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Abstract. The Toeplitz matrix reconstruction algorithms 
exploit the row vector of an array output covariance matrix 
to reconstruct Toeplitz matrix, which provide the direction-
of-arrival (DOA) estimation of coherent signals. However, 
the Toeplitz matrix reconstruction method based on any 
row vector of the array output covariance matrix suffers 
from signal correlation, it results in poor robustness. The 
methods based on multi-row vectors suffer serious perfor-
mance degradation when in the low signal-to-noise ratio 
(SNR) owing to the noise energy is the square of the input 
noise energy. To solve the above problems, we propose an 
improved method that exploits all rows of the time-space 
correlation matrix to reconstruct the Toeplitz matrix, 
namely TS-MTOEP. This method firstly uses the coherence 
of the narrowband signal and the uncorrelated noise at 
different snapshots to construct the time-space correlation 
matrix, it effectively eliminates the influence of noise. Then, 
the Toeplitz matrix is reconstructed via all rows of the 
time-space correlation matrix, which effectively improves 
the energy of the signal, and further results in the 
improvement of the SNR. Finally, the DOAs can be ob-
tained by combining it with the subspace-based methods. 
The theoretical analysis and simulation results indicate 
that compared with the existing Toeplitz and spatial 
smoothing methods, the proposed method in this paper 
provides good performance on estimation and resolution in 
cases with low input signal-to-noise due to time-space 
correlation matrix processing. Furthermore, in cases 
where the DOAs between the coherent sources are closely 
spaced and the snapshot number is low, our proposed 
method significantly improves the performance of the DOA 
estimation. We also provide the code to realize the repro-
ducibility of the proposed method. 
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1. Introduction 
Direction-of-arrival (DOA) estimation is a major re-

search issue in array signal processing and has been widely 
used in radar, sonar, navigation and wireless communica-
tion [1], [2]. Many subspace-based algorithms including 
MUSIC (Multiple Signal Classification) [3] and ESPRIT 
(Estimation of Signal Parameters by Rotational Invariance 
Techniques) [4] have the disadvantage of rank loss of the 
signal covariance matrix in cases where the signals are 
coherent. This leads to a low DOA estimation performance 
or even the failure of those algorithms. To process the 
coherent signals, researchers proposed the forward spatial 
smoothing algorithm (FOSS) [5] and the forward/backward 
spatial smoothing algorithm (FBSS) [6]. The spatial 
smoothing technique effectively resolves the coherent 
signals, however, it reduces the effective aperture of the 
array and decreases the DOA estimation performance. 
Although the subspace fitting [7] and the compressed sens-
ing algorithms [8] are not affected by signal coherence and 
can directly estimate the parameters of coherent signals, 
however, they require a high computational complexity. 

ESPRIT-like method [9] and its variants have also re-
ceived considerable attentions due to their low computa-
tional complexity. The ESPRIT-like method [9] exploits 
any single row of the covariance matrix of an array output 
covariance matrix to reconstruct the Toeplitz matrix. How-
ever, it is affected by the phase difference and incident 
angle of the coherent signals, which leads to degradation of 
the DOA estimation performance or even failure in some 
cases. To solve the robustness problem of ESPRIT-like 
algorithm, Zhang et al. [10] proposed multiple Toeplitz 
matrix reconstruction (MTOEP) method and for-
ward/backwards partial Toeplitz reconstruction (FB-
PTMR) method [11], respectively. These methods in [10] 
and [11] use the square summation of several rows of the 
covariance matrix of the array output to reconstruct 
Toeplitz matrix. This leads to the fact that the noise energy 
is the square of input noise energy and therefore the DOA 
estimation performance is relatively low at low signal-to-
noise ratio (SNR). 
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Many other matrix reconstruction methods based on 
higher-order cumulant [12–14] have been proposed to 
resolve coherent signals in the low SNR region. Unfortu-
nately, these methods require large numbers of snapshots 
and suffer from burdensome computation. The spatial dif-
ferencing methods [15–17] can also to achieve the DOA 
estimation of coherent signals. However, the DOAs of 
coherent and uncorrelated signals are estimated separately, 
which increased the computational complexity, and re-
duced the DOA estimation performance of the uncorrelated 
signals. 

