
RADIOENGINEERING, VOL. 30, NO. 2, JUNE 2021 449

DOI: 10.13164/re.2021.0449 SYSTEMS

CipherCAD Testbed

Vaclav PLATENKA, Antonin MAZALEK

Dept. of Communication Technologies, Electronic Warfare and Radiolocation, University of Defense,
Kounicova 65, 662 10 Brno, Czech Republic

{vaclav.platenka, antonin.mazalek}@unob.cz

Submitted April 30, 2021 / Accepted May 7, 2021

Abstract. The CipherCAD testbed is a unique workplace
for the development, design, testing, verification and
teaching of the communications systems. CipherCAD is at
the core of the workplace, which is an application primar-
ily designed for solving cryptographic tasks. The applica-
tion can also be used for communicating with hardware
communications devices. The workplace is used in the
Department of Communications Technologies at the Uni-
versity of Defense. The article will present selected exam-
ples used in this workplace. The introduction introduces
CipherCAD and the possibilities for creating simple mod-
els. The first model to be selected shows how to control
SDR IZ225 and process the signals received. The next
model shows how selected modulated signals are gener-
ated in real time, and their transmission throughout the
whole chain of communications. The models that follow
show how they can be used in the field of communications
protocols, VoIP transfer and changing any of the parame-
ters of the transmitted information.

Keywords
CipherCAD, communication systems, model, digital
receiver, VoIP

1. Introduction
The development of communication and information

systems is leading to ever more complicated and sophisti-
cated solutions. It is impossible to focus only on parts of
selected parameters and properties for transferring infor-
mation, such as how efficient the use of a radio spectrum
is, reaching the maximum achievable transfer rates and
robustness of transfer. The issue of data transfer security is
an integral part of all information systems today [1], [2].
Modern communication systems can serve to achieve data
privacy, data authenticity and data integrity, while also
guaranteeing the delivery of data and many other features
and services [3].

The well-known principles for transferring infor-
mation divided into various layers of TCP/IP, or the RM
OSI model have become ever more complex. Security is

generally implemented at all levels (security on the appli-
cation layer, security on the transport layer, security at the
link layer and physical layer) and the systems are becoming
ever more comprehensive. It is common for experts only to
focus on some layers, such as securing data by encryption
at the application layer. The issue of securing data against
errors in the transfer channel using FEC (Forward Error
Correction) codes is a field on its own covered by other
specialists. The comprehensiveness of such systems is even
greater for military radio communication systems, which
also solve problems raised by an EW (Electronic Warfare)
opponent (signal intercept, localization, analyzing, tam-
pering, jamming,…) [4], [5]. These factors make it difficult
for these systems to be analyzed, tested, verified and
taught. There are a number of specific SW and HW profes-
sional and freeware tools available. However, most of them
only focus on part of the field and do not allow for a com-
prehensive solving of the problem.

Over the last few years, it has been possible to create
a relatively unique workplace, the CipherCAD Testbed at
the Department of Communication Systems. This work-
place facilitates the comprehensive analysis, modelling,
testing, verification and demonstration of the principles of
action for various communications systems. The software
application CipherCAD is at the core of the whole work-
place [6]. This application makes it possible to create mod-
els of communication systems in real time. The model
created can communicate with real HW devices. Moreover,
the application has a number of suitable forms for display-
ing information, as well as providing easy access to each
partial element of the model.

The workplace is modular and makes it possible to
connect CipherCAD with HW and SW devices communi-
cating via an IP protocol or an input/output computer
sound card. In this article, we will focus on working
closely with the IZ225 receiver, the communications sys-
tem Emona TIMS and the Cisco IP phone. We will also use
the software AKRS-RT for displaying and analyzing the
signals received.

The aim of the article is to present the CipherCAD
Testbed and to demonstrate its possibilities in specific
examples. The basis of the workplace is the application
CipherCAD, which will be introduced in detail in Sec. 2.

450 V. PLATENKA, A. MAZALEK, CIPHERCAD TESTBED

The following section will be devoted to showing how to
make use of CipherCAD for controlling a software-defined
radio and processing received samples of signals. The next
aspect to be presented will be the possibilities of generating
one’s own signals and sending them using a sound card.
Section 4 describes several models focused on the issue of
voice transfer in IP networks. Created models are support-
ing communication with HW phones. In the conclusion,
other possible uses of the workplace are discussed, along
with suggestions for extending the functionality of Cipher-
CAD.

2. Description of the CipherCAD Tool
The software application CipherCAD has been devel-

oped for the needs of NCISA (National Cyber and Infor-
mation Security Agency). The original idea was to develop
a CAD-type application which allows modelling, research,
testing and verifying cryptographic primitives, algorithms
and protocols. After several years of development, the
application has been extended to include a number of new
functions and possibilities. It currently provides compre-
hensive access to solving various tasks not only in the field
of cryptography. An important feature of CipherCAD that
we use in the field of communication systems is the ability
to communicate with external HW and SW using an IP
interface and sound card. Any data can be read and sent
using these interfaces.

