with unit variance can be respectively simplified to
SNRM = 10×log10 (!) andSNRMM, dB = SNRM, dB−|LPG|.

ISLR: This parameter obtains the ratio between the
accumulation of the sidelobes and the peak level for both
matched and mismatched filters and can be defined as
ISLR = UHU

|l 0 |2
=
‖U‖2

|l 0 |2
. The closed form of the optimal mis-

matched filter that minimizes the ISLR can be expressed as

hISLR_opt =
(sHs) (UUH)−1s
sH (UUH)−1s

. (9)

While (9) is the optimal filter based on ISLR, it is not
optimal for the PSL case. This motivates us to define a PSL-
based mismatched filter optimization problem as follows

min
h
‖U‖∞

s.t. sHh = sHs
, (10)

cop Crossover point selected randomly
D Population
D�, D� Row numbers selected for crossover operation
<col Chromosome component numbers to be mutated
<row Chromosome numbers to be mutated
#kep Number of chromosomes kept
#mating Number of pairing operations
#mut Number of mutation operations
#pop Population size
P Selection probability of chromosomes
? Norm power
Pc Cumulative probability of selection process
Am Mutation rate
rnd1, rnd2 Random vectors of size 1 × #mating
Vcop A vector filled with numbers 1 to 2>?
Vcop-inv A vector filled with numbers 2>? + 1 to !
Vk A vector filled with numbers 1 to #k
Vk, odd Odd numbers of V:
Vk, even Even numbers of V:

Tab. 1. Glossary of Algorithm 1

Algorithm 1. The proposed LMGA pseudocode
Input: Y, #pop, !, #kep, Am
Output: D, f8

D← 2c × A0=3
(
#pop, !

)
for 9 = 1 C> #pop do

f8 ( 9) ← 5?

(
D8
9

)
end for
[f8 , index] ← sort(f8 ( 9)) ascending, D← D (index)
Do
8 ← 8 + 1, #mating ← roundup ((#pop − #kep/2)
rnd1 ← rand

(
1, #mating

)
, rnd2 ← rand

(
1, #mating

)
Calculate %(=)
for = = 1 C> #kep do
%2 (=) ←

∑=
8=1 % (8)

end for
2=C1 ← 1
while (2=C1 6 #mating)

for 2=C2 = 2 C> #kep + 1do
if (A=31 (2=C1) 6 %2 (2=C2))
and (A=31 (2=C1) > %2 (2=C2 − 1)) then

D� (2=C1) ← 2=C2 − 1
end if
if (A=32 (2=C1) 6 %2 (2=C2))
and (A=32 (2=C1) > %2 (2=C2 − 1)) then

D� (2=C1) ← 2=C2 − 1
end if

end for
2=C1 ← 2=C1 + 1

end while
Vkep ←

[
1, 2, ..., #kep

]
, 2>? ← roundup (A0=3 × (! − 1))

V2>? ← [1, ..., 2>?], Vcop_inv ← [2>? + 1, ..., !]
D

(
#kep + Vkep,od

)
←

[
D

(
D�,V2>?

)
, D

(
D� ,Vcop_inv

)]
D

(
#kep + Vkep,ev

)
←

[
D

(
D� ,V2>?

)
, D

(
D�,Vcop_inv

)]
#mut ← A>D=3D?

( (
#pop − 1

)
× ! × Am

)
<row ← A>D=3D?

(
A0=3 (1, #mut) ×

(
#pop − 1

) )
+ 1

<col ← A>D=3D? (A0=3 (1, #mut) × !)
for 2=C = 1 C> #mut do

D (<row (2=C) , <col (2=C)) ← 2c × A0=3
end for
for 9 = 1 C> #pop do
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58 ( 9) ← 5?