To overcome the above-mentioned issue, in this paper 
we propose an improved Multiple-Toeplitz matrices recon-
struction method, namely TS-MTOEP. The proposed 
method uses the strong correlation of signal and the weak 
correlation of noise in time and space domains to construct 
a time-space correlation matrix. Then, based on the time-
space correlation matrix, the MTOEP method is adopted to 
reconstruct the Toeplitz matrix. Finally, the DOAs can be 
directly obtained using the subspace method. The theoreti-
cal and simulation results indicate that the proposed 
method enhances the noise suppression ability and im-
proves the DOA estimation performance. The main contri-
butions of the proposed method are as follows: 

1) The proposed method based on the use of strong cor-
relation of signal and the weak correlation of noise at 
different snapshots in time and space domains to con-
struct the time-space correlation matrix, which effec-
tively eliminates the influence of the noise. 

2) The Toeplitz matrix reconstruction based on the com-
plete information of the time-space correlation matrix 
via the MTOEP method to restore the rank and im-
proves the SNR, which produces better DOA estima-
tion performance at low SNRs than those Toeplitz 
matrix reconstruction methods based on the array out-
put covariance matrix and the classical spatial 
smoothing method. 

3) Compared with MTOEP method, the proposed 
method has relatively less computational complexity. 

The organization of this paper is as the following. We 
present the signal model in Sec. 2. The problem formula-
tion is described in Sec. 3. Then in Sec. 4, the proposed 
method based on time-space processing is introduced, 
followed by simulation results and discussions in Sec. 5. 
Finally, this paper is concluded in Sec. 6. 

Symbols: matrices, vectors and scalars are repre-
sented by capital bold letters, lower-case bold letters and 
lower-case letters, respectively. ()H, ()T and ()* represent 
conjugate transpose, transpose, and conjugate, respectively. 

θ

 My t  1y t  0y t  1y t  My t

d

 
Fig. 1.   Antenna array model. 

E[] represents mathematical expectation, 0m  n, Im and 
diag{} represent m  n zero matrix, m m unit matrix and 
diagonal matrix, respectively. 

2. Signal Model 
Consider there are P narrowband far-field sources 

impinged on a linear uniform array (ULA) composed of 
N = 2M + 1 elements with equal spacing from distinct 
directions 1, , , ( )Pθ θ P M .  

Let the array element with index 0 be the reference, 
the complex envelope of each narrowband signal at the 
reference element be si(t), i = 1,2,…,P, and the spacing 
between the adjacent array elements be 2d λ , where λ  
is the carrier wavelength. 

We further assume that the first L  signals are mutu-
ally coherent and the other P L signals are uncorrelated 
and independent of the first signal. Let the first signal 

1( )s t  be the reference, then the k-th coherent signal ( )ks t  
can be expressed as 

 jΔ
1( ) e ( ),  1, ,kψ

k ks t β s t k L      (1)  

where kβ  is the amplitude fading factor, and Δ kψ  denotes 
the phase difference of ( )ks t  related to 1( )s t  (without loss 
of generality, we assume 1 1=1,Δ 0β ψ  ).  

The received data vector by the array at time t is 

 
T

0( ) ( ), , ( ), , ( )

      ( ) ( ) ( ) ( )
MMt y t y t y t

t t t t

   
   

y

x n As n

 
  (2) 

where  1( ), , ( )Pθ θ A a a  denotes the (2 1)M P   

array steering matrix with the steering vector 
Tj2 sin j2 sin( ) e , ,1, ,eP Pπ λMd θ π λMd θ

Pθ
   a   of the i-th  

signal.  T
1( ) ( ), , ( )Pt s t s ts  represents the 1P  source 

signal vector.  T
( ) ( ), , ( )M Mt n t n tn  is the Gaussian 

white noise vector  assumed to be uncorrelated to signals 
with zero mean and variance 2

nσ .  

For the far-field narrowband signals, the i-th signal 
( )is t  has the following expression 

  ( ) ( ) exp (j ) ( )i i is t v t ωt φ t    (3) 

whereω , ( )iv t , and ( )iφ t are the signal carrier frequency, 
signal instantaneous envelope and the signal instantaneous 
phase, respectively. Both ( )iv t and ( )iφ t  are the narrow-
band low frequency signal with slow changes relative to 
the carrier frequency ω . 