Basic diagrams can be composed from the prepared
graphics component. The basic graphics components are
contained in the tools bar. This includes the sources of data
in various formats, the basic algebraic components for
addition and multiplication, delay, the collector, the static
and dynamic switch, the component for viewing data in
various formats and the component for the graphic display
of data in various modes, as can be seen in Fig. 1.

Figure 1 shows a simple diagram illustrating counting
using the exclusive or (XOR). The input values are entered
using a hexadecimal data editor, which shows the green
components. The data from the output of components is
brought to the addition operator set to XOR mode via con-
nections. The output of the addition is sent to two compo-
nents: the yellow component - data view; and the blue
component - the static switcher. The bottom part of the
picture shows the permutations features of setting the static
switcher. The output of the static switcher is again sent to
the viewer in hexadecimal form. Much more complex dia-
grams can be formed using this process.

The programmable component shown in Fig. 2 is
important. This component allows the users to write their
own codes of component behavior using their own
programming language (similar to the programming
language C#).

Figure 2 shows the same calculation as in Fig. 1, but
written in the programming component. Firstly,
two variables A and B are defined, to which the same values

Fig. 1. Example of the basic components of CipherCAD.

Fig. 2. Calculating in the programming component.

are associated as the input components had in the previous
diagram. The result of the XOR operation for the variables
A and B is stored as variable C. Next, the Swap function is
used to carry out the same permutation, which is performed
by a static switch. The programmable component is set up
to transfer the values of two variables C and D to the out-
put. The user can change the number of inputs and outputs
of the programmable component. Naturally, it is possible to
transfer these values from any other components, such as
from the hexadecimal data editor as in the last example, to
the place of definition of variables A and B inside the pro-
grammable component. The programming component can
be packed thus creating small component with a defined
number of inputs and outputs and adjustable graphics
(color, shape, description, etc.) Components created in this
way can easily be copied and reused as often as required

RADIOENGINEERING, VOL. 30, NO. 2, JUNE 2021 451

when creating complex diagrams. The packed components
will be used frequently in the examples described below.

The above components create the basic building
blocks which can be used to create more complex diagrams
and models. The blocks can exchange data using the dis-
played lines, or in order to keep the diagrams clear by
using transmitting and receiving points or by using global
or local variables. The displayed lines also define the order
of calculations for the individual blocks. If the order is not
defined by lines, the calculations are made from left to
right and from top to bottom. A particular space can be
marked on the desktop as a rectangle, the so-called iterator.
The iterator defines a certain area where the calculations
will be made once initialized. Moreover, other features can
be set on the iterator, such as the number of repeated cal-
culations and how to initialize it. The iterator can be ini-
tialized in a number of ways, whether by manually clicking
on the mouse, sending instructions using the line or by
calling functions from another already-working iterator.

The working diagram created inside the iterator can
be packed into a component as in the case for the pro-
grammable component. Such a component will have the
necessary number of inputs and outputs, its own form,
color and description and can be used for creating more
complex algorithms. This can be repeated many times,
leading to absorption in the line with the logical structure
of the algorithm’s design, as can be seen in Fig. 3. Even if
absorbed many times over, the user continues to have ac-
cess to any information appearing in the diagram and can
record, display and modify it in real time.

Figure 3 shows how to use the absorption function for
the model of the hash function Keccak. The left part of the
figure shows the packed component Keccak-512. By
clicking the mouse on the packed component, the compo-
nent is marked top left with a blue arrow as well as dis-
playing an overview of the inner structure of the compo-
nent. Once in this view of the inner structure, it is possible
to click the mouse again to unpack the selected component.

This way it is possible to get to the lowest level of the
diagram’s structure. The right part of the picture shows the
activity of the chi function, which is created from the basic
components of CipherCAD. The original iterator in the left
part of the picture shows the packed component of the
algorithm Keccak-512. This component can be used to
create complex models of communication protocols. At the
same time, it will be possible to work against HW devices
in real time.

Another strong point of CipherCAD is that it is easy,
quick and illustrative to display data. Figure 4 shows how
to use this feature.

The top component in Fig. 4, the data editor in deci-
mal form, is used to enter the input values. It may be no-
ticed that the component allows text notes in inverted
commas to be inserted. With such a component, the user
can also set a fixed bit-length for the block where the en-
tered values will be represented in the output of compo-
nent. The length of the block in the example is set at
64 bits. In this example, five values have been entered into
the component separated by spaces. The components’ out-
put is transferred to three viewing components. Each of
these components has been set for a different format of
displaying data, in this example decimal, hexadecimal and
binary. The user can select the length of the blocks dis-
played for the viewed component either automatically
according to features of the entered data, or manually as
required. There are several options for using the viewed
component, whether with the display, data properties,
number of values or data checksum. In addition, data can
also be stored in a file, again either manually or automati-
cally upon completing a calculation.

