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Abstract. The amplitude-modulated, cosine power-
exponential (PE) and windowed-power (WP) pulses are dis-
cussed, by insisting on their time-domain normalization. Il-
lustrative examples of signatures and their correspondent
frequency-domain behavior are given. These examples com-
pellingly demonstrate the possibility to replace non-causal
pulses of prevalent use by causal, or even time-windowed,
pulses with closely resembling signatures.
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1. Introduction
Pulse shape (discrimination) is a topic of broad sci-

entific interest, ranging from particle physics [1–3] (where
it allows distinguishing between signals from neutrons and
gamma rays) to ubiquitous technologies such as radar and
(wireless) communication. When zooming in on wireless
communications, the major challenge is responding to the ex-
ploding needs for data transfer, with ultra-wideband (UWB)
technology being one of the most viable candidates for se-
curing ultra-high data rates in conjunction with manageable
power requirements [4]. Reliable and fast data transfer crit-
ically depends on preserving the pulse shape, with [5–7]
focussing on the UWB figures of merit that are of relevance
to this end. One of the important roadblocks in achieving
high throughput and low bit errors is the intersymbol inter-
ference (ISI) [8, p. 43]. Here, dispersion and pulse ringing
are the two channel-related causes of ISI, with ringing putting
a cap on the pulse repetition rate and, thus, on the baud-rate.
As a result, important efforts are invested in mitigating the
pulse ringing, as evidenced by the (technological) approaches
advocated in [9–12].

At this point, it is noted that all explorations
in [5–7,9–12] rely on using (time-differentiated) Gaussian
pulses, a patently non-causal signature1. Recently, [13]
highlighted the need to ensure causality in electromagnetic
(EM) investigations. That publication catalogued a number
of strictly causal pulses, two of them having ringing shapes.

This survey will examine the power-exponential (PE)
and windowed-power (WP) amplitude-modulated, cosine
pulses. While the PE variant was introduced in [14], the WP
variant was not yet presented. A particular emphasis will
be placed on the normalization of these pulses, that method-
ology being potentially applicable to the design of ringing
shapes using different apodizations [15, p. 55]. Typical sig-
natures and spectra of the advocated pulses will be provided.
The pulses will then be shown to have the ability to accurately
replicate time-domain (TD) signatures of pulses generated by
existing circuitry, thus allowing the incorporation of causal,
analytic copies of the relevant signals in (EM) models or
within design strategies concerning complex systems.

2. Definition of Pulses
The PE and WP unipolar prototype pulses were elabo-

rately discussed in [14], [16], their TD expressions being

PE(ν, tr, t) = t ′ν exp [−ν (t ′ − 1)]H(t ′) (1)

and

WP(ν, tr, t) = t ′ν(2 − t ′)νH(t ′)H(2 − t ′) (2)

respectively. In these expressions ν > 1 is the pulse raising
power, tr is the pulse rise-time2, t is the time coordinate,
t ′ = t/tr is the normalized time coordinate and H(·) is the
Heaviside step function. For practical reasons, ν is taken
to assume only integer values. Furthermore, taking ν > 3
ensures the continuity of the pulses and their first two time
derivatives at t ′ = 0, and at t ′ = 2 for WP (see [14], [16]).

1Interestingly, [6] already noted the non-causality of the employed signature, but surmised that the inevitable truncation errors do not significantly impact
on the system performance.

2The pulse rise-time tr > 0 is defined as the time between the unipolar pulse’s onset and the instant when it reaches its maximum. In the case of the
time-differentiated versions of the PE and WP pulses, tr also represents the zero-crossing time of the relevant pulses.
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The frequency-domain (FD) behavior of the PE pulse
is [14]

P̂E(ν, tr,ω) = tr
Γ(ν + 1) exp(ν)
(jω tr + ν)ν+1 (3)

in which ω is the angular frequency (ω = 2π f , with f being
the frequency), and Γ(·) denotes the Euler gamma function –
since ν is integer, Γ(ν) = (ν − 1)!. The FD behavior of the
PE pulse is [16]

ŴP(ν, tr,ω) = exp(−jωtr) tr 2νν!
√

2π
Jν+½(ωtr)
(ωtr)ν+½ (4)

where Jn+½ is the Bessel function of the first kind and frac-
tional order [17, Sec. 10.1]. Note that |P̂E(ω)| = |P̂E(−ω)|
and |ŴP(ω)| = |ŴP(−ω)| since the pulses are real functions.

