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Abstract. The calibration of the angularly dependent ar-
ray error is a challenging task for signal processing. In 
this paper, we propose a neural network (NN)-based two-
dimensional (2D) calibration method for a linear array. 
Firstly, the array steering vectors are measured on an 
azimuth grid at different elevations in an anechoic cham-
ber, and the off-grid steering vectors are derived by the 
proposed local manifold interpolation (LMI) technique to 
reduce the risk of model overfitting. Then, the phase differ-
ences are extracted to form the features of the training 
data. At last, noise is added to the training data to enable 
the NN model to generalize well to the noisy data. The 
proposed method is evaluated by the indoor and outdoor 
measured data from a 77 GHz automotive radar and is 
compared with the conventional signal processing-based 
methods. The evaluation results show that a single NN 
model trained at the lowest signal-to-noise ratio (SNR) 
outperforms conventional methods by at least 55% on 
average over the entire SNR range and gives close perfor-
mance to the perfect array without array error at low to 
medium SNR. 
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1. Introduction 
The array signal processing is a technique widely 

applied in civilian and military fields, such as radar, sonar, 
communication, and seismology [1]. For theoretical re-
search, the responses of the array sensors are assumed to be 
the same so that the array steering vector has a simple 
analytical expression that depends only on the direction of 
arrival (DOA) of the signal when the wavelength and array 
geometry are fixed. 

However, the above assumption usually is not true. 
Due to the production errors, the sensors are not exactly the 
same, which leads to the gain/phase error. Besides, for the 
avoidance of spatial ambiguity, the sensors cannot be 
placed too sparsely, which results in mutual coupling be-
tween sensors. Moreover, the fabrication error and differ-
ence between sensor’s phase center and physical position 
will cause the sensor position error. For the simplification 
of the array error calibration, these array errors are as-
sumed to be independent of the DOA. Thus many online 
calibration methods that jointly estimate the array errors 
and source parameters can be proposed [2–4]. Neverthe-
less, the gain/phase error, mutual coupling, and the sensor 
position error actually all have connections to the DOA, 
especially at high frequency [5], [6]. For the one-dimen-
sional (1D) linear array, which is usually applied in the 
automotive radar [7], its array error depends not only on 
the azimuth but also on the elevation, even though it cannot 
estimate the elevation of a signal. Therefore, for high accu-
racy DOA estimation, 2D array error calibration is neces-
sary. Another noteworthy problem is that usually, the array 
is protected by a cover/radome, which will deteriorate the 
array response further. Thus, we need to adopt offline 
calibration instead of online calibration.  

There are mainly three signal processing-based of-
fline calibration methods, i.e., the exhaustive search 
method, the gain/phase compensation method [8], and the 
array interpolation method [9], [10], which have been re-
viewed and analyzed in detail in Sec. 2. The conclusion is 
that these signal processing-based methods are not able to 
deliver satisfactory performance when the array error de-
pends highly on the DOA of a signal. 

With the development of machine learning, lots of 
data-driven methods have been proposed for DOA estima-
tion [11–20], and some of them focus on handling the array 
errors [14–18]. In [18], a hierarchical framework of deep 
NNs is proposed to deal with the general DOA estimation 
problem, and the robustness with respect to array imperfec-
tions has been shown. In [14], a novel multi-frame phase 
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enhancement method based on the long short-term memory 
(LSTM) NNs has been proposed for the reconstruction of 
a less distorted sample covariance matrix, which helps re-
duce the impact of array errors. However, the above two 
methods have only been verified by simulated data. In [17], 
the measured data obtained by a rectangular array is used 
for training an NN model for DOA estimation. In [16], 
a support vector regression (SVR)-based method is pro-
posed for DOA estimation for a practical wide-beam high-
frequency radar. Both the methods in [17] and [16] have 
shown improved performance over the conventional signal 
processing-based methods. Nevertheless, in the two meth-
ods, the training and testing data are on the same noise 
level. That is to say that the generalization capability re-
garding the SNR has not been considered. In [15], multiple 
machine learning-based methods for DOA estimation have 
been proposed, and they show good performance on testing 
data of different noise levels. However, the models in [15] 
have to been trained by data comprising samples of differ-
ent noise levels. Besides, in the above methods, no method 
for augmenting the training data is given. 