The component Graphic Viewer is used to display
data in CipherCAD too. This component can be used for
a number of tasks from a simple view of the binary order,
viewing periods in the displayed data to the dynamic
viewing of the frequency spectrum using waterfall. Fig-
ures 5 and 6 show the basics of this component.

Fig. 3. Absorbing the hash function Keccak in an algorithm.

452 V. PLATENKA, A. MAZALEK, CIPHERCAD TESTBED

Fig. 4. Data viewing.

Figure 5 shows a lower-frequency digital filter dia-
gram. The diagram shows how static data can be displayed:
in this case displaying the input and output filter signal
over time. In order to be able to display the chronological
order of the sample, the input and output data of the filter
need to be saved in the collector. The data from the col-
lector is transferred to the Graphic Viewer. The user can
set a wide range of parameters for the component, not just
the color, background, grid, line thickness, but especially
the pre-processing of input data and selecting how it will
be displayed. The basic options include display of wave-
form signals, maximum, minimum and average values,
including bit and byte maps. In addition to static display,
CipherCAD enables to display data dynamically.

Figure 6 shows a diagram simulating the activities of
an eight-track oscilloscope in X-Y mode. A total of 8 har-
monic waveforms have been generated using the pro-
grammable component. Eight new values are calculated
and immediately displayed in each cycle. However, the
graphic component remembers the history of the previous
values. The user can set the length of memory. The track’s
brightness can be set from the checklist. CipherCAD sup-
ports up to 6 various tracks on one graph. The graphics
component has a number of other properties. One of them,
events, will be presented in the following section for con-
trolling receivers.

For the needs of asymmetric cryptography, the appli-
cation was equipped to deal with large numbers, i.e. num-
bers that cannot process individually a common arithmeti-
cal unit (64-bit computer). The size and accuracy of pro-
cessing numbers is only limited by the memory capacity of
the computer. In addition to the basic arithmetical opera-
tions, selected algorithms for number theory are also avail-
able. The options can be seen in Fig. 7.

Fig. 5. Graphic view of filter response.

Fig. 6. Dynamic graphic view - oscilloscope.

Fig. 7. Generating prime numbers with the Rabin-Miller test.

RADIOENGINEERING, VOL. 30, NO. 2, JUNE 2021 453

Fig. 8. Calculating the square root of 2 with the required

accuracy.

Rational numbers are also used in cryptography with
an extensive rational part of the number. Figure 8 shows
a way of obtaining an extremely accurate breakdown of the
decimal places for the square root of 2. The number of
decimal places is 19,246, with less than 1/20 shown in
Fig. 8. On a normal computer, it takes less than a second to
calculate and display the calculation.

CipherCAD can also operate with polynomials and
matrices with any size and accuracy of coefficients.

The ability of CipherCAD to communicate with real
HW and SW devices is made possible through a number of
network functions for the application. In order to com-
municate through the IP interface, the user can use simple
functions for sending and receiving data using the UDP
and TCP protocols. To send the data, it is enough to enter
the IP address and the number of the port which the appli-
cation should use. Due to their overload, the basic func-
tions allow for more sophisticated parameters to be speci-
fied for making the connection. The user can thus set the
specific IP interface from which the data will be sent/re-
ceived and the source port number. With the TCP protocol
they can change the size of buffer for sending and receiv-
ing data and also influence the value of the timer for re-
ceiving data in order to transfer a large volume of data over
low-speed lines. The application can also send any IP
packet on the network layer. In this case, the users must
create their own header of the IP protocol, including the
calculations of the header checksum field. However, the
SendPacket() function allows other protocols to be used
than just UDP and TCP, e.g. ICMP. Alternatively, the
whole network operation can be picked up on a chosen
network interface by switching the network interface to

promiscuous mode and transferring the data from the level
of the interface controller. Therefore, the flow of incoming
packets is not affected by the settings and filtering of the
Windows operating system. Consequently, the network
communications are extremely wide and varied, with
CipherCAD being able to send and receive any packets at
the network level.

Another PC hardware interface used by CipherCAD
is the sound card. The user can communicate with any
sound interface through the two basic functions
PlaySound() and RecordSound(). Overloading both of
these functions makes it possible to select a number of
parameters such as the number of sound channels, sam-
pling frequency and the number of bits per sample. It can
be also determined which of the sound devices available
will be used, how many queues will be there and how long
queues will be used for communicating with the sound
interface. This concept of how the application communi-
cates with the sound interface offers the user a wide range
of uses, such as sending/reading the data even in individual
bits.