As described in (2), n(t) is an additive noise vector 
whose elements as stationary, spatially and temporally 
white, zero-mean random processes that are independent of 
the source signals. That is 
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 H 2( ) ( ) ( )nE t τ t σ δ τ   n n I ,    (4)  

 H( ) ( )E t τ t   n n 0 , for any    (5)  

where ( )δ τ  is the delta function, I  denotes the identity 
matrix, 2

nσ  is the noise power at each sensor. The noise 
characteristics described here are used in time-frequency 
domain methods [18–20] to improve DOA estimation 
performance. 

Based on the above assumptions, the array output 
covariance matrix is expressed as 

 H H 2
yy S( ) ( ) + n NE t t σ   R y y AR A I   (6) 

where RS = E[s(t) sH(t)] represents the signal covariance 
matrix. 

For the DOA estimation of narrowband far-field 
source, the impinged source and noise are stationary 
random process, which results in the received data yi(t), 
i = –M,…,M also to be a random process. Therefore, it is 
necessary to exploit the characteristics of the received data 
in a statistical sense, which has been widely used in the 
DOA estimation methods [21–23]. 

It can be seen from (2) that the data received by dif-
ferent array elements all contain signal source information, 
that is, they appear with equal probability, the Mathemati-
cal Expectation could be simplified to the time average. 
Thus, in practice, the array output covariance matrix Ryy 
and signal covariance matrix RS are unknown, these matri-
ces can be estimated with finite number of snapshots  

 H H
yy S

1 1

1 1ˆ ˆ( ) ( ), ( ) ( ).
K K

t t
t t t t

K K 
  R y y R s s   (7) 

3. Problem Formulation 
We use the data vector y(t) to construct an 

1( )1( )M M   Toeplitz matrix  
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   (8)  
Here RX(t) represents the Toeplitz matrix constructed by 
the received signal vector x(t), RN(t) denotes the Toeplitz 
matrix constructed by the noise vector n(t). 

Therefore, the correlation matrix between RY(t) and 
the obtained data yi(t) from the i-th array element, i.e., 
ESPRIT-like algorithm [9]. Using the result in [9], the 
reconstructed Toeplitz matrix via any row of the array 
output covariance matrix can be expressed as 

 
H 2

Y Y 1,

2
X 1,

( ) ( ) ( )

         ( )

i i i n M i

i n M i

t E t y t σ

t σ






    
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 (9) 

where  1( ) ( ), , ( )Pt θ θ  A a a denotes the ( 1)M P   

array steering matrix with the i-th signal steering vector as 
Tj2 sin( ) 1, ,e Pπ λMd θ

Pθ
   a  . 1,M i

I is an ( 1) ( 1)M M    

matrix with one on the i-th diagonal and zero elsewhere. 

= ( ) ( )i iE t x t  
S S  represents the correlation matrix be-

tween ( )tS  and the obtained signal ( )ix t  from the i-th 

element, where the signal diagonal matrix. can be ex-
pressed as  1( ) diag ( ), , ( )Pt s t s tS  . 

To further improve the utilization rate of the array 
elements, Zhang et al. [10] proposed an MTOEP algorithm 
by exploiting the square summation of RYi(t), i  [–M, M] 
to reconstruct the Toeplitz matrix. Using the result in [10], 
the reconstructed Toeplitz matrix via all information of the 
array output covariance matrix can be expressed as 
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D  . (11) 

To overcome the issue with the robustness of 
ESPRIT-like method affected by phase difference and 
incident angle of the coherent signals, Zhang et al. [11] 
also proposed an FB-PTMR algorithm by using the square 
summation of RYi(t), i  [0, M] to reconstruct Toeplitz ma-
trix. Using the result in [11], the reconstructed Toeplitz 
matrix via half rows of the array output covariance matrix 
can be written as 
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  (12) 

From (10) and (12), we can see that the noise energy 
in the FB-PTMR and MTOEP methods is the square of the 
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input noise energy. This results in decreasing the noise 
suppression ability and reduces the DOA estimation perfor-
mance at the low SNR values. Moreover, the FB-PTMR 
method introduces a color noise, which causes the eigen-
values of the signal covariance matrix deviated from the 
eigenvalue distribution in the white-noise environment. 
This further reduces the DOA estimation performance at 
the low SNR values. Compared with the FB-PTMR algo-
rithm, the MTOEP algorithm doesn’t introduce color noise, 
and results in a higher DOA estimation performance. 