In this paper, we propose a new NN-based method for 
the 2D calibration of angularly dependent array error. The 
basic idea is to utilize the advantage of NN in approximat-
ing complex nonlinear functions. In this case, the func-
tion’s input is defined to be the array output data, and the 
function’s output is defined to be the DOA of a signal. For 
the construction of the training data, the array steering 
vectors are measured on an azimuth grid at different eleva-
tions in the anechoic chamber, and the off-grid steering 
vectors are derived via the proposed LMI technique to 
reduce overfitting risk. The phase differences in complex 
model are extracted from the steering vectors to form the 
input features. In order to make the method generalize well 
to the noisy data, we propose to train the model at the low-
est SNR of application, which means our training data only 
comprise samples of the same noise level. In the end, the 
effectivity of the proposed method is tested by performing 
experiments on the measured data of a 77 GHz automotive 
radar. 

The rest of this paper is organized as follows. In 
Sec. 2, the model for array error calibration and the con-
ventional signal processing-based calibration methods are 
introduced. In Sec. 3, the method of 2D angularly de-
pendent array error calibration is described in detail, which 
consists of data augmentation via LMI, feature selection, 
model generalization to noisy data, and NN construction. 
The experimental evaluations are performed in Sec. 4. 
Finally, Section 5 concludes the paper. 

2. Problem Formulation and 
Conventional Solutions 
Consider a linear array with M sensors (or antennas) 

exposed to K far-field narrowband signal sources. The 2D 
DOAs of the signals are denoted by [, φ] where 

 = [1,…,K] is the azimuth vector and φ = [φ1,…,φK] is 
the elevation vector. The positions of the sensors are repre-
sented by d = [d1,…,dM]. If the array is assumed to be per-
fect, we can model the output of array as [21] 

 ( , , )
( , )

 
 

x A θ φ d s ε
A θ d s ε    (1) 

where A(,d) is the M-by-K array manifold matrix that has 
a well-known analytical expression with respect to , d and 
is unrelated to φ due to the perfect array assumption. s is 
the vector of baseband signals, and ε is the zero-mean 
Gaussian noise vector that is temporally and spatially 
white. 

In practice, the array error usually exists and can 
mainly be divided into three categories, i.e., gain/phase 
error, mutual coupling, and sensor position error. For the 
simplification of the calibration processing, these array 
errors are assumed to be independent of the DOA, which 
leads to the following modified array model [22], [23] 

 ( , )   x CΓA θ d d s ε   (2) 

where the Toeplitz matrix C models the mutual coupling, 
the diagonal matrix  models the gain/phase error, and Δd 
models the sensor position error. On the basis of (2), online 
calibration, which jointly estimates the DOAs and calibra-
tion parameters, can be performed [2–4].  

However, the angular independence assumption does 
not always coincide with the truth. Furthermore, in many 
cases, the array will be protected by a cover/radome, which 
will further deteriorate the uniformity of array error over 
different DOAs. We verify the phenomenon from the 
measurement data of the array of a 77 GHz automotive 
radar. Since the field of interest (FOV) in azimuth is much 
larger than the FOV in elevation for the automotive radar, 
the array outputs are collected while a corner reflector is 
scanned over azimuth grid –40° to 40° at elevations from  
–3° to 3° in front of the radar in a millimeter anechoic 
chamber. In Fig. 1, the phase difference of the antennas 
with interspacing of 1.5 is plotted, where  is the wave-
length. In this figure, “ele” means “elevation”, “wr” means 
“with radome”, and “wor” means “without radome”. As 
shown in Fig. 1, firstly, at the elevation of 0° with the ra-
dome, the phase difference experiences a larger angularly 
dependent nonlinear array error. Secondly, at different 
elevations with the radome, the phase difference is also 
influenced by different array errors (The difference of 
phase difference at different elevations can be larger than 
20°). Thus, we can conclude that, in the practical applica-
tion, the array error depends not only on the azimuth but 
also on the elevation. 