Fig. 9. Overview of instructions for the programmable

component.

454 V. PLATENKA, A. MAZALEK, CIPHERCAD TESTBED

It is impossible to present all the functions and op-
tions of CipherCAD in brief. However, this would include
working with global and local variables, matrices, regular
expressions, working with data blocks, polynomials, ellip-
tic curves, etc. Figure 9 gives an overview of the instruc-
tion areas used in the programming component.

CipherCAD is unique in its combination of these
functions and features. This can be seen when designing,
testing and verifying cryptographic systems, as well as
when modelling comprehensive communications systems.
Another area of use of no less importance is that it can be
taught to students in the field of communications technol-
ogy in a comprehensive and practical way. Therefore, it
has a wide range of uses. In the next sections, we will show
how it can be used with the software receiver IZ225 and in
the field of VoIP.

3. Signals in CipherCAD
As has already been mentioned in the introduction,

the workplace CipherCAD Testbed contains a wide-band
digital receiver, the IZ225 made by Intriple. The workplace
is equipped with two of these receivers (see Fig. 10). The
IZ225 receiver has software defined radio architecture
which provides two modes – receiver and scanner. In the
receiver mode it is used for signal analysis – swept spec-
trum measurements, demodulation, signal capturing and
streaming. In the scanner mode it continuously scans fre-
quency spectrum in spectrum monitoring applications. The

scanning speed is extremely high – it can be more than
100 GHz/s, which means that a scan in 1 GHz range is
updated every 10 ms [7].

The receiver works in the frequency band from 1 kHz
to 3 GHz with a maximum band width of 40 MHz. The
digital processing of the signal in the receiver is carried out
in FPGA. The receiver is controlled using software via
a 10/100/1000 Mbit Ethernet interface. The SCPI control
instructions in ASCII format are sent to the receiver via
TCP/IP. A summary of all usable SCPI instructions is sup-
plied with the receiver in the Programmer Manual [8]. Data
from the receiver is sent via the same interface, but via the
UDP protocol. At the same time, more possible data can be
sent in the various ports. This means especially real-time
IQ data (up to 2.75 MS/s), off-line IQ data (up to 40 MS/s),
FFT and demodulated audio signal in digital format.

A number of models have been created in Cipher-
CAD to control the IZ225 receiver and to process the data

Fig. 10. Digital receiver IZ225, version for installation into

advanced system – front panel [7].

Fig. 11. The basic control environment for the IZ225 receiver in CipherCAD.

RADIOENGINEERING, VOL. 30, NO. 2, JUNE 2021 455

received from the receiver. These models are distinguished
by a number of suitable elements, which have been taken
on from previous models, especially control blocks and the
unique blocks designed to process and display the specific
types of data received. Figure 11 shows the most universal
diagram of receiver control. The blocks designed for con-
trol are in green. The blocks designed for processing, stor-
ing and displaying the data received are in yellow. Some of
these blocks will be introduced in more detail in the fol-
lowing part.

The first of the blocks to be described is initialization.
It is marked as 1 in Fig. 11. This block is used to set up the
initial settings of the receiver and to send the sequence for
running the selected blocks of the diagram. The initializa-
tion block is represented in detail in Fig. 12. The user can
set the IP address of the selected receiver in the two editors
which are visible in the basic menu, as well as the port for
sending the SCPI instructions.

After unpacking the receiver’s settings block, the user
can adjust the sequence of initialization SCPI instructions
in the text editor. These are represented in Fig. 12 by the
green text fields. Each instruction is written on a separate
line, which is separated by enter. In CipherCAD, the line
break is represented in the text editor by 0x0D0A in hexa-
decimal form. However, the IZ225 receiver requires a line
break in the abbreviated 0x0A format. Therefore, the
ASCII text is converted with SCPI instructions using Re-
place in the Client programming component. In the specific
example in Fig. 12, six instructions are being sent at the
same time.

The first instruction SYSTEM:COMMAND RESP
sets the short answer format for sending instructions. The
short answer format is more suitable for simple parsing.
The instruction SYSTEM:ETH:FARG 1 switches off the
block fragmentation of the data sent to several packets. As
has been described in Sec. 2, the data in CipherCAD is also
processed directly in the network interface, making it quicker
to process the incoming UDP data packets in the same format.
The next instruction TRACE:TYPE:IQTIME:PORT 3010
specifies the port where real-time IQ data is sent. The next
instruction is TRACE:TYPE:IQTIME:RATE 2 750 000,
which is used for setting the sampling frequency of real-
time data in IQ format sent from the receiver. The
instruction TRACE:TYPE:IQTIME: ON starts sending IQ
data from the receiver. The last instruction used to initialize
the receiver is TRACE:TYPE:SPECTRUM OFF, which
switches off the calculation of the FFT frequency spectrum
in the receiver and sending from it. The displayed fre-
quency spectrum in Fig. 8 is calculated from the incoming
IQ data in CipherCAD, which is quicker and better for
other uses. The principle will be described in more detail in
other part of the article.

