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Abstract. The extended target probability hypothesis den-
sity (ET-PHD) filter is a promising approach for multiple 
extended target tracking. One crucial problem of the ET-
PHD filter is partitioning the measurement set. This paper 
proposes a partitioning algorithm based on clustering by 
fast search and find density peaks (CFSFDP). Firstly, we 
adopt CFSFDP algorithm to partition the measurement set 
and the field theory is introduced to determine the cutoff 
distance of the CFSFDP algorithm. Then, the cluster cen-
ter of the CFSFDP algorithm is determined according to 
solved cutoff distance and measurement rate. Finally, as 
the CFSFDP algorithm cannot handle the case in which 
targets are spatially close, an improved sub-partitioning 
method is implemented. Simulation results show that the 
proposed algorithm has less computational complexity and 
stronger robustness than the existing algorithm without 
losing tracking performance. 
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1. Introduction 
In target tracking, the target echo signal may be occu-

pied in different range resolution cells. The sensor will 
receive multiple measurements from a target per scan and 
such target is referred to as an extended target [1]. In recent 
years, multiple extended target tracking has been hot re-
search in the target tracking field [2], [3]. 

In multiple extended target tracking, the conventional 
algorithms, such as joint probabilistic data association 
(JPDA) and multiple hypothesis tracker (MHT), burden 
exploded computational complexity. Based on the proba-
bility hypothesis density (PHD) filter in [4], Mahler pre-
sented an extension of the PHD filter to multiple extended 
target tracking, which is called the extended target PHD 
(ET-PHD) filter [5]. The ET-PHD filter avoids the data 

association and reduces computational complexity. Two 
main implementations for the ET-PHD filter are given in 
[6], [7], called the extended target Gaussian Mixture PHD 
(ET-GM-PHD) filter and the extended target particle PHD 
(ET-P-PHD) filter, respectively. 

The key challenge of the ET-PHD filter is partitioning 
the measurement set rapidly and correctly. Therefore, vari-
ous partitioning algorithms have been proposed. In [6], K-
means++ algorithm is applied to partition the measurement 
set, but it needs the prior information of cluster number, 
and the partitioning results will become worse in a clut-
tered scene. In [8], distance partitioning is adopted to parti-
tion the measurement set. To get the correct partition, 
a large number of distance thresholds are needed. With the 
increase in the measurements generated by a target, dis-
tance partitioning makes ET-PHD filter computationally 
intractable. Based on neural network and adaptive reso-
nance theory (ART), a fast partitioning algorithm with 
fuzzy ART is proposed in [9]. Although it has fewer parti-
tions and less computational complexity than K-means++ 
partitioning and distance partitioning, it is sensitive to 
vigilance thresholds and becomes rather poor in a densely 
cluttered scene. An effective partitioning method [10] is 
proposed using spectral clustering technique, where the 
clutter is eliminated from the measurement set. But this 
method also needs the prior information of cluster number. 
The affinity propagation (AP) clustering [11], [12] is intro-
duced into the measurement set partitioning. Although the 
AP clustering reduces the computational complexity, it is 
influenced by the initial value of the similarity matrix. In 
[13], an adaptive partitioning approach is proposed. How-
ever, it needs distance partitioning to partition the measure-
ment set first and burdens high computation. In [14], 
an improved fuzzy c-means (FCM) algorithm is proposed 
to partition the measurement set. This algorithm sets a pro-
bability threshold to estimate the target number and then 
partitions the measurement set. The partitions number is 
much fewer, but it correspondingly increases as the target 
number increases. 

When targets are spatially close, the distance between 
measurements generated by the different targets is small. 
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These measurements may be partitioned into the same cell. 
It will lead to the underestimation of the target number. As 
a remedy, the sub-partitioning method is adopted in [6], [9]. 
The sub-partitioning method solves the underestimation of 
target number to some extent. However, the above sub-
partitioning method will result in a large number of addi-
tional partitions when there are multiple pairs of close 
targets whose cells are merged wrongly. More additional 
partitions will lead to high computational complexity. 

In [15], clustering by fast search and find density 
peaks (CFSFDP) algorithm is proposed for clustering. 
Compared with the conventional clustering algorithms, the 
CFSFDP algorithm needs neither the prior information of 
cluster number nor iteration and it can realize clustering 
rapidly. Therefore, this paper adopts the CFSFDP algo-
rithm to partition the measurement set. The contributions 
are as follows: 

1) Since the cutoff distance of the CFSFDP algorithm 
needs to be determined by user experience, the idea of data 
field is introduced to determine the cutoff distance. 