To cope with the angularly dependent array error, we 
need to adopt the offline calibration instead of online cali-
bration. Here, we make another assumption that there is 
only one source (i.e., K = 1). This assumption is reasonable 
since the multiple sources can be separated in the time/fre-
quency/Doppler domain in advance at high probability [24]. 
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Fig. 1.  Measured phase difference between antennas of 

a 77 GHz automotive radar at different elevations 
without and with a radome. 

For instance, the automotive radar with large bandwidth 
and large observation time can separate multiple sources in 
the range-Doppler domain. Under this assumption, the 
array model can be modified as 

 ( )s  x f ε   (3) 

where s  is the baseband signal, and fφ() is the unknown 
array steering vector, which is also related to elevation φ. 
The offline calibration first measures the array steering 
vector fφ() on the azimuth grid with interval of Δ at dif-
ferent elevations. This can be done by scanning a corner 
reflector within the radar 2D FOV in the millimeter cham-
ber. Since we can set a very high SNR, the measured array 
steering vectors can be derived as 

 ,
ˆ ( ) / , , 1,2,...,

ii s i I    f x Ω   (4) 

where x,φi is the array output data when the corner reflec-
tor is placed at azimuth , elevation φi.  is the azimuth 
grid within azimuth FOV, and the number of points in  is 
L. I is the number of sampled elevations. From (4), we can 
find that for the measured array steering vector, we do not 
explicitly show its relation with the elevation but regard 
f̂i (), i = 1, 2,…, I as the multiple noisy observations at 
azimuth . 

After the measured array steering vectors are ob-
tained, the DOA estimation can be performed in the fol-
lowing three ways. 

(1) Exhaustive search  

Exhaustive search is to scan each measured steering 
vector to minimize or maximize the cost function of DOA 
estimation. For example, the beamforming-based exhaus-
tive search method can be represented by [25] 

 H H

,
1,2,...,

ˆ ˆ ˆarg max ( ) ( ).i i

i I







  
Ω

f xx f   (5) 

(2) Gain/phase compensation 

Normally, the gain/phase compensation method only 
needs to measure the array steering vector at  = φ = 0°, 
which is represented by f̂φ = 0°( = 0°). Then, before DOA 

estimation, the sampled data x needs to be calibrated by 
f̂φ = 0°( = 0°), which can be written as 

 0
ˆˆ diag 1/ ( 0 )

     x f x   (6) 

where diag() is the operator to form a diagonal matrix with 
entries of a vector. x̂ is the calibrated sampled data, which 
can be fed into the DOA estimator. For example, if the 
conventional beamforming (CBF) is chosen as the DOA 
estimator, then the DOA will be estimated as 

 H Hˆ ˆ ˆarg max ( ) ( )


  a xx a   (7) 

where T
1 2( ) [ ( ), ( ),..., ( )]Ma a a   a  is the perfect array 

steering vector, and ( ) exp( j2π sin( ) )m ma d   . 

(3) Array interpolation  

The array interpolation method calibrates the array 
data using all measured steering vectors within the FOV, 
and it can reduce the memory for storing the calibration 
information. For the 2D array error calibration, the FOV 
will also be 2D. It maps the measured steering vectors to 
the ideal steering vectors using the linear least squares (LS) 
method. The interpolating matrix can be achieved by solv-
ing the following linear optimization problem [8], [26] 

 
2

2,
1,2,...,

ˆ ˆarg min ( ) ( )i

i I


 




 
G Ω

G a Gf   (8) 

where ||||2 means the 2 norm. We can find the calibration 

information is compressed into a smaller dimension matrix 
Ĝ. Then, before array data x is fed into DOA estimator, it 
needs to be calibrated by x̂ = Ĝx. 