Another block in the diagram is the data reading and
storage block. This is represented by 2 in Fig. 11. The
instruction ListenIP(device_Index) accepts all IP commu-
nication in the selected network interface. The accepted
packets are then filtered to see whether this is UDP data

from a selected IP address and port. The data packets are
then stored in the collector, i.e. the buffer with the pointer
assigned to the last position in the memory. In our case, the
size of the memory has been chosen as 100,000 data pack-
ets. This size is not due to a requirement for the real-time
processing of data, but for storage and detailed off-line
analysis. The size of the packets is 11,808 bits, of which
608 bits are headers including information about the re-
ceiver’s settings and 11,200 bits are IQ data. The samples
are in 16-bit format, meaning that there are 350 samples in
one packet. It can be calculated from the above that, when
sampling is set to a maximum of 2.75 MS/s, the last 12.72
seconds of continual IQ samples are recorded.

Fig. 12. Sending the SCPI instructions from CipherCAD.

Fig. 13. Block for calculating the frequency spectrum.

456 V. PLATENKA, A. MAZALEK, CIPHERCAD TESTBED

The next block calculates the frequency spectrum
using DFFT and the resulting processing and display of
data. It is marked 3 in Fig. 11. The first block to process
the received IQ data is the block DFFT. This block and its
internal structure are shown in Fig. 13.

The received IQ data enters the DFFT block from the
buffer, along with the pointer for the latest IQ data and the
required threshold level for displaying the frequency spec-
trum. The first two parameters come from the data reading
and storage block, the third parameter comes from the
control bar, which is to the right of the displayed frequency
spectrum. 1,024 IQ samples are always selected from the
input data, i.e. the above has just under 3 packets. The
required calibration constant for setting the spectrum level
correctly is obtained from the header of one of these pack-
ets. This constant changes depending on the receiver set-
tings, for example the selected size of the pre-amplifier.
The received IQ data is reformatted from the 16-bit signed
integer to 64 float format. Next, the data is multiplied with
the already-mentioned calibration constant and the selected
Hamming window. The frequency spectrum is then calcu-
lated using FFT() function, where only absolute values are
of interest. After that, the calculated spectrum is transferred
to units in dBm and the threshold level and display are set
in the graphics component, marked as 4 in Fig. 11. In ad-
dition, other parameters of the recently-received signal are
obtained and displayed while calculating the spectrum.
These include the carrier frequency and sampling fre-
quency. Moreover, information is displayed showing the
maximum level of signal in the spectrum and the so-called
loss. The word loss refers to the number of spectrums
which cannot be calculated and displayed. Either this is
due to the speed of sampling, which makes it impossible to
calculate and especially display the data. For example, at
the fastest sampling at 2.75 MS/s, every 15th block is cal-
culated and displayed of the 1,024 point complex FFT.
Alternatively, it can be caused by the deliberate slowing in
displaying the frequency spectrum in waterfall. This can be
useful for searching for slow changes in the frequency
spectrum [9].

The graphics window of waterfall displays the fre-
quency spectrum over time. As mentioned above, the delay
can be changed between displaying the spectrums. Moreo-
ver, the common threshold level is set, producing the 256
shades of color. Furthermore, the dynamic extent of this
pallet can be changed at any time as required, even when
active. The graphics components showing the frequency
spectrum and the waterfall are set to process events at the
click of a mouse. This is done based on the alternative
selected either for measuring frequency or for retuning the
receiver to the place clicked. In order to search for new
signals in the frequency spectrum in waterfall, an uneven
threshold level can be set, which creates the so-called
learning, or setting the maximum value for the spectrum
line that shows during active teaching. The waterfall desk-
top is black after switching to operations and the only sig-
nals to show are those which are higher than the uneven
threshold level. The block set in the uneven threshold level

Fig. 14. Diagram for generating, modulating and processing

APSK signals.

Fig. 15. Generating 32APSK IQ data in CipherCAD.

RADIOENGINEERING, VOL. 30, NO. 2, JUNE 2021 457

mode is marked as 5 in Fig. 11. The video [9] shows how
to control the receiver as described.

This part will show another way of using CipherCAD
in Testbed. The model in CipherCAD will not be used to
process the signals received, but the opposite, to create
signals in IQ format in real time and to send these signals
to an external modulator. The connections diagram is in
Fig. 14. IQ samples are generated in the model 32APSK
created in CipherCAD. The model is shown in Fig. 15.