2) The choice of the cluster center in CFSFDP algo-
rithm is relied on the decision graph and it is not a real-
time process for measurement set partitioning. A method 
which can choose the cluster center automatically by the 
solved cutoff distance and the measurement rate of the 
target is proposed. 

3) An improved sub-partitioning method is proposed. 
The improved sub-partitioning method decreases the com-
putation burden due to no additional partitions. 

The remainder of this paper is organized as follows: 
Section 2 gives a brief introduction of the ET-PHD filter 
and the partitioning of the measurement set; the implemen-
tation of the proposed algorithm is provided in Sec. 3; 
numerical simulations are shown in Sec. 4; conclusions are 
presented in Sec. 5. 

2. ET-PHD Filter and Partitioning the 
Measurement Set 

2.1 Target Motion Model and Measurement 
Model 

In an MTT system, we assume the unknown number 
of targets is Nk, and the target states set is Xk = {xk

1,…,xk
Nk}. 

xk
i is referred to as the ith target state. The measurement set 

obtained at time k is Zk = {zk
1,…, zk

Mk}. zk
j is referred to as 

the jth measurement and Mk is the number of measure-
ments. The target dynamic motion model is defined as 

 1( )i i i
k k kx f x w   (1) 

where f() is the dynamic motion model function and wk
i  is 

Gaussian white noise with covariance matrix Qk. Each 
target state evolves according to the same dynamic motion 
model independent of the other targets. 

The number of measurements generated by each 
target at each time is a Poisson distributed random variable 
with rate (xk

i) [16]. () is referred to as the measurement 
rate of the target and it is a known non-negative function 
defined over the target state space. The target measurement 
model is defined as 

 ( )j i j
k k kz h x e   (2) 

where h() is the measure model function and ek
j is Gauss-

ian white noise with covariance matrix Rk. Each target is 
assumed to give rise to measurements independently of the 
other targets. 

2.2 ET-PHD Filter 

The aim of multiple extended target tracking is to ob-
tain an estimate of the target states Xk = {xk

1,…,xk
Nk}. given 

the measurement set Zk = {zk
1,…, zk

Mk} at time k. It can be 
achieved under the ET-PHD framework by propagating the 
predicted PHD and updated PHD. The predicted PHD and 
updated PHD can be expressed as [5], [6] 
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where x is the target state. Dkk – 1(x) and Dkk (x) are pre-
dicted PHD and updated PHD, respectively. kk – 1(xζ) and 
k(x) are the spawn target PHD and birth target PHD, 
respectively. pS,k(ζ) is the probability of target survival and 
LZk(x) is the pseudo-likelihood function, which can be 
expressed as 
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pD,k(x) is the detection probability. λk is the average clutter 
number and ck(zk) is the spatial distribution of the clutter. 
p Zk denotes the pth non-empty partition subset of Zk and 
W  p denotes the Wth cell of the partition p. W denotes 
the number of measurements in cell W. Zk(x) = gk(zkx) is 
the likelihood function for a single target. p and dW denote 
the coefficients for each partition p and cell W shown as 
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where i,j is the Kronecker delta and 

 1 1( ) ( )dk k k kD h h x D x x   . 
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2.3 The Description of Partitioning the 
Measurement Set 

As shown in (5), all the possible partitions of meas-
urement set Zk are needed in updated PHD. Assuming at 
time k, the measurement set Zk contains three individual 
measurements, i.e., Zk = {zk

1, zk
2, zk

3}. Then all the possible 
partitions can be described as 
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where pi denotes the ith partition and Wi
j denotes the jth 

cell of partition i. It can be observed that as the number of 
measurements increases, the number of possible partitions 
grows sharply. When all the partitions are used for ET-
PHD update, it will make ET-PHD filter computationally 
intractable. To reduce computational complexity, various 
measurement set partitioning algorithms have been pro-
posed in [6–14]. They consider the most likely subset of all 
possible partitions to update the ET-PHD filter. The es-
sence of the measurement set partitioning is the clustering 
problem. Distance partitioning, Kmeans++ partitioning, 
FCM partitioning and AP partitioning can be regarded as 
the clustering algorithms. In contrast, fuzzy ART can be 
regarded as a classification algorithm. Various partitioning 
algorithms have their own advantage and limitation. Alt-
hough the above algorithms reduce the computational com-
plexity to some extent, they still have the disadvantage of 
high computational complexity with the number of clutter 
and measurements increasing. 