The exhaustive search method can ensure the DOA 
estimation of on-grid sources not be affected by the array 
error and do interpolation for the off-grid sources. How-
ever, it needs high calculation power to support the exhaus-
tive search and large memory to store the measured steer-
ing vectors. For the gain/phase compensation method, it 
only needs to measure and store one steering vector, and 
the computational complexity can be very low (e.g., DOA 
estimation can be performed by the interferometer method 
[27]). Nevertheless, the DOA estimation of the sources that 
are not at  = φ = 0° will be largely affected by the array 
error. For the array interpolation method, only a small 
matrix Ĝ needs to be stored, and the calibration perfor-
mance is usually better than the gain/phase compensation 
method. However, due to the angular dependence of the 
array error, the linear minimization of problem (8) will 
have a large residual error, which leads to insufficient 
calibration. 

3. Angularly Dependent Array Error 
Calibration via Neural Network 
From (3) we know, with angularly dependent array 

error, x  represents a highly nonlinear unknown 
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function. Performing DOA estimation is equivalent to 
finding this function, which is not an easy problem for the 
conventional signal processing-based methods described in 
the last section. Fortunately, as one of the machine learning 
methods, NN is good at nonlinear function modelling [28]. 
Provided with a number of function inputs and outputs, 
i.e., the training set, the NN can be fitted to approximate 
the function relationship, the procedure of which is called 
NN training. 

Since the output of the function is a continuous varia-
ble that has a wide range, we use the NN to perform the 
regression task. For the array calibration case, to do the 
training, we need to first solve three problems, which are 
data augmentation, feature selection, and model generaliza-
tion to noisy data. We describe them as follows. 

3.1 Data Augmentation by Local Manifold 
Interpolation 

The steering vectors f̂i (), i = 1, 2,…, I are measured 
on azimuth grid  at different elevations in the anechoic 
chamber. For the reduction of time consumption of the 
offline calibration during mass production, the azimuth 
grid cannot be too dense. Otherwise, it will take too much 
time to collect the calibration data. This restriction, on the 
one hand, will lead to a small number of training samples 
and overfitting of the network during training, and on the 
other hand, will make the trained model generalize poorly 
to the off-grid sources. 

We propose the LMI technique to augment the train-
ing samples. Assume 1,l l   Ω  are two adjacent grid 

points for measuring the steering vectors. For the off-grid 
angle l <  < l + 1, we can interpolate its off-grid steering 
vector using the measured steering vectors on its M nearby 
grid points, where M is the number of rows of the local 
manifold matrix. We call this method the LMI. This is 
different from the interpolation method in (8) called the 
global manifold interpolation that uses all measured steer-
ing vectors. The LMI is more reasonable since the curve of 
array response normally is smooth, i.e., the steering vectors 
within a small angle interval will not change much. To 
further augment data size and increase robustness, for each 
 , we can interpolate M– 1 steering vectors using M– 1 
different sets of the adjacent continuous measured steering 
vectors. For example, if M= 4, for each l <  < l + 1, we 
can choose the three sets of local azimuth grid represented 
by [l –2, l –1, l, l + 1], [l –1, l, l + 1, l + 2], and 
[l, l +1, l + 2, l + 3]. For each set of the local azimuth grid 
which is represented by , the corresponding local inter-
polating matrix can be obtained by solving the following 
LS problem 

 

2

2

ˆ ˆarg min ( ) ( )

ˆ ( ) ( )

i i

i


 


    

 




 
G

Ω

G f G a

F Ω A Ω
  (9) 

where ()+ means the pseudoinverse. F̂i ( ) and A( ) are 

the local manifold matrices whose columns are composed 
of the measured steering vectors and the perfect steering 
vectors on the local azimuth grid , respectively. Then the 
interpolated steering vector can be achieved by 

 ˆ ˆ( ) ( ).i i f G a   (10) 

Assume P off-grid steering vectors need to be 
interpolated in each interval between two adjacent grid 
points. According to the data augmentation method,  
the number of samples after augmentation will be 
( ( 1)( 1) )L L M M P I     . 