4. The Proposed Method 
To improve the performance of DOA estimation at 

the low SNR values, here we use the fact that the 
correlation of noise is weaker than that of the signal in the 
time and space domains at different snapshots. Then we 
propose a Toeplitz matrix reconstruction method based on 
the time-space correlation matrix, which reduces the 
impact of noise and further improves the DOA estimation 
performance at the low SNR values. 

4.1 DOA Estimation Based on the Time-space 
Correlation matrix 

First, similar to (9) and the characteristics of noise as 
shown in (4), (5), we construct a time-space correlation 
matrix through the correlation between RY(t) and the ob-
tained data ( )iy t τ  from the i-th element 
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 
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Note that as defined in (2) and combining the results of (4), 
(5). Therefore (13) is reduced to 

 H
Y ( ) ( ) ( )i it E t x t τ   R Α S A  .   (14) 

Then, according the result from (3), when the number 
of snapshots is small, ( )iv t  and ( )iφ t can be considered 
approximately as constant within these snapshots, and the 
i-th signal ( )is t  can be expressed as [20] 

 
 

  j

( ) ( ) exp j ( ) ( )

            ( ) exp j ( ) ( ) ( ) e

i i i

ωτ
i i i

s t τ v t τ ω t τ φ t τ

v t ω t τ φ t s t 

     

   
 (15) 

where ω is the carrier frequency of the narrowband far-
field signals. 

Equation (15) shows that each signal source has ap-
proximately phase difference under a relatively small num-
ber of snapshots. It also means that the signal is coherent 
between different snapshots. 

According to the results from (4), (5) and (15), we 
can find that under a small number of snapshots, the signal 

has strong correlation and the noise has weak correlation, 
so this property can be used to improve the DOA estima-
tion performance. 

Next, substituting (15) into (14) and combining the 
result of (9), the time-space correlation matrix Y ( )i tR  is 
obtained as 
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After that, we substitute (16) into (10), and obtain the 
Toeplitz reconstruction matrix based on the time-space 
correlation matrix as 
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 (17) 

By facilitating (17) of the spatial smoothing technique 
to improve the estimation performance 

  TS-MTOEP TS-MTOEP TS-MTOEP= +


R R J R J      (18) 

where J  denotes the exchange matrix with ones on its 
antidiagonal and zeros elsewhere. 

Finally, the DOAs are obtained by combining (18) 
with the subspace-based methods. 

It can be concluded from (10) and (17) that the pro-
posed method exploits the strong correlation of the narrow-
band signal and the weak correlation of the noise at differ-
ent snapshots to construct the time-space correlation ma-
trix, which effectively eliminates the influence of the noise. 
Meanwhile, it employs the complete information of the 
time-space correlation matrix to reconstruct the Toeplitz 
matrix through the MTOEP method to restore the rank of 
the covariance matrix and improves the SNR, which pro-
duces better DOA estimation performance at the low 
SNRs. 

4.2 Pseudocode of TS-MTOEP Method 

For the readers’ convenience, detailed steps for 
implementing our proposed method, which is called TS-
MTOEP, are given as follows 

1) The time-space correlation matrix is obtained based 
on (16). 

2) The reconstructed Toeplitz matrix is obtained via 
(17). 

3) Obtain the forward/backward smoothed matrix based 
on (18). 
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4) Estimate the DOAs of sources by combining (18) 
with TLS-ESPRIT method. 

For reproducible research, the software can be 
obtained at the following website: 
https://github.com/qibingbing870612/Coherent-signal-.git  

4.3 Analysis of the Computation Complexity 

If selecting the TLS-ESPRIT algorithm, the computa-
tional burden of the proposed method corresponds to the 
calculation the correlation matrix, Toeplitz matrix, the 
eigen-decomposition and pseudo-inverse operation. X 
denotes the smoothing number of FOSS/FBSS, τ  repre-
sents the delay time, which can be expressed by the num-
ber of sample points. Summing these processes, we can 
obtain the main computational complexity of these meth-
ods as Tab. 1. 