(
D8
9

)
end for
[f8 , index] ← B>AC (f8 ( 9)) ascending, D← D (index), ? = 28+1
while | 58 (1) − 58−1 (1) | > Y

where the constraint sHh = sHs is included to forsake the null solu-
tion. The objective function of (10) is convex because every norm
of vectors is convex [18]. In addition, the constraint of (10) is linear,
therefore it is also a convex function. Thus, optimization problem
(10) is convex and has an optimal solution [18]. The interesting fea-
ture of such a convex formulation is that it allows to easily include
additional constraints, as long as they remain convex. For example,
it is possible to add an LPG constraint to control the loss induced
by the mismatched filter. Replacing the constraint sHh = sHs in the
LPG formula, the LPG is simplified as 10×log10

(
sHs

/
hHh

)
. In ad-

dition, the LPGconstraint can be defined asLPG > −10×log10 (X1),
where X1 > 1 is a predefined free variable to control the LPG. The
above inequality results in hHh 6 X1 sHs, which is quadratic con-
vex because X1 sHs is constant. The LPG constraint is of primary
importance, since it permits to ensure that the good PSLR provided
by the optimal filter h is not achieved at the cost of a large LPG, or
conversely, it is possible to limit the LPG to some reasonable pre-
defined loss. Now we can define the PSL problem of a mismatched
filter with the LPG constraint as follows and ensure that it is also
a convex problem

min
h
‖U‖∞

s.t.
{

sHh = sHs
hHh 6 X1 sHs

. (11)

To solve this problem, we have applied Semidefinite Program-
ming (SDP) approach. Since the optimization problem is convex,
SDP would approach to the optimal solution, however, one needs to
compare its computational complexity with other methods. Many
literature present solutions based on SDPwhich use efficient interior
point methods for solving convex problems [18]. Various softwares
have been developed for solving convex optimization problems. We
use YALMIP (a MATLAB package [19]) to solve the convex pro-
gram of mismatched filter design. In addition, we apply a gradient-
based approach [11], which is an effective scheme in finding binary
and polyphase sequences. The optimal mismatched filter is found
in both cases due to the convexity of the problem, however as shown
in Tab. 2, the computational complexities, or equivalently, the run
time of algorithms are different. Note that in the case of short
code lengths, the run times are almost the same, but in longer code
lengths, the run times are different. As an example, the run times
of a BPSK code with length 100 for different schemes achieved by
the LMGA, are reported in Tab. 2. In addition, PSLR, LPG and
ISLR metrics for the corresponding mismatched filters are given in
Tab. 2. It is observed from this table that the proposed approach
based on semidefinite programming using YALMIP, has a lower run
time than that of [11].

Code ! " PSLR LPG ISLR RT of proposed
alg. [s] RT of [11] [s]

BP
SK

10
0

150 −31.56 −0.73 −8.92 2.03 2.43
200 −34.38 −0.80 −10.92 2.23 2.71
300 −41.63 −0.89 −16.45 3.37 5.17
500 −48.87 −1.13 −21.69 8.11 15.30
1000 −56.34 −1.32 −26.25 14.92 37.81

Tab. 2. PSLR, LPG, ISLR, and Run Times (RT) of the proposed
algorithm using SDP and formulation of [11].

Mismatched Filter Design with Doppler Sidelobe Sup-
pression: In practical applications, it is desirable that the pulse
compression output be robust to the Doppler effect. The mov-
ing targets in active sensing result in such Doppler shifts and
the output of the correlator filters should take into account this
Doppler effect, so the mentioned targets can be detected and re-
solved correctly. According to the Doppler effect in the active
sensing applications, it is necessary to design a mismatched filter
with the Doppler effect taking into account. We use superscript
"d" to show the Doppler effect. Consider a pulse coded waveform
s = [B0, B1, ..., B!−1]T obtained from the LMGA with its corre-
sponding mismatched filter coefficients c = [20, 21, ..., 2"−1]T.
The received Doppler modulated waveform may be defined as
sd = [B0, B14j2c 5d , . . . , B!−14j2c (!−1) 5d ]T where 5d is the Doppler
frequency of the target. In this case, the mismatched filter output is
obtained by
 d = sd⊗cwhere its sidelobes based on (4) is given by
Ud = [l d

−" , l
d
−"+1, ..., l

d
−1, l

d
1, ..., l

d
"
]T. The filter should

be designed such that the PSL is minimum in a specified region of
Doppler frequencies R = [− 5dmax , 5dmax ]. The PSL of mismatched
filter output 
 d with 5d ∈ R is defined as

PSLd =


Ud



∞ = max
9

���Ud
9

��� , −" 6 9 6 ", 9 ≠ 0. (12)

Therefore, the problem of mismatched filter design with the
Doppler sidelobe suppression considering the LPG constraint can
be written as

min
c



Ud


∞

s.t.
{

sHc = sHs
cHc 6 X2 sHs

(13)

where X2 > 1 is a predefined variable to determine the LPG range
and is set manually. It should be noted that we discretize theDoppler
region and consider all the corresponding different Doppler values
to cover the whole desiredDoppler region. It is shown that the above
mismatched filter design with the Doppler sidelobe suppression is
a convex optimization problem, in the same way that the convexity
of mismatched filter design has been proved.