The PE was used in [14] for constructing the ringing
cosine PEcos pulse via the expression

PEcos(ν, tr, κw, t) = PE(ν, tr, t) cos(2πω̃wt ′) (5)

in which κw is a ‘wiggle factor’ that, for a harmonic carrier
of frequency f0, counts the carrier cycles per tr as κw = tr f0,
and ω̃w = 2πκw. By using the same strategy, a WP ringing
cosine pulse is defined via

WPcos(ν, tr, κw, t) =WP(ν, tr, t) cos(ω̃wt ′). (6)

The frequency-domain (FD) behavior of PEcos and
WPcos can be easily derived, the relevant expresions being

P̂Ecos(ν, tr, κw,ω)

=
1
2

[
P̂E(ν, tr,ω − ω0) + P̂E(ν, tr,ω + ω0)

]
(7)

and

ŴPcos(ν, tr, κw,ω)

=
1
2

[
ŴP(ν, tr,ω − ω0) + ŴP(ν, tr,ω + ω0)

]
(8)

in which ω0 = 2π f0 = 2πκw/tr.

For studying (electronic) circuits in which no net elec-
tric charge is transported (as the ones in antenna engineer-
ing), time-differentiated versions of the thus far introduced
pulses are needed. The relevant pulses are denoted as ∂tPE,
∂tWP, ∂tPEcos and ∂tWPcos. Their TD and FD expressions
follow from the corresponding, original expressions (the FD
behavior requiring simply a multiplication by jω).

3. Normalization of Pulse TD
Signatures
The normalization of the ∂tPE and ∂tWP was elabo-

rately discussed in [14], [16] and will not be repeated here.

When turning to the ringing cosine pulses, it is ob-
served that the normalization could be applied to the pulse
itself. However, such a pulse normalization does not lend it-
self to an analytic handling and, thus, is not considered here.
Instead, our approach is to normalize the pulses’ envelopes.
By that standard, PEcos and WPcos are readily normalized,
since the expressions (1) and (2) are implicitly normalized.

The time-differentiated, ringing cosine pulses need
a more careful examination. For simplicity, H(·) will be
omitted from the derived expressions, its effect being implic-
itly accounted for. The explicit mentioning of tr and t as
arguments of PE and WP will be also omitted.

By time-differentiating (5), it follows that

∂tPEcos(ν, tr, κw, t) = ∂t [PE(ν) cos(ω̃wt ′)]

= ω0PE(ν) [K1(t ′) cos(ω̃wt ′) − sin(ω̃wt ′)] (9)

in which

K1(t ′) = β1
1 − t ′

t ′
=

1
tan [α1(t ′)]

for t ′ > 0 (10)

with β1 = 1/ω̃w. By substituting (10) in (9), and using some
standard trigonometric identities it is found that

∂tPEcos(ν, tr, κw, t) = ω0F1(t ′) cos [ω̃wt ′ + α1(t ′)] (11)

in which

F1(t ′) =
PE(ν)

sin [α1(t ′)]

= PE(ν − 1) exp(1 − t ′)
[
t ′2 + β2

1 (1 − t ′)2
]½
. (12)

Since ν > 3, PE(ν−1) is well-defined. The functionF1(t ′) is
finite, with lim

t′↓0
F1(t ′) = 0, F1(1) = 1, and lim

t′→∞
F1(t ′) = 0.

The shape of F1(t ′) is dictated by PE(ν − 1) that peaks
at 1 for t ′ = 1. It can now be concluded that the enve-
lope of the ∂tPEcos pulse is normalized by multiplying the
time derivative by 1/ω0 = (2π f0)−1, a fact already stated
in [14, Eq. (15)].

By time-differentiating (6), it follows that

∂tWPcos(ν, tr, κw, t) = ∂t [WP(ν) cos(ω̃wt ′)]

= ω0WP(ν) [K2(t ′) cos(ω̃wt ′) − sin(ω̃wt ′)] (13)

in which

K2(t ′) = β2
1 − t ′

t ′(2 − t ′)
= tan [α2(t ′)] for 0 < t ′ < 2 (14)

with β2 = ν/(πκw). By substituting (14) in (13), and using
some standard trigonometric identities it is found that

∂tWPcos(ν, tr, κw, t) = ω0F2(t ′) cos [ω̃wt ′ + α2(t ′)] (15)

in which

F2(t ′) =
WP(ν)

sin [α2(t ′)]

=WP(ν − 1)
[
t ′4 − 4t ′3 + (4 + β2) t ′

2
− 2β2

2t ′ + β2
2

]½
. (16)
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Since ν > 3, WP(ν − 1) is well-defined. The multiplier of
WP(ν − 1) is a positive, smooth function that is symmetric
with respect to t ′ = 1 and takes the values β2 for t ′ = 0 and
t ′ = 2, and 1 for t ′ = 1. The shape of F2(t ′) is dictated by
WP(ν−1) that peaks at 1 for t ′ = 1. It can now be concluded
that the envelope of the ∂tWPcos pulse is also normalized by
multiplying the time derivative by 1/ω0 = (2π f0)−1.