3.2 Feature Selection 

Since the output is the DOA   and we have assumed 
there is only one source, according to the interferometer 
method, the relation between the DOA and phase differ-
ence can be written as [27] 

 2 sin( ) /d      (11) 

where  is the phase difference between the sensors with 
interspacing of d. We can observe that, in theory, the DOA 
is only related to the phase difference. Also, note that when 
d > /2, phase wrapping happens on  [29]. Thus, we 
choose the feature as follows 

 exp( j ) exp( j2 sin( ) / )d        (12) 

where we call  the phase difference in complex mode. 
Another advantage of (12) is the  calculated from f̂i () 
and from x,φi are the same, which is to say that just using 
the previously measured f̂i (), we are able to train the NN. 

For an M-element linear array, we can extract 
N = C2

M= M(M – 1)/2 pairs of sensors with nonzero 
interspacing. Thus, we can get N features, which are 
1, 2,…,N. At last, due to the fact that NN can only deal 
with the real number, we split the real and imaginary parts 
of the complex number, leading to 2N = M(M – 1) features 
in total. 

3.3 Model Generalization to Noisy Data 

To make the NN for array calibration practical, we 
need to ensure it has good prediction performance for the 
noisy data. However, for now, we only have the array 
steering vectors measured at very high SNR. If the model 
is trained based on these high SNR data, then it will gener-
alize poorly to the low SNR data [30] since the model has 
no prior information about these noisy data. 

Our strategy for this is to train the model based on the 
steering vectors measured under the lowest SNR within the 
SNR dynamic range of the application. To explain the rea-
sonability, we write (3) in low SNR and high SNR mode 

 Lo φ Lo

Hi φ Hi

( )

( )

s

s




 
  

x f ε

x f ε
  (13) 
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where the subscript ‘Lo’ and ‘Hi’ represent low SNR and 
high SNR, respectively. Since εLo and εHi are both the Gauss-
ian noise, if we generate as many εLo as possible via the 
Monte-Carlo method, then the generated low SNR data 
will cover the high SNR data, and the model trained on the 
low SNR data will be expected to generalize well to the 
high SNR data. 

As the calibration data is measured under very high 
SNR, we can regard it as noise-free data. Then we add 
zero-mean Gaussian noise ε to the noise-free data to gener-
ate data at the lowest SNR of application. After that, the 
steering vector is calculated by (4) again. For each 
aforementioned sample, we use Monte-Carlo method to 
generate Q noisy samples (i.e., ε is realized Q times).  
Then the final number of training samples is 
( ( 1)( 1) )L L M M P IQ    . 

3.4 Construction of the Neural Network 

After the training samples are generated, we can 
construct the NN. We adopt the fully-connected NN 
architecture with G cascaded layers. Except for the input 
layer and the output layer, the other G – 2 layers in the 
middle are referred to as the hidden layers. Define the first 
hidden layer as layer 1. Accordingly, the output layer will 
be layer G – 1. Since each training sample has 2N features, 
we use 2 1Nz   to represent an input of the NN. The 
output of the NN can be written as 

   ( 1) (2) (1)ˆ NN( ; ) ( )G   z Λ f f f z   (14) 

where ( ) ( ) 1
1{ , }g g G

g

Λ W b  is the set of unknown network 

parameters. f(g)() is the transformation function of the layer 
g, which can be represented as 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( ), 1,2,..., 1g g g g g g g G   f z h W z b  (15) 

where z(g), W(g), b(g), h(g)() are the input, the weight matrix, 
the bias, and the activation function of layer g, 
respectively. Moreover, we have z(1) = z. 

For each training sample, we have a z  and its known 
label . Training the NN is equivalent to estimating Λ via 
minimizing the following cost function  

 
2

2

ˆ( )Loss    Λ   (16) 

where the summation is performed over the samples. After 
optimal Λ  is obtained, we can predict the label of the input 
by using (14). 