3. Numerical Results
In this section, numerical simulation results are presented to

evaluate the performance of Algorithm 1 for the matched filter de-
sign. In addition, the performance of the mismatched filter design
using the proposed algorithms in Sec. 2 is analyzed. Finally, the
performance of the designedmismatched filter in Sec. 2 considering
the Doppler effect is examined through the simulations.

Results of Matched Filter Design: In the first part of our
simulations, we consider two cases of discrete phase and continuous
phase (polyphase) to design matched codes using the LMGA. In the
discrete phase case, BPSK codes with i8 ∈ {0, c} are considered to
report in Tab. 3. To show the performance of the proposed method,
the corresponding results of the BPSK and polyphase codes using
the LMGA for some values of ! are compared respectively with
BPSK codes found by 1bCAN [20] and 8) polyphase Barker codes,
and 88) polyphase codes found byCyclicAlgorithm-New (CAN) [21]
with random and Golomb codes as its initial values in Tab. 3. Note
that the BPSK codes found by the LMGA achieve the globally best
peak sidelobe levels for those code lengths. As we can see in Tab. 3,
the polyphase codes found by the LMGA is overally better than the
codes found by CAN and are near to polyphase Barker codes in the
sense of PSLR and ISLR.
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L BPSK (LMGA) BPSK (1bCAN) Polyphase (LMGA) Polyphase Barker Code CAN (Random) CAN (Golomb)
PSLR(dB) ISLR(dB) PSLR(dB) ISLR(dB) PSLR(dB) ISLR(dB) PSLR(dB) ISLR(dB) PSLR(dB) ISLR(dB) PSLR(dB) ISLR(dB)

14 −16.90 −7.12 −16.90 −10.13 −22.72 −9.24 −22.92 −9.29 −21.45 −12.38 −20.46 −11.22
15 −17.50 −6.89 −13.98 −11.76 −23.52 −11.89 −23.52 −11.62 −15.56 −7.68 −18.87 −11.29
16 −18.06 −6.60 −12.04 −9.03 −24.08 −10.47 −24.08 −10.55 −18.25 −7.85 −20.68 −12.37
17 −18.59 −6.55 −18.59 −9.56 −24.61 −12.76 −24.61 −12.57 −21.83 −12.26 −19.19 −12.27
18 −19.08 −8.10 −19.08 −11.13 −25.10 −11.84 −25.10 −11.86 −21.53 −11.88 −22.44 −11.36
19 −19.55 −6.88 −16.03 −9.45 −25.38 −11.43 −25.57 −11.53 −19.90 −9.53 −17.76 −8.24
20 −20 −7.20 −16.48 −11.87 −25.57 −11.27 −25.57 −11.53 −22.85 −11.54 −20.76 −11.17
21 −20.42 −8.11 −16.90 −9.45 −26 −11.67 −26.44 −11.59 −19.38 −9.25 −19.32 −10.35
22 −17.31 −7.93 −17.31 −10.94 −26.06 −12.29 −26.85 −12.33 −23.31 −11.95 −22.17 −12.39
23 −17.69 −7.50 −17.69 −9.53 −26.72 −12.88 −27.23 −13.04 −21.52 −9.95 −22.96 −14.47
24 −18.06 −9.03 −15.56 −9.54 −27 −11.58 −27.60 −11.63 −21.92 −11.61 −22.13 −12.61
25 −21.94 −8.50 −15.92 −8.72 −27.51 −12.09 −27.96 −12.20 −21.42 −11.19 −21.76 −13.98
26 −18.76 −8.76 −18.76 −9.91 −27.81 −13.13 −28.30 −13.40 −19.75 −10.21 −22.40 −12.74
27 −19.08 −9.94 −19.08 −12.94 −27.94 −12.57 −28.63 −12.51 −20.22 −10.85 −19.91 −11.30
28 −22.92 −8.94 −19.40 −9.80 −28.28 −12.51 −28.94 −12.48 −19.25 −10.48 −19.26 −11.96
29 −19.70 −8.31 −17.21 −9.71 −29.06 −14.16 −29.25 −14.05 −21.03 −9.11 −20.50 −11.63
30 −20 −8.82 −17.50 −9.95 −29.05 −12.80 −29.54 −12.75 −22.00 −10.48 −25.09 −12.49
31 −20.28 −8.55 −17.79 −10.43 −29.47 −13.43 −29.83 −13.43 −21.13 −10.27 −21.16 −9.67
40 −22.50 −8.70 −18.06 −9.12 −31.73 −13.43 −32.04 −14.72 −20.39 −10.71 −27.21 −14.13
70 −24.86 −7.80 −21.34 −9.13 −35.73 −16.38 −36.90 −16.34 −23.58 −11.44 −26.77 −14.44