3. The Measurement Set Partitioning 
Algorithm Based on CFSFDP  

3.1 CFSFDP Algorithm 

As a clustering algorithm, CFSFDP algorithm calcu-
lates the local density i of each data point and its distance 
i from points of higher density. The i and i can be ex-
pressed as [15], [17] 

 
c( )i ij

j
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where dij is the distance between data point i and data point 
j, dc is the cutoff distance. X(x) = 1 if x  0 and X(x) = 0 
otherwise. In CFSFDP algorithm, the cluster centers usu-
ally have a higher local density, and they are at a relatively 

large distance from any points with higher local density. 
The outliers have a lower local density, and they are at 
a relatively large distance from any points with higher local 
density. After the cluster centers have been found and 
outliers have been removed, each remaining point is as-
signed to the same cluster as its nearest neighbor of higher 
density. 

3.2 Determination of dc and the Cluster 
Center 

In this paper, we adopt CFSFDP algorithm to parti-
tion the measurement set. It can be seen from Sec. 3.1 that 
dc has an impact on the calculation of the local density. In 
the conventional CFSFDP algorithm, dc needs to be deter-
mined according to user experience. If dc is too large, each 
measurement has a higher density. The measurements 
generated by different targets may be clustered together, 
leading to the underestimation of target number. In con-
trast, if dc is too small, each measurement has a lower den-
sity. The measurements generated by the same target may 
be divided into multiple clusters, leading to the overestima-
tion of target number. To avoid the blindness of empirical 
experience dc, data field method is introduced to determine 
dc adaptively. 

In the data field, suppose that there is a dataset 
X ={x1, x2,…, xn}in a data space . The potential function 
of an arbitrary data point xi is defined as [18] 
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where mj is the mass of xj, and  is an impact factor. K(x) is 
a unit potential function, and expresses the law how a data 
point diffuses its data contribution. xj – xi is the distance 
between point i and point j. Since  has a great impact on 
the distribution of data field, it is adaptively solved by 
minimizing the Shannon entropy of the potential as follows 

 ˆ arg min H


   (12) 

where 
1

log( )
n

i i

i

H
Z Z

 


  is the Shannon entropy, and 

1

kM

ii
Z 


  

is the normalization factor. 

In [19], the above method is introduced to extract the 
optimal cutoff distance of the CFSFDP algorithm when the 
local density is calculated by a Gaussian kernel. Similar to 
[19], we use (12) to determine the cutoff distance. 
Moreover, it can be seen from (2) that the measurements 
generated by a target are following Gaussian distribution. 
For Gaussian distribution, most data stochastically is 
distributed inside the interval between the expectation plus 
threefold variances and the expectation minus threefold 
variances [20]. So dc  in our paper is determined by 

 
c

ˆ ˆ3 3 arg mind H


  . (13) 
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The objective function in (13) is a one-dimensional 
nonlinear function and it is solved by gradient descent 
method in this paper. 

After d̂c is determined, i and i of each measurement 
can be obtained by (9) and (10). Then, the cluster center is 
selected manually according to the decision graph of i and 
i [15]. However, manual selection of the cluster center 
with the decision graph is not a real-time process for meas-
urement set partitioning per time scan. Considering the 
cluster centers have a higher local density and higher dis-
tance, zk

i  can be treated as a cluster center if i > c and 
i > c. c and c are thresholds of density and distance, 
respectively. 

We can see that c reflects the distance between 
a cluster center and the adjacent measurement. Since d̂c can 
perfectly reflect the distribution of each measurement in 
the measurement set, we set c = d̂c in this paper. c de-
notes the number of measurements near the cluster center, 
that is, the number of measurements generated by a target. 
Assume (x) is a constant, i.e., (x) = . Let event A

n  de-
notes there are n measurements generated by a target with , 
and its probability is expressed as 

 ( )
!

n
nP A e

n



  . (14) 

The probability of A
n  is shown in Fig. 1 under differ-

ent . In Fig. 1, it is clear that under a constant , P(A
n) 

approaches 0 when n is smaller. This indicates that the 
extended target is less likely to generate fewer measure-
ments per scan. When  becomes larger, n also becomes 
larger. Thus, we set a probability threshold pth1 in this pa-
per and the corresponding measurements are regarded as 
originated-target measurements when the cumulative prob-
ability of P(A

i) is greater than pth1. Therefore, c can be 
defined as 

 
th1

0

arg min ( )
n

i
c

n i

P A p


 
  

 
 . (15) 

According to (15), we can obtain c adaptively under 
different . 