Finally, we conclude the proposed method in Fig. 2. 
On the left is the training part. The data measured in the 
anechoic chamber are used to obtain the measured array 
steering vectors. In this step, we augment the data by LMI 
and generate noisy data. Then the measured steering vec-
tors are used to generate the training features, which are  
the phase differences in the complex mode. After training the 

 
Fig. 2.  Block diagram of neural network-based array 

calibration method. 

NN, we will test it using the test data that has not been seen 
by the model and output the predicted DOA. 

4. Experimental Evaluation 
In this section, we perform experiments to evaluate 

the performance of the proposed method. We use a 77 GHz 
FMCW automotive radar with a 2T4R (two transmitters 
and four receivers) linear array with a radome. Using the 
MIMO processing, we effectively have M = 8 sensors. Its 
azimuth FOV is from –40° to 40° and elevation FOV is 
from –3° to 3°. In the millimeter chamber, we put a corner 
reflector in front of the radar, and scan it on azimuth grid 
[–40°, 40°] with the interval of 0.5° at elevations –3°,  
–2°,…, 3°. The measured data are extracted from the 
range-Doppler domain, and the SNR is about 60 dB. The 
measured data on integer grid points (i.e., [–40°, –39°,…, 
40°])  at elevations –3°, –2°,…, 3° are used to construct the 
calibration (training) data, and the measured data on deci-
mal grid points (i.e., [–39.5°, –38.5°,…, 39.5°]) at eleva-
tions –3°, –2°,…, 3° are used to test the calibration perfor-
mance. Thus, we have I = 7. The proposed NN is compared 
with the gain/phase compensation method and array inter-
polation method, which are abbreviated as “Gain/phase” 
and “Interpolation”, respectively. The DOA estimators of 
the signal processing-based methods are chosen as the CBF. 

During the step of constructing the training data, 
when adopting the LMI, we have L = 81, P = 9. Due to the 
MIMO architecture, the 8-element array can be split into 
two 4-element arrays, which can be interpolated 
independently. So, we have M = 4. When generating the 
noisy samples, we set Q = 100. Therefore, the total number 
of the noisy training samples will be 
( ( 1)( 1) ) 1530900L L M M P IQ      . For the feature 

selection, from the measured steering vector, we extract 
( 1) / 2 28N M M    phase differences in complex mode 

and finally get 56 features after real and imaginary number 
splitting. The NN is trained using MATLAB software and 
the training parameters are listed in Tab. 1. 
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Parameter name Value 

Size of training samples 56  1530900 
Number of hidden layers 5 

Number of neurons on each layer 32 

Type of activation function ReLU 

Type of solver Adam 

Max epochs 1000 

Batch size 14336 

Initial learning rate 0.001 

2 regularization 0.0001 

Tab. 1.  The training parameters of the neural network. 

4.1 Calibration Performance under Noise-
Free Condition 

Here noise-free condition means we do not manually 
add noise to the chamber data and test data. So, in this 
case, the number of training samples is 15309, and when 
training the NN, we decrease the batch size to 896. The 
noise-free calibration performances are reflected by the 
DOA estimation error evaluated on the test data at eleva-
tion 0°, which is shown in Fig. 3, and by the root-mean-
square errors (RMSEs) of DOA estimation at different 
elevations, which are shown in Fig. 4. Here we also include 
the result of the NN trained only by the data at elevation 0°. 

 
Fig. 3.  Comparison of DOA estimation error evaluated on 

noise-free test data at elevation 0° after calibration. 

R
M

S
E
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D

eg
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Fig. 4.  RMSE comparison of DOA estimation evaluated on 

noise-free test data at different elevations after 
calibration. 

The RMSE of DOA estimation at the i-th elevation is 
calculated as 

 
2

2

ˆ /i i i iRMSE  θ θ θ   (17) 

where || takes the length of a vector, and the vectors i and 

îθ  are composed of the true and estimated DOAs of the 

sources on the azimuth test grid at the i-th elevation, re-
spectively. 