The parameters generating the 32APSK signal are set
by choosing the output device, in this case a sound card.
A sampling frequency of fs = 40 kHz was used, along with
a symbols rate of 2,000 symbols per second. The data is
generated randomly in blocks of 100 bits, i.e. in lengths of
10 ms. The IQ samples of the 32APSK signal are generated
based on the standards for DVB-S2 [10]. AWGN noise
with optional SNR is then added to the samples. These IQ
samples are sent to the sound card in 10 ms blocks in 16
signed integer format using the PlaySound (Data,
bitsInSample, samplingRate, channelCount, deviceID)
command. Figure 15 shows the IQ samples against time
and in a constellation diagram. The I samples are sent to
the left channel of the sound card, while the Q samples are
sent to the right channel of the sound card. The analogue
signal from the sound card is transferred to the IQ modu-
lator, which is set up in the hardware system TIMS (Tele-
communication Instructional Modelling System). TIMS is
a flexible and versatile communications trainer that incor-
porates all of the instruments needed to quickly and easily
carry out every communications laboratory experiment
required in a range of courses, from technical college to
university level [11]. The IQ 32APSK samples are modu-
lated at a carrier frequency of fc = 100 kHz. The modulated

Fig. 16. The 32APSK signal received in AKRS-RT.

Fig. 17. The OFDM signal received in AKRS-RT.

signal from the TIMS output is transferred via a 60 dB
attenuator to the input of the IZ225 receiver. The signal
received is then processed on the computer in the program
AKRS-RT (Radiosignal analysis and classification appli-
cation – Real Time). The modular SW application AKRS-
RT is intended for online/offline radio-signal analysis,
classification and decoding. AKRS-RT is applicable as
a standalone installation or as a module of the complex
software solution SYMON SW., deployed in the Czech
Armed Forces since 2010 [12]. The constellation diagram
of the signal received in AKRS-RT is shown in Fig. 16. It
is of interest that AKRS-RT works on the same computer
as the 32APSK generator in CipherCAD.

This example shows the possibilities of the workplace
to create any signal with the necessary parameters, modu-
late this signal and transfer it to the input of the SDR receiver
and process it. An example is the creation of an OFDM sig-
nal in CipherCAD. The information will not be contained
in the individual subcarriers. However, an image will be
transmitted in the envelope of the frequency spectrum,

458 V. PLATENKA, A. MAZALEK, CIPHERCAD TESTBED

which can be displayed using waterfall. Although this
variant has no practical use, it can successfully engage
students in the field of digital modulations. The displayed
capture of the OFDM signal in AKRS-RT can be seen in
Fig. 17. The video captured in CipherCAD can be seen in
[9]. This model demonstrates the comprehensive capabili-
ties offered by the CipherCAD Testbed workplace.

4. VoIP Telephony
The most common way of communicating between

people is by voice. Over the last decades, there have been
huge developments in telephone systems, especially in
mobile cell systems. There is currently a change from
a purely telephone network to networks based on IP proto-
cols. Nowadays it is extremely common to transfer voice
using Voice over IP technologies between anywhere in the
world. CipherCAD can communicate with any device via
IP protocols and communicate simultaneously with a PC’s
sound card. These possibilities have given rise to a number
of models from the simple model of the IP telephone, the
model of the SIP switchboard, the model for testing SIP
devices, the model for changing voice packets in real time,
to the model for a secure call with the possibility of incor-
porating steganographic information [13], [14]. Selected
models will be introduced in more detail in this section.

The first model is a simple IP phone using SIP sig-
naling protocol, which can be seen in Fig. 18. This model
facilitates establishing, modifying, and terminating calls
with any SIP phone based on direct phoning using an IP

address. The A-law version of the simplest codec G.711 is
used for coding the voice. The model overview represents
a call carried out in a laboratory between CipherCAD and
the IP phone Linksys SPA922.

The Initialization block is in the top left corner of the
model. Into the text field, the users enter the phone number
and IP address of the phone they want to connect with.
After running the Initialization block, this will also start the
blocks Receiving SIP Packets, SIP Signalization and Anal-
ysis Tool. The aim of the block Receiving SIP Packets is to
monitor the selected port, in our case port 5060, and filter
all packets transferring the SIP signaling protocol. This
block is responsible for processing and generating all
signaling messages. The model makes it possible both to
start the call and to accept any call. The flow of basic
signaling methods and answers can be monitored in the
viewing components inside the block, including a complete
list of signaling messages.

The green Start Call block is used to start or receive
calls. If the user starts the call, the message INVITE is sent
after clicking on the block. If, however, the call is initiated
from other side, the model sends a response Trying and
Ringing after receiving the message INVITE and starts
ringing. The Start Call block has to be selected to receive
the call. While making the connection, the model with the
phone exchanges information on the port numbers that will
be used for accepting the voice RTP stream. Once the con-
nection has been made successfully, the Receiving Voice
and Sending Voice blocks are initialized. The Receiving
Voice block receives packets of RTP stream from the phone,

Fig. 18. Simple model of an SIP phone.