Compared with MTOEP method, our proposed TS-
MTOEP method has relatively less computational com-
plexity. Meanwhile, it enhances the SNR, and further im-
proves the DOA estimation performance at low SNR. 

5. Numerical Results 
In this section, we present several numerical examples 

to examine the effectiveness of the proposed TS-MTOEP 
method via comparison with the FOSS [5], FBSS [6], 
ESPRIT-like [9], FB-PTMR [11] and MTOEP [10]. We 
make comparisons based on the performance metrics in-
cluding root-mean-square error (RMSE) and the probabil-
ity of resolution (POR). The RMSE and POR are defined 
as 

  2

,
1 1

1 P W

θ i w
i w

RMSE θ θ
WP  

    ,   (19) 

 
1

1
100%

P

θ i
i

POR N
WP 

   
 

   (20) 

where W is the number of Monte Carlo trials, and P is the 
signal source number. We set ,

oˆ 2i w iθ θ   as an ac-
ceptable resolution and Ni counts the number of a success-
ful resolution for the i-th signal. A total of 2000 Monte 
Carlo trials are performed to obtain the statistic results in 
our examples, and there is a random phase delay from 
[0, 2] between these signals at each Monte Carlo trial. To 
 

Algorithm Computational complexity 

FOSS/FBSS       2 3 2 32 1 2 2 +3 2 1 2M K M X M X P P      O  

ESPRIT-Like     2 3 2 32 1 1 +3 2M K M MP P   O  

FB-PTMR       2 4 3 2 32 1 1 + 1 +3 2M K M M MP P    O  

MTOEP         2 3 3 2 32 1 1 2 1 + 1 +3 2M K M M M MP P     O  

TS-MTOEP         2 3 3 2 32 1 ( ) 1 2 1 + 1 +3 2M K M M M MP Pτ      O  

Tab. 1. Computational complexity of different methods. 

be fair, the ESPRIT method is also applied to find the 
DOAs for the FOSS, FBSS, ESPRIT-like, FB-PTMR and 
MTOEP schemes and the analysis is performed in Matlab. 

5.1 Performance versus SNR 

In the first example, we obtain the RMSE and POR 
performance as a function of the SNR. We assume that 
three narrowband far-field signal with carrier frequency 
f = 150 kHz are received from [–5°,4°,20°] by an 11-ele-
ment, where [–5°,4°] are the coherent signals (2 = 1, 
2 = 0) and 20° is the uncorrelated signal. The element is 
separated by half of the carrier wavelength (d = /2) as 
shown in Fig. 2. The noise is zero-mean, Gaussian 
distributed, and temporary white and the noise power n

2 is 
adjust to give the desired SNR = 10log(n

–2) [24]. The 
snapshot number is 200. The noise is the Gaussian white 
noise with zero mean, and the SNR varies from –15 dB to 
10 dB. 

In the ESPRIT-like algorithm, we choose the central 
row of the array output covariance matrix Ryy to recon-
struct the matrix RYi, i = 0. The spatial smoothing number 
of the FOSS algorithm and FBSS algorithm is set to 4. The 
time delay  for our proposed method is set to 6 sample 
points. The simulation parameters defined as Tab. 2. 

From the simulation results shown in Fig. 2 and 3, 
when the coherent and uncorrelated signals exit, it can be 
clearly seen that the TS-MTOEP method achieves a much 
better DOA estimation performance. The FOSS and FBSS 
methods divide the whole array into overlapped subarrays, 
and average the subarray full rank covariance matrices to 
resolve the coherent signals, which leads to an effective 
decrease in aperture size and therefore a decrease in DOA 
estimation performance at low SNR. The MTOEP and FB-
PTMR methods exploit multi-rows of the array output 
covariance matrix to reconstruct the Toeplitz matrix and 
result in the noise energy is the square of input noise en-
ergy, which leads to degradation of the estimation perfor-
mance in the low SNR. Meanwhile, compared with FB-
PTMR method, the MTOEP method does not introduce 
color noise, resulting in better DOA estimation perfor-
mance. However, our proposed TS-MTOEP method takes 
advantage of the strong correlation of signal and the weak 
correlation of noise at different snapshots to construct the 
time-space correlation matrix, which enhances the noise 
suppression ability and improves the DOA estimation per-
formance. Especially for SNR = –10 dB, our proposed 
method provides a much better estimation accuracy 
(RMSE  2°) and resolution probability (POR  85°) than 
those of the other five methods (RMSE  7°, POR  68°). 
 