 

Fig. 1. The probability of A
n  under different . 

3.3 Partitioning the Measurement Set 

After the cluster center is determined, the 
measurement set Zk can be partitioned by the CFSFDP 
algorithm. The detailed steps are shown in Tab. 1. 
 

Input:  1 , , kM
k k kZ z z  , pth1, and   

Output:  
1

Nj

j
p W




  

Step 1: Determine the cutoff distance dc by (13) and calculate i and 

i  by (9) and (10). 

Step 2: Determine c and c . If i c  and i c  , i
kz is the cluster 

center. 

Step 3: If i c  and i c  , i
kz is clutter. 

Step 4:  Remove all the clutter and assign the remaining measurements 
to the cluster. 

Step 5: Get the partition  
1

Nj

j
p W




 , where N is the number of cluster 

centers, and jW is the jth partition cell. 

Tab. 1.  Partitioning the measurement set by CFSFDP algorithm. 

Remark1: When the measurements generated by a tar-
get are relatively dispersed, these measurements may be 
partitioned into multiple cells with the above partitioning 
algorithm. The wrong cells will lead to the overestimation 
of the target number after ET-PHD filter update. To solve 
the overestimation of the target number, a merge operation 
is added after Step 5. Letting dm̃ñ denote the distance be-
tween cluster center zk

m̃ and cluster center zk
ñ, if dm̃ñ < d̂c is 

satisfied, zk
m̃ and zk

ñ are more likely to be generated by the 
same target. We merge the corresponding cell W̃m̃ and cell 
W̃ñ into one cell W̃, and the cluster center of W̃ is the zk

i 
with higher  ( , )i i m n    . 

3.4 Sub-partitioning 

When targets are spatially close, the distance between 
measurements generated by the different targets will be 
small. These measurements may be partitioned into the 
same cell which will lead to the underestimation of the 
target number. As a remedy, the sub-partitioning method is 
taken in [6], [9] to solve the problem. Assuming the meas-
urements generated from different targets are independent, 
the likelihood function for the number of targets NW̃j corre-
sponding to the cell W̃j in partition p can be expressed as [6] 

    
 

 
!

j

j jW
j

W

NWj

W j

N
p W N e

W
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 









. (16) 

Assuming the number of clutter in cell W̃j can be 
negligible, i.e. there is no clutter in W̃j. The maximum 
likelihood (ML) estimate of N̂W̃j

 
can be calculated as 

  ˆ arg maxj j

jW

j

j

W W
N

W
N p W N


 



 


 . (17) 
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If N̂W̃j > 1, the cell W̃j
 is regarded as a wrong cell and 

the measurements in W̃j are generated by nW̃j = ceil(N̂W̃j) 
targets. ceil(x) denotes the smallest integer more than x. 
An additional partition pl = p is added into the list of parti-
tions and the cell W̃j in partition pl  is split into nW̃j smaller 

cells  
1

jW
n

s s
W 





 
by K-means method. The original cell W̃j

 in 

pl is deleted. It can be seen that the above method solves 
the underestimation of the target number by identifying the 
wrong cell by N̂W̃j > 1 and adding additional partitions. 
Therefore, multiple additional partitions are added when 
there are multiple wrong cells in one partition or there are 
wrong cells in multiple partitions. The added additional 
partitions will lead to high computational complexity. 