Tab. 3. Results of matched filter design: PSLR and ISLRmetrics for BPSK and polyphase codes found by the LMGA compared with 1bCAN [20],
polyphase Barker codes, and CAN [21].
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Fig. 1. Matched filter outputs of designed polyphase and QPSK
codes, Frank code and P4 code.

Fig. 2. PSLR versus Doppler shift for the designed polyphase,
QPSK, CAN, Frank and P4 codes.

The matched filter outputs of QPSK and polyphse codes with
! = 16, found by the LMGA, are compared with the P4 code and
Frank code [4] in Fig. 1. The curves show that the PSLR of the
designed polyphase code is lower than that of Frank and P4 codes,
while the PSLR of the designed QPSK code is the same as the P4
and Frank codes. This is due to the fact that the phases of the
designed polyphase are continuous, while the P4 and Frank phases
are constant during the matched filter design. In addition, based on
the results in Tab. 3, the ISLR parameter for the designed polyphase
code is equal to −10.47 dB, which is lower than that of P4 code with
ISLR of −10.04 dB, Frank code with ISLR of −9.03 dB and de-

signed QPSK with ISLR of −8.06 dB. We consider a typical active
sensing system with the carrier frequency 5c = 3 GHz, bandwidth
� = 2MHzand themaximum target velocity E<0G = 1000m/s. The
PSLR versus Doppler shift for the designed polyphase and QPSK
codes, CAN, P4 and Frank codes are shown in Fig. 2. Clearly, in the
plotted Doppler region, the designed polyphase and QPSKmatched
codes as well as CAN are less sensitive to the Doppler frequency
than P4 and Frank codes. Otherwise stated, the mainlobe of Frank
and P4 codes are masked by the sidelobes faster than CAN and the
designed polyphase and QPSK matched codes.

Among the designed matched codes, we choose one code in
each type of BPSK and polyphase codes to design the corresponding
mismatched filters. The BPSK code with ! = 28 and the polyphase
code with ! = 30 are selected from Tab. 3. The matched filter
outputs of the selected codes are plotted in Fig. 3, where we see
that the PSL of the chosen BPSK and polyphase codes are equal to
2 and 1.05, respectively.