From Fig. 3 and Fig. 4, we can find that if the NN is 
trained only at elevation 0°, then it will have the best cali-
bration performance at elevation 0° but will have the worst 
performance at large elevations. If the LMI is not adopted 
in the proposed NN method, then the calibration perfor-
mance will deteriorate due to the overfitting of the NN 
model caused by a smaller training set. If the NN is trained 
at multiple elevations, it will have good performance in the 
whole 2D FOV. The array interpolation method calibrates 
the array a little better than the gain/phase compensation, 
and the calibration performance of the proposed NN-based 
method surpasses the other two signal processing-based 
methods, achieving the DOA estimation error about less 
than 0.1°. 

4.2 Calibration Performance under Noisy 
Condition 

Here we compare the statistical calibration perfor-
mances of network models trained with noisy data at 
different SNRs. The statistical calibration performance is 
also reflected by the RMSE of the DOA estimation that is 
calculated as 

 

2

2
noisy

1 1

ˆ j
J I i i

j i i

RMSE
IJ 


 

θ θ

θ
  (18) 

where J is the number of Monte-Carlo experiments, which 
is set as J = 500, and ˆ j

iθ  is the vector composed of the 

estimated DOAs on the azimuth test grid at the i-th eleva-
tion in the j-th experiment. The SNR is varied from 15 dB 
to 50 dB. Here we only care about the performance above 
15 dB because 15 dB is often the SNR detection threshold 
of most systems. For performance reference, the DOA 
estimation performance of the perfect array with the same 
geometry is included. 

From the comparison results shown in Fig. 5, we can 
find that the RMSE of the array interpolation method is 
a little lower than that of the gain/phase compensation 
method, and their RMSEs keep almost constant under 
different SNRs due to large residual array error. Moreover, 
the model trained at high SNR generalizes poorly for the 
low SNR data. However, if the NN is trained at the lowest 
SNR (i.e., 15 dB), the calibration performance will surpass 
the signal processing-based methods under all SNRs (by  
at least 55% on average in RMSE) and will be close to the 
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Fig. 5.  RMSE comparison of DOA estimation on noisy test 

data versus SNR after calibration. 

perfect array without array error under low to medium 
SNR. Besides, the model trained at the lowest SNR has 
a slightly higher RMSE than the models trained at high 
SNR. However, this is not a problem in the practical appli-
cation. Due to the fact that the model trained at only one 
SNR point has satisfactory performance over the entire 
SNR range, there is no need to train the model for a range 
of SNR, which helps save the computational resource. 

4.3 Performance Verification using Outdoor 
Road Measurement 

In the last experiment, we will use the practical out-
door road measurement data to verify the proposed NN-
based calibration method. This is important because we 
need to confirm whether the model trained on the indoor 
measured data mixed with the Gaussian noise works in the 
practical outdoor noisy situation. The road measurement 
scenario is shown in Fig. 6, where we can see two cars and 
a truck on the road. On the right side of the road, we also 
can see a line of lamps and the guardrail. 

The data collected by the radar is processed by 2D 
FFT, constant false alarm rate (CFAR) detection, and then 
the array data is processed by the gain/phase compensation, 
array interpolation, and the proposed NN trained at 15 dB. 
The estimated DOAs and the ranges of the targets are used 
to map the targets on the x-y plane shown in Fig. 7. In 
Fig. 7, we have not performed the clustering operation. So 
we can observe multiple points corresponding to a target 
due to the multiple scatters on a target. From the results of the 

 
Fig. 6.  The road measurement scenario. 
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Fig. 7.  The estimated positionings of targets before clustering 
operation: (a) Gain/phase compensation, (b) array 
interpolation, (c) the proposed NN at 15 dB. 

 
(a) 

 
(b) 

Fig. 8. Comparison of estimated DOAs over multiple 
continuous frames from different methods: (a) A target 
with negative azimuth, (b