 

 

Frequency
[kHz] 

Snapshots 
[Sampling 

points] 

SNR 
[dB] 

Subarray  
Number 

Time delay
[Sampling 
points] 

DOA
[o] 

150 200 [−15,10] 4 6 [5,4,20]

Tab. 2. Simulation parameters. 
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Fig. 2. RMSE vs. SNR at the number of snapshots 200. 

 
Fig. 3. POR vs. SNR at the number of snapshots 200. 

The simulation results from Fig. 2 and Fig. 3 also 
show that when the SNR decreases, our method is more 
close to CRB. This is because the time-space processing 
enhances the SNR, which improves the DOA estimation 
performance in the low SNRs. 

5.2 Performance versus Snapshots 

In the second example, we examine the DOA estima-
tion performance as a function of the number of snapshots 
at the low SNR value. The simulation conditions are the 
same as in Sec. 5.1, except that the snapshot number varies 
from 40 to 240 and the SNR is set to –10 dB. 

 
Fig. 4. RMSE vs. the number of snapshots at SNR = −10 dB. 

 
Fig. 5. POR vs. the number of snapshots at SNR = −10 dB. 

Figure 4 and 5 illustrate that our proposed method 
achieves better estimation performance than those of the 
other methods when increasing the number of snapshots. 
This is because when the number of snapshots increased, it 
improves the estimation accuracy of the array output covar-
iance matrix and the time-space correlation matrix, which 
further produces better DOA estimation performance. 
Compared with the Toeplitz reconstruction methods based 
on the array output covariance matrix, the TS-MTOEP 
method based on time-space correlation matrix enhances 
the noise suppression ability, and further improves the 
DOA estimation performance. Especially for a high num-
ber of snapshots such as 240, our proposed TS-MTOEP 
method achieves an improved DOA estimation accuracy 
(RMSE  2°) and a higher probability of successful resolu-
tion (POR  90°) than the other methods (RMSE  6°, 
POR  71°). 

5.3 Performance versus Angular Separation 

In the third example, we obtain the RMSE and POR 
under the separation Δ between the two coherent signals 
received from [–5°,–5°,+ Δ], where Δ denotes angular 
separation which varies from 4° to 18°. The SNR is –10 dB 
and the snapshot number is 64. The spatial smoothing 
number of the FOSS and FBSS algorithms is the same as in 
Sec. 5.2. 

 
Fig. 6. RMSE vs. angular separation at SNR = −10 dB. 
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Fig. 7. POR vs. angular separation at SNR = −10 dB. 

It can be seen in Fig. 6 and Fig. 7 that our proposed 
method TS-MTOEP method has the best RMSEs and 
PORs than that of the other methods across the entire angu-
lar separation range. This is because that the proposed 
method exploits all rows of the time-space correlation 
matrix to reconstruction the Toeplitz matrix, which im-
proves the SNR and further provides better estimation 
performance. In particular, when the angular separation is 
Δ = 5°, our proposed TS-MTOEP method achieves better 
DOA estimation performance (RMSE  5°, POR  70°) 
than those from the other estimators (RMSE  9°, 
POR  58°). 

6. Conclusions 
In this paper, we propose an improved Multiple-

Toeplitz matrices reconstruction method called TS-
MTOEP. First, we construct the time-space correlation 
matrix by exploiting the strong correlation of signal and 
weak correlation of noise in time and space domains to 
improve the noise suppression ability. Then, the new 
Toeplitz matrix based on this time-space correlation matrix 
was reconstructed via MTOEP method. Finally, the DOAs 
are obtained by combining with the ESPRIT method. The 
numerical results show that our algorithm achieves better 
estimation performance than the existing Toeplitz matrix 
reconstruction methods in the sense of RMSE and POR. 
We would like to point out that our proposed method is 
also applicable to planar array, and it will be our future 
work. 
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