Results of Mismatched Filter Design: Given the complex-
ity of the waveform optimization for active sensing applications, it
is rational to apply mismatched filters in the receivers to enhance
the performance of the filter’s output. In this regard, we optimize
mismatched filters for a set of BPSK with ! = 28, polyphase wave-
forms with ! = 30, and different number of filter coefficients at the
receiver. The mismatched filters are designed to have as low PSL as
possible, while the LPG magnitude is constrained to be lower than
0.8 dB for BPSK and polyphase codes. The results of mismatched
filter optimization for BPSK and polyphase waveform sets are sum-
marized in Tab. 4 where ! is the transmitted code length and " is
the length of mismatched filter’s coefficients. As shown in Tab. 4,
the PSL of both BPSK and polyphase mismatched codes are im-
proved significantly in comparison to the matched case. To measure
the PSLR improvement of designed mismatched filters compared
to the corresponding matched filters, we use a gain parameter de-
fined as�%(!' = |%(!'mismatched |− |%(!'matched |. For example
for the BPSK code with ! = 28 and " = 220, this gain is equal
to �%(!' = 51.58 dB and for polyphase code with ! = 30 and
" = 200, we have�%(!' = 51.77 dB. The interesting point is that
the LPG in these cases has been kept as low as possible and is equal
to −0.72 dB and −0.26 dB, respectively. We study the performance
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obtained with the designedmismatched filter of the BPSK codewith
! = 28 and " = 110. Figure 4(a) shows the output of the matched
filter as well as the output obtained for a mismatched filter computed
with the proposed method with a constraint LPG of −0.8 dB. The
PSLR for the matched filter is equal to −22.92 dB, while the PSLR
for the mismatched filter is −44.30 dB, inducing a gain of 21.38 dB.
In addition, the measured LPG for the mismatched filter reaches
to −0.64 dB. Fig. 4(b) presents the result for the same sequence
by setting the mismatched code length to " = 220. In this case,
the PSLR for the mismatched filter is −74.51 dB, inducing a gain
of 51.59 dB. Also, the measured LPG is equal to −0.72 dB. The
PSLR and ISLR measures versus Doppler shift with ! = 28 and
" = 220 are shown in Fig. 5 (a). Clearly, the ISLR of the designed
mismatched filters is lower than that of the matched filter in the
full Doppler frequency region. The PSLR of designed mismatched
filters is also lower than that of matched filter in the full region,
but it is more sensitive to the Doppler frequency shift than that
of the matched filter. We evaluate the performance obtained with
the designed mismatched filter of polyphase codes with ! = 30 and
" = 110. Figure 5 (b) shows the PSLR and ISLRmetrics versus the
Doppler shift for polyphase codes with ! = 30, and " = 200. As it
is clear, the ISLR of the designed mismatched filters is lower than
that of the matched filter in the Doppler frequency region related to
5dg ∈ [−0.5, 0.5]. The PSLR of the designed mismatched filters
is also lower than that of the matched filter in the full region, but
compared to the matched filter, it is more sensitive to the Doppler
frequency shift. Figure 6(a) shows the output of the matched filter
as well as the output obtained for a mismatched filter computed
with the proposed method with a constraint LPG of −0.8 dB. The
matched filter PSLR is equal to −29.05 dB, while the mismatched
filter PSLR is −54.21 dB, inducing a gain of 25.16 dB. In addition,
the measured LPG for the mismatched filter reaches to −0.25 dB.
Figure 6(b) presents the result obtained for the same sequence by
setting the mismatched code length to " = 200. In this case, the
PSLR for the mismatched filter is −80.82 dB, inducing a gain of
51.77 dB. Also, the measured LPG is equal to −0.26 dB.

Fig. 3. The matched filter output (a) BPSK, ! = 28, and
(b) Polyphase, ! = 30.

Code ! " PSL PSLR(dB) LPG(dB) ISLR(dB) Gain(dB)

BP
SK 28

42 1.15 −27.70 −0.62 −11.07 4.78
56 0.90 −29.83 −0.74 −11.95 6.91
84 0.24 −41.19 −0.62 −21.60 18.27
110 0.17 −44.30 −0.64 −23.74 21.38
140 0.06 −53.81 −0.68 −32.19 30.89
168 0.02 −62.72 −0.71 −40.26 39.79
220 5.3 ×10−4 −74.51 −0.72 −50.95 51.59
320 4.19 ×10−4 −96.49 −0.72 −71.47 73.57

Po
ly
ph

as
e

30

50 0.53 −35.06 −0.28 −16.65 6.01
60 0.40 −37.60 −0.31 −18.69 8.54
90 0.08 −51.03 −0.24 −30.71 21.97
110 0.06 −54.21 −0.25 −33.18 25.16
150 0.01 −67.50 −0.26 −45.28 38.44
200 2.7 ×10−3 −80.82 −0.26 −57.47 51.77
300 1.42 ×10−4 −106.48 −0.27 −82.10 77.43

Tab. 4. PSL, PSLR, LPG, ISLR, and gain metrics of BPSK and
polyphase codes with different values of " .