RADIOENGINEERING, VOL. 30, NO. 2, JUNE 2021 459

Fig. 19. Changes to voice packets by increasing the volume and adding noise.

removes the protocol headers, decompresses G.711 and
sends the voice samples received to the sound card. The
viewing component inside the block displays the current
waveform of the voice received. In contrast, the Sending
Voice block captures voice samples from the microphone,
compresses them in codec G.711, adds the headers of the
RTP protocols and sends them to the phone using the
SendUDP() function.

The purple block Analysis Tool in the top right corner
displays information on the status of the phone and infor-
mation on the progress of the call. The number of received
and sent signaling and RTP packets are displayed along
with the length of call. This information is updated every
250 ms. The red End Call block allows the user of the
model to end the call.

The second model presented facilitates changes to the
voice packets in real time, i.e. changes to packets transfer-
ring voice between any two mobile phones. This model
uses two SIP accounts managed by a public provider of
phone services www.802.cz on the phone numbers
910 800 818 and 511 115 347. In the Initialization block,
the user sets the Interface ID of the PC network interface
and its IP address. The whole model will communicate
with the provider of phone services via the selected inter-
face. Moreover, it will select and set any phone number
which the call is transferred to. After activating the Initiali-
zation block, a number of blocks are initialized responsible
for receiving, filtering, processing and sending SIP signal-
ing messages, but also displaying important events and
parameters. The whole model can be found in the link [9].

The Initialization block first runs the registration pro-
cesses of the above-mentioned SIP accounts at the provid-
ers of phone services. In both cases, CipherCAD acts as the
SIP UA (User Agent) end device. The registration process
is provided by the Register 802 phone blocks. These are
responsible for sending Register signaling messages, pro-
cessing the answers, the calculations of authenticated hash
chains and regular periodic pre-registration. The user has
information on the progress and results of the registration
processes available in the viewing components. Next, the
CALL Signalization block is initialized. This block waits
for the INVITE incoming signaling message. This arrives
as soon as the number 910 800 818 is dialed by any mobile
phone. The provider of phone services forwards the request
to the model created, since the end phone is expected here.
The model responds with the message Ringing and simul-

taneously sends the INVITE request from the second
phone number 511 115 347 to the phone number entered
by the user. If the call is picked up, the call will be con-
nected between the mobile phones, during which all voice
and signaling messages will pass through the model. In-
formation needed for forwarding RTP streams is displayed
in the viewing component. If any of the mobile phones
closes the call, the connection will be ended.

If the mobile phones are successfully connected via
the model, other block are initialized in the list Voice
packets. The most important block is the RTP block. This
block receives all RTP packets from one SIP account and
sends them to another SIP account. For each received
packet, information is displayed from the header of the
RTP protocol, the codec G.711 is decompressed and the
voice waveform is displayed. The users can change the
voice samples. They have simple operations available
which should be easy to distinguish upon hearing. They
can turn up or down the volume, add noise, set the loss of
the packets or filter the voice using some of the low-pass
filters offered. The voice can also be forwarded without
changes. They can change or combine the individual oper-
ations during the call through the simple click of the
mouse. As soon as the samples of voice have been pro-
cessed, the resulting waveform of the changed voice is
displayed, the resulting voice is again compressed by codec
G.711, new information is displayed from the RTP header
and the data is sent to the second phone. Figure 19 shows
the changes to the waveform of a call by increasing the
volume and adding noise.

5. Conclusion
The aim of the article was to present the unique

workplace CipherCAD Testbed and use its features for
analyzing, verifying, testing and teaching complex prob-
lems from the field of communications systems. Section 2
introduced the core of the workplace CipherCAD. This
application is constantly developing and it can be expected
that new features can be expected and the user interface
will be perfected. The ability of the application to com-
municate via a USB interface would be a welcome devel-
opment.

The next section was devoted to an example of con-
trolling the IZ225 receiver and processing the signals re-

460 V. PLATENKA, A. MAZALEK, CIPHERCAD TESTBED

ceived in different variants. The models presented facilitate
processing the IQ samples received, displaying them in the
spectrum or waterfall and storing data for off-line analysis.
One of the biggest advantages of the models presented was
the real-time reaction at the click of a mouse, making it
easy to retune the frequency and to define the parameters
of the spectrum. Users also appreciate the ability to set
their own dynamic signal level, set uneven threshold level
and change the speed of transfer to waterfall. These fea-
tures are especially useful when investigating signals with
slowly changing frequencies, signals appearing in random
for a short time and atypical signals. The end of the section
showed the interconnection of workplace where Cipher-
CAD generated IQ samples of the signal. The application
facilitates the selection of the modulation required, symbol
rate and the level of SNR. IQ samples generated in this
way are then sent to an external hardware modulator. The
modulated signal is transferred to a receiver with the re-
quired attenuation. The received signal is then processed in
AKRS-RT.