To reduce the computational complexity, an improved 
sub-partitioning method is proposed. We can see from 
Fig. 1 that under the constant , P(A

n) approaches 0 when 
n is larger. Therefore, a probability threshold pth2 is set, and 
we let 

 min
th2

0

arg min ( )
n

i

n i

n P A p 


 
  

 
  (18) 

where n
min denotes the minimum number of measurements 

when the cumulative probability of the event A
i is larger 

than pth2. For the partition p = {W̃j}Ñ
j=1, we calculate 

 min
min

jW
N

n





. (19) 

If N
min> 1, the W̃j is treated as a wrong cell from 

N = ceil(N
min) targets. As the classification result of K-

means method depends on the choice of initial centers, the 
CFSFDP algorithm is used to split the wrong cell W̃j. Sub-
partitioning can be denoted as 

    
1

,
Ns j

s
W CFSFDP W N



 
  . (20) 

Since the number of cluster centers is adaptively de-
termined in CFSFDP algorithm, the estimate number N̂ 
may not always equal N when the measurements generated 
by a target are relatively dispersed or clustered. Thus, 
a modification operation is implemented in this paper. If N̂ 
equals N, N̂ centers are reserved as cluster centers of sub-
partitioning directly. If N̂ is larger than N, the center which 
has the largest i is selected as the first cluster center of 
sub-partitioning from N̂ centers. Then the distances be-
tween the first center and the N̂ – 1 remaining centers are 
calculated, and N – 1 centers with larger distances are 
selected as the remaining cluster centers of sub-partition-
ing. If N̂ is smaller than N , other N – N̂ centers should be 
added. The distance factor is considered for the new cen-
ters. We calculate the sum of distances between each meas-
urement in W̃j and N̂ centers, and N – N̂

 
measurements 

with larger distance sum are selected as added cluster cen-
ters of sub-partitioning. After the above steps, all N cluster 
centers are selected. 

When all the wrong cells in p are split, the wrong 
cells are removed and the split smaller cells are added into 
p. It can be seen that the improved sub-partitioning method 
makes use of the fact that the number of measurements 
generated by a target is Poisson distribution, which can be 
used to identify the wrong cells. The number of wrong 
cells will decrease, and the improved sub-partitioning 
method does not need to add the new partition which can 
reduce computational complexity. 

Remark 2: It is worth noting that the d̂c should be 
recalculated when CFSFDP algorithm is performed to split 
cell W̃j  into N smaller cells. 

3.5 Computational Complexity Analysis 

To demonstrate the performance of the proposed 
algorithm, we adopt K-means++ partitioning [6], distance 
partitioning [8], fuzzy ART partitioning [9], and FCM 
partitioning [14] as the compared algorithms. All the algo-
rithms are implemented under the framework of ET-GM-
PHD filter. In sub-partitioning, the compared algorithms 
adopt the sub-partitioning method in [6] and the proposed 
algorithm adopts the improved sub-partitioning method in 
this paper. 

The computational complexity mainly contains two 
parts: the computational complexity of partitioning the 
measurement set and the computational complexity of 
update in ET-GM-PHD filter. For the computational com-
plexity of partitioning the measurement set, the computa-
tional complexity of the distance partitioning in the worst 
case is approximated as O(Mk

4) [21]. For K-means++ parti-
tioning, the computational complexity is approximated as 
O(Mk

3), where  is the iteration number. For fuzzy ART 
partitioning, the computational complexity is approximated 
as O(256Mk

2/) [9]. For FCM partitioning, the computa-

tional complexity is approximated as 
1

( )
P

x i
i

N p 

 . Nx is 

the number of measurements after clutter removal, P is the 
number of partitions, and pi is the number of cells in parti-
tion pi. For the proposed algorithm, the computational 
complexity mainly depends on the calculation of dc, and its 
computational complexity is approximated as O(Mk

2). 

For the computational complexity of update in ET-
GM-PHD filter, the filter is updated by all cells in all parti-
tions. The computational complexity of the five algorithms 

is approximated as 2
1

1

( )
P

x ik k
i

n J p 

 . nx is the dimension of 

the target state vector and Jkk – 1 is the number of predicted 
Gaussian components. While P of fuzzy ART partitioning 
and FCM partitioning is much fewer than that of distance 
partitioning and K-means++ partitioning. For FCM parti-
tioning, the clutter is eliminated and pi in each partition is 
much fewer than that of fuzzy ART partitioning. In con-
trast, the proposed algorithm has the only one partition and 
the clutter is eliminated. Its computational complexity is 
much less than that of FCM partitioning. 