Fig. 4. Matched and mismatched filters for a BPSK code with
! = 28 and (a) " = 110, (b) " = 220.

To validate the simulation results, we implement one of the
BPSK codes with the corresponding mismatched filter. In this ex-
perimental prototype, the real blocks used in a radar receiver are
implemented in a virtex-4 FPGA, including analog to digital con-
verter, Digital DownConversion (DDC), and pulse compression or
(mis)matched filter blocks. The output of the pulse compression
block is then analyzed. From Tab. 4, the BPSK code with ! = 28
and the corresponding mismatched filter with " = 110 have been
selected for implementation. Consider a radar system with the
following specifications that works in normal mode, i.e., carrier
frequency of 5c = 200 MHz, intermediate frequency of 5IF = 30
MHz, sampling frequency of 5c = 24 MHz, and a chip duration of
)chip = 2 `s. In this case, there are 48 samples in each chip, which
are downsampled with the rate of 48 in the DDC block.

Consider a target at a range of ' = 50 km with a radar cross
section of f = 10 m2 that has a radial velocity of E = 100 m/s. Ac-
cording to the above assumptions and considering the noise power
of %n = −130 dB, the output of the mismatched filter is shown in
Fig. 7.
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Fig. 5. PSLR and ISLR vs. Doppler shift for (a) BPSK code,
! = 28, " = 220, (b) polyphase, ! = 30, " = 200.

Fig. 6. Matched and mismatched filters outputs for polyphase
code with ! = 30 and (a) " = 110, (b) " = 200.

It should be noted that if we remove the noise in this op-
eration, the output of the pulse compression block will be nearly
the same as the simulation result in Fig. 4(a). As can be seen
in this figure, the PSLR in the case of additive noise is equal to

−36.1 dB and in the case of no noise is equal to −43.9 dB that is
near to the simulation result of −44.3 dB. In the final step of our
simulation, the mismatched filter design with Doppler constraints
in the regions 5dg ∈ [−0.4, 0.4] and 5dg ∈ [−0.2, 0.2] is applied
for BPSK and polyphase codes, respectively. The matched filter,
the designed mismatched filter with no Doppler constraints, and the
designed mismatched filter with Doppler constraints are then used
to process the signals with different Doppler shifts in accordance
with 5dg ∈ [−0.5, 0.5]. Figures 8(a) and 8(b) illustrate the PSLR
in terms of the Doppler shift for BPSK and polyphase codes, re-
spectively. As expected, we can observe that the mismatched filter
with no Doppler constraints is not very robust to the Doppler shift,
i.e., its PSLR rapidly increases with the target radial velocity and
becomes even almost worst than the PSLR of the matched filter in
the regions | 5dg | > 0.15 and | 5dg | > 0.05 for BPSK and polyphase
codes, respectively. In contrast, the PSLR provided by the designed
mismatched filter with Doppler constraints remains relatively flat
in the regions 5dg ∈ [−0.4, 0.4] for BPSK and 5dg ∈ [−0.2, 0.2]
for polyphase code, and better than the matched filter in the region
| 5dg | > 0.15 for BPSK and the whole Doppler range for polyphase
code as well.

Fig. 7. Experimental results of the mismatched filter output,
! = 28, " = 110, ' = 50 km, with and without noise.

Fig. 8. PSLR vs. Doppler shift for (a) BPSK code, ! = 28,
" = 220, (b) polyphase codes, ! = 30, " = 200.
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4. Conclusion
In this paper, we proposed two algorithms for designing

matched and mismatched filters taking the PSL and LPG crite-
ria into account. The matched filter design algorithm employed the
least-pth norm minimax based on the genetic algorithm, while the
mismatched design method was based on the semidefinite program-
ming. The results of the matched filter design showed the satis-
factory PSLR for BPSK and polyphase codes. The performance of
the mismatched filter design was evaluated through the simulations,
and great improvement in the PSLR were obtained and the LPG
was negligible during the design procedure. For the mismatched
filter designwithDoppler constraints, our simulation results demon-
strated that although the classic and designed mismatched filters are
not robust to Doppler shifts, such Doppler constraints extensively
improve the robustness of PSLR for a predefined Doppler region.
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