4. Numerical Experiments
The practical utility of the introduced ringing signals

is henceforth argued by examining some typical signatures
and exploring their ability to replicate signals generated by
existing circuitry.
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(b) Spectral behavior

Fig. 1. PEcos pulse with ν = 3 (dashed line) and ν = 6 (solid
line), tr = 1 and κw = 2. The solid patches in (a) represent
the pulse envelopes, with the lighter patch corresponding
to ν = 6. The asymptotes of the spectral contents are
shown in (b).

4.1 Examples
Some typical signatures of ringing cosine pulses are

now given. For each pulse, the signature, the envelope and
the spectral behavior will be given.

PE-type signals are firstly discussed. Figure 1 shows
two PEcos pulses with tr = 1, κw = 2, and ν assum-
ing the values 3 and 6, respectively. The TD plots il-
lustrate the effect of ν on the pulse’s shape. The spec-
tral behavior has a nonzero DC value and peaks, as ex-
pected, at f03. The ∂tPEcos performance is demon-
strated in Fig. 2 for the same pulse parameters as those
in Fig. 1. The differences in the TD signatures are small
and they manifest primarily in the beginning of the pulse.
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(b) Spectral behavior

Fig. 2. ∂tPEcos pulse with ν = 3 (dashed line) and ν = 6 (solid
line), tr = 1 and κw = 2. The solid patches in (a) represent
the pulse envelopes, with the lighter patch corresponding
to ν = 6. The asymptotes of the spectral contents are
shown in (b).

3The definition of fnorm entails that f0/ fnorm = 1/ν, implying that the spectral diagrams’ peaks correspond to the abscissas –0.47 and –0.78 for ν = 3 and
6, respectively.
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The spectral behavior resembles that of the PEcos above f0
but, evidently, has no DC component. From these signatures
it can be inferred that the PE-modulated pulses are oppor-
tune for modeling ringing signatures with a sharp increase
and a long tail, with ∂tPEcos having the capability to reflect
the situations when no net electric charge is transported in
a circuit.

Upon now turning to WP-type signals, Figure 3 shows
two WPcos pulses with tr = 1, κw = 4, and ν = 4,8, respec-
tively. Again, the effect of ν on the pulse’s shape is notice-
able. The spectral behavior bears some overall resemblance
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(b) Spectral behavior

Fig. 3. WPcos pulse with ν = 4 (dashed line) and ν = 8 (solid
line), tr = 1 and κw = 4. The solid patches in (a) represent
the pulse envelopes, with the lighter patch corresponding
to ν = 8. The asymptotes of the spectral contents are
shown in (b).

with that in Fig. 1, but the lobe around f0 is narrower and the
DC level is lower, which concurs with the very low spectral
leakage of the WP prototype proven in [16] (to a lesser de-
gree, these effects are also referable to the higher ν in these
experiments). The corresponding ∂tWPcos performance fol-
lowing from using the same pulse parameters is exemplified
in Fig. 4. The same observations as in the case of the PE-type
signals can be made. The presented signatures recommend
the WP-type pulses for situations requiring a time-windowed
harmonic function. A typical such application can be found
in the field of timed antennas [18] (the advantages of using the
WP apodization were elaborately explained in [13], [16]).
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Fig. 4. ∂tWPcos pulse with ν = 4 (dashed line) and ν = 8 (solid
line), tr = 1 and κw = 4. The solid patches in (a) represent
the pulse envelopes, with the lighter patch corresponding
to ν = 8. The asymptotes of the spectral contents are
shown in (b).
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4.2 Replication
A second investigation concerns the ability of the advo-

cated pulses tomimic signatures that are effectively generated
by existing circuitry. The signatures in [11, Fig. 2c,d] are se-
lected to this end – note that those signatureswere constructed
by starting from non-causalGaussian-type pulses. Hereafter,
original signals will be generically denoted as Sorig(t), while
Srepl(t) will stand for the constructed replica. The replication
accuracy is assessed based on an energy percentage replica-
tion error that is calculated with the expression

Err% =

∫
T

[
Sorig(t) − Srepl(t)

]2dt∫
T

[
S2

orig(t)
]
dt

100 (17)

in which T is the interval between the earliest among the
onsets of Sorig and Srepl and the end Sorig.