The real-time features of CipherCAD have also been
demonstrated in the last section devoted to VoIP. This
section introduces two models. This first model is for con-
necting and carrying out a call with any SIP phone. The
second model makes it possible in CipherCAD to make
a call between two mobile phones and to change and dis-
play the voice packets exchanged by the phones in real
time.

The CipherCAD Testbed workplace is suitable for
creating, processing and analyzing radio signals and other
tasks in the field of communications, including ensuring
secure communications in the various layers of the RM
OSI model. In the near future, we expect the workplace to
have another SDR transmitter.

Acknowledgments

This work has been supported by the project for
development of K-207 department, University of Defense,
Ministry of Defense of the Czech Republic – development
program “AIROPS”.

References

[1] BURG, A., CHATTOPADHYAY, A., LAM, K.-Y. Wireless
communication and security issues for cyber–physical systems and

the internet-of-things. Proceedings of the IEEE, 2018, vol. 106,
no. 1, p. 38–60. DOI: 10.1109/JPROC.2017.2780172

[2] AHMAD, I., SHAHABUDDIN, S., KUMAR, T., et al. Security for
5G and beyond. IEEE Communications Surveys & Tutorials, 2019,
vol. 21, no. 4, p. 3682–3722. DOI:
10.1109/COMST.2019.2916180

[3] SARMILA, K. B., MANISEKARAN, S. V. A study on security
considerations in IoT environment and data protection
methodologies for communication in cloud computing. In
International Carnahan Conference on Security Technology
(ICCST). Chennai (India), 2019, p. 1–6. DOI:
10.1109/CCST.2019.8888414

[4] DULIK, M., DULIK, M. jr. Cyber security challenges in future
military battlefield information network. AiMT Advances in
Military Technology, 2019, vol. 14, no. 2, p. 263–277. DOI:
10.3849/aimt.01248

[5] RIIHONEN, T., KORPI, D., TURUNEN, M., et al. Tactical
communication link under joint jamming and interception by
same-frequency simultaneous transmit and receive radio. In IEEE
Military Communications Conference (MILCOM). Los Angeles
(CA, USA), 2018, p. 1–5. DOI: 10.1109/MILCOM.2018.8599793

[6] KLIMA, V., PLATENKA, V. The cryptographic software tool
CipherCAD and cryptanalysis. In Proceedings of Security and
Protection of Information 2011. Prague (Czech Republic), 2011,
p. 54–65. ISBN: 978-80-7231-777-6

[7] INTRIPLE. IZ225. 1 page. [Online] Cited 2021-04-26. Available
at: https://intriple.eu/product/show?productId=38

[8] INTRIPLE. IZ225 Programmer Manual – IZ225 SCPI Commands,
Prague (Czech Republic), 2015.

[9] CipherCAD. [Online] Cited 2021-04-26. Available at:
www.platenka.cz

[10] EUROPEAN TELECOMMUNICATIONS STANDARDS
INSTITUTE (ETSI). Digital Video Broadcasting (DVB); Second
Generation Framing Structure, Channel Coding and Modulation
Systems for Broadcasting, Interactive Services, News Gathering
and Other Broadband Satellite Applications. Part 1: DVB-S2.
European Telecommunications Standards Institute (ETSI), 650
Route des Lucioles, F-06921 Sophia Antipolis Cedex, France,
2014 [Online] Cited 2021-04-26. Available at:
https://www.etsi.org/deliver/etsi_en/302300_302399/30230701/01
.04.01_60/en_30230701v010401p.pdf

[11] EMONA TIMS. [Online] Cited 2021-04-26. Available at:
www.emona-tims.com

[12] URC SYSTEMS. AKRS RT - Radiosignal Analysis and
Classification Application. [Online] Cited 2021-04-26. Available
at: www.urc-systems.cz/en/product/akrs-rt

[13] MAZALEK, A., VRANOVA, Z., PLATENKA, V., et al. Testing
of incorrect SIP messages processing. In International Conference
on Military Technologies (ICMT). Brno (Czech Republic), 2017,
p. 419–423. DOI: 10.1109/MILTECHS.2017.7988796

[14] PLATENKA, V., MAZALEK, A., VRANOVA, Z. The transfer of
hidden information in data in the AMR-WB codec. In
Communication and Information Technologies (KIT). Vysoke
Tatry (Slovakia), 2019, p. 1–5. DOI: 10.23919/KIT.2019.8883461