412 YANG GONG, CHEN CUI, A MEASUREMENT SET PARTITIONING ALGORITHM BASED ON CFSFDP FOR MULTIPLE … 

4. Simulations 

4.1 Target Tracking Setup 

Consider the multiple extended target tracking scenarios 
over the surveillance region [–1000,1000][–1000,1000](m2). 
The target state vector xk = [xk,ẋk,yk,ẏk]

T consists of position 
[xk,yk]

T and velocity [ẋk,ẏk]
T. In order to verify the perfor-

mance of the proposed algorithm, two scenarios are used. 
50 Monte Carlo simulations are performed for each sce-
nario. All the simulations are implemented in MATLAB 
2015a with a PC (CPU Core i5 4GHz and 5GB RAM). The 
results are presented in terms of the target estimate number 
and optimal sub-pattern assignment (OSPA) [22] metric 
with the parameters p = 2 and c = 100. 

The parameters of two scenarios are shown in Tab. 2. 
Clutter is uniformly distributed over the surveillance re-
gion. I2 denotes 2  2 identity matrix. v = 2 m/s2 is the 
standard deviation of the process noise, and ε = 20 m is 
the standard deviation of measurement noise. In gradient 
descent method, iteration termination threshold is ε = 
0.001, step length is ξ = 0.001, and the maximum number 
of iteration is max = 100. 

The birth PHD is described as 

 ( ) 0.1 ( ; , )i
k i

x x      m P  (21) 

where P = diag([100,900,100,900]), and m
i is initialized 

according to different tracking scenarios. The spawn target 
is not considered in the simulation. 

Figure 2 shows the target theoretical tracks in two 
scenarios, where circles are the starting points and triangles 
are ending points. Scenario 1 has three targets, and the total 
time is 50 s. Three targets are over the surveillance region 
in 150 s, 1040 s, and 2050 s, respectively. Scenario 2 
has three  targets and the total time is 50 s. All three targets 
 

Parameters Value 

State transfer matrix 

1 0 0

0 1 0 0

0 0 1

0 0 0 1

k

 
 
 
 
 
 

F  

Sampling period (s) 1   

Process noise 2
v 2k Q I  

Measurement matrix 
1 0 0 0

0 0 1 0k

 
  
 

H  

Measurement noise 2
ε 2k R I  

Survival Probability S, 0.99kP   

Detection probability D, 0.99kP   

Measurement rate 10   

Average clutter number =10k  

Thresholds th1 0.005p  , th2 0.95p   

Tab. 2.  Parameters of two scenarios. 

 
(a) Scenario 1 

 
(b) Scenario 2 

Fig. 2. Target theoretical tracks in two scenarios. 

are over the surveillance region in 150 s. Target 1 and 
target 2 move in the same direction and keep 60 m apart all 
the time.  

4.2 Simulation Result Analysis 

Figure 3 gives the corresponding partitioning results 
with the proposed algorithm at times k = 11 and k = 25 in 
Scenario 1. At times k = 11 and k = 25, there are two tar-
gets and three targets, respectively. It can be seen that the 
proposed algorithm can divide the measurement set into 
two and three cells correctly. 

 
(a) Partitioning result at time k = 11  
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(b) Partitioning result at time k = 25  

Fig. 3. Partitioning results with the proposed algorithm in 
Scenario 1. 

 
(a) Target number 

 
(b) OSPA 

Fig. 4. Estimate of target number and OSPA in Scenario 1. 

Figure 4 shows the estimate of the target number and 
OSPA in Scenario 1. It is clear that the estimate accuracy 
of the proposed algorithm approximately equals that of 
distance partitioning, fuzzy ART partitioning, and FCM 
partitioning, but it outperforms that of the K-means++ 
partitioning. This is because K-means++ partitioning often 
fails to obtain the correct partitions, and it partitions the 
measurements generated by a target into multiple cells 
[23], leading to the overestimation of the target number and 
larger OSPA. 

 
(a) Target number 

 
(b) OSPA 

Fig. 5. Estimate of target number and OSPA in Scenario 2. 

Figure 5 shows the estimate of target number and 
OSPA in Scenario 2. It can be seen that the K-means++ 
partitioning still performs worse than the other algorithms 
when targets are spatially close. Influenced by clutter and 
sub-partitioning, the target number is still underestimated 
for distance partitioning and fuzzy ART partitioning. The 
target number estimate of FCM partitioning has similar 
accuracy to that of the proposed algorithm. The proposed 
algorithm splits the wrong cells by CFSFDP algorithm, and 
it can get more accurate sub-cells, and has smaller OSPA 
than FCM partitioning. 