The original signals in [11, Fig. 2c,d] are shown in
Figs. 5 and 6, respectively4. Since both signatures feature
a long tail, a PE-type replication is selected based on the
observations in Sec. 4.1. The mimicking was effectuated via
a heuristic approach5 employing a grid-search over ν, tr and
f0 (and, implicitly, κw) that aimed at minimizing the error
in (17). This procedure was implemented in Matlab®. Since
the goal of this exercise was to obtain a goodmatch and it was
intended as a singular experiment, providing information on
computational effectiveness is deemed irrelevant.

To begin with, initial guesses were made for tr and f0
by measuring some features of Sorig. It was then observed
that the signature in [11, Fig. 2c] lends itself to a replication
via a PE pulse with a low ν, whereas that in [11, Fig. 2d]
lends itself to a replication via a ∂tPE pulse with a high ν.
Based on these tests, a PE with ν = 4 and a ∂tPE with ν = 24
were selected. The next phase was a full grid search on
ranges of tr and f0 values centered around the initial guesses.
The constructed pulses’ magnitudes (Vm) were determined
by matching the maxima in the originals and the replicas.
While these searches did yield some optimal values, the en-
tailed Err% was considered too large. In order to improve
the accuracy, the replicas’ onsets were allowed to move by
some (small) tshift time shifts with respect to the onsets in
Sorig. This choice entailed a third grid-search parameter that
eventually, led to extremely satisfactory results. Specifically,
the following replicas were constructed:

1. For the signature in [11, Fig. 2c]: A PE pulse with
Vm = 3.94 V, ν = 4, tr = 0.52 ns, f0 = 1.67 GHz
(κw = 0.87); the replica is delayed by tshift = 119 ps.
The replication error amounts to Err% = 5.2%. The
constructed Srepl is superimposed on Sorig in Fig. 5.

2. For the signature in [11, Fig. 2d]: A ∂tPE pulse with
Vm = 2.35 V, ν = 24, tr = 1.06 ns, f0 = 1.84 GHz
(κw = 1.95); the replica is delayed by tshift = 7 ps. The
replication error amounts to Err% = 2.2%. The con-
structed Srepl is superimposed on Sorig in Fig. 6.

Another example of mimicking a measured signal via
a ∂tPE signature can be found in [14, Sec. VI.A]. These ex-
periments cogently prove the possibility to obtain extremely
accurate causal, analytic copies of physically generated sig-
nals – these functions can then be used in models or within
design strategies concerning complex systems.
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Fig. 5. Replication of the signature in [11, Fig. 2c] via a PEcos
pulse with parameters: Vm = 3.94 V,ν = 4, tr = 0.52 ns,
f0 = 1.67 GHz (κw = 0.87). The replica’s onset succedes
the original signal’s onset by tshift = 119 ps. The repli-
cation error amounts to Err% = 5.2%.
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Fig. 6. Replication of the signature in [11, Fig. 2d] via a ∂tPEcos
pulse with parameters: Vm = 2.35 V, ν = 24,
tr = 1.06 ns, f0 = 1.84 GHz (κw = 1.95). The replica’s
onset precedes the original signal’s onset by tshift = 7 ps.
The replication error amounts to Err% = 2.2%.

4The signatures in Figs. 5 and 6 intentionally exclude some small oscillations preceding the onset that were present in the signals given in [11] (those
oscillations do not actually pertain to the intended pulses and are deemed as irrelevant for replication purposes).

5More sophisticated strategies could also have been employed. Nonetheless, this experiment aimed at demonstrating the similarity between the original
signatures and some of the advocated pulses, and not at obtaining an optimal replication of it. The selected heuristic approach serves this purpose.
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5. Conclusions
Two types of causal, normalized, ringing pulses, namely

the amplitude-modulated, cosine power-exponential (PE) and
windowed-power (WP) pulses were discussed. Their defini-
tion makes use of a small set of intuitive parameters. The
pulses’ ease of use is augmented by their Fourier transform
being analytical. Some typical signatures and spectral di-
agrams were presented, these illustrating the pulses’ ability
to mimic either ringing signatures with a sharp increase and
a long tail (PE) or time-windowed harmonic functions (WP).
A combination of PE and time-differentiated PE pulses was
shown to accurately replicate time-domain behavior of pulses
generated by existing circuitry, thus creating the conditions
for incorporating realistic signatures in complex models or
design frameworks via causal, analytic signatures.
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