Figure 6 shows the average run time of each step for 
five algorithms in two scenarios. In Scenario 1, the average 
run time of five algorithms is 5.07 s, 3.08 s, 0.37 s, 0.12 s, 
and 0.02 s, respectively. It can be seen that the average run 
time of five algorithms increases with the increase in target 
number. However, the average run time of the proposed 
algorithm is much less than that of the compared algo-
rithms. In Scenario 2, the average run time of five algo-
rithms is 17.19 s, 7.07 s, 0.49 s, 0.20 s, and 0.02 s, respec-
tively. When targets are spatially close, the number of 
partitions for distance partitioning will increase due to 
more distance thresholds, which lead to the average run 
time increasing sharply. Meanwhile, for the compared 
algorithms, the number of partitions with wrong cells will 
increase. More additional partitions are added in sub-parti-
tioning, which leads to higher computation. In contrast, the 
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proposed algorithm need not add the new partition in sub-
partitioning and the average run time is approximately 
unchanged. 

To further validate the performance of the proposed 
algorithm, in Scenario 1, the impact of different k and 
different measure noise is analyzed. Figure 7 shows the 
estimate of the target number and OSPA for distance parti-
tioning, fuzzy ART partitioning, FCM partitioning, and the 
proposed algorithm under different k. It can be seen that at 
a higher clutter rate, the estimate error of fuzzy ART parti-
tioning algorithm increases. The results are based on the 
fact that the detection threshold in fuzzy ART partitioning 
might be unreasonable in a densely cluttered scene. Thus, 
the target number will be overestimated, and OSPA be-
comes larger. Thus, the estimate error of distance partition-
ing also increases. Since the clutter is eliminated by ellipti-
cal gating in FCM partitioning, the identification of clutter 
is related to the target predicted location. When the target 
predicted location is not accurate, the clutter may be con-
sidered as the measurement generated by targets and is 
used for updating. This will increase the estimate error. 
The proposed algorithm removes the clutter by local den-
sity and distance, and it is not affected by the target pre-
dicted location. With the increase of k, the proposed algo-
rithm has approximately the same estimate performance 
and the estimate accuracy is the highest than the other 
algorithms. 

 

 
Fig. 6. Average run time of each step for five algorithms. 

 
(a) Target number 

 
(b) OSPA 

10k  20k  30k 
 

Fig. 7. Estimate of target number and OSPA under different k.  

Figure 8 shows the estimate of target number and 
OSPA of the proposed algorithm under different measure-
ment noise. From Fig. 8, it can be seen that the estimate of 
target number keeps nearly the same. This is because the 
estimate of the target number relies on the accuracy of the 
partitioned measurement set, and the proposed algorithm 
could achieve the correct partition. With the measurement 
noise increasing, the estimate error of target state becomes 
larger which leads to the increase of OSPA. In general, the 
proposed algorithm has good performance under different 
k and different measure noise, which reflects the strong 
robustness of the proposed algorithm. 

5. Conclusions 
In this paper, a measurement set partitioning algo-

rithm based on CFSFDP is proposed for multiple extended 
target tracking in PHD filter. Based on the advantage of the 
CFSFDP algorithm, the measurement set can be partitioned 
rapidly and correctly. To avoid the blindness of empirical 
experience cutoff distance and cluster center, the Shannon 
entropy of potential for measurement set is used to solve the 
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(a) Target number 

 
(b) OSPA 

Fig. 8. Estimate of target number and OSPA under different 
measurement noise. 

cutoff distance adaptively. Then, the cluster center is 
determined by the solved cutoff distance and measurement 
rate. In addition, an improved sub-partitioning method is 
proposed to deal with the case that the targets are spatially 
close. As the simulation results show, compared with the 
other partitioning algorithms, the proposed algorithm has 
lower computational complexity. Moreover, the proposed 
algorithm has stronger robustness under some challenging 
scenarios, such as high clutter rate and different measure-
ment noise.  

In the future works, we plan to apply the proposed 
algorithm to extended target Gaussian inverse wishart PHD 
(ET-GIW-PHD) filter in [13], [24]. Compared with ET-GM-
PHD filter, the ET-GIW-PHD filter can estimate the target 
extension states. The proposed algorithm can also reduce 
the computation complexity of the ET-GIW-PHD filter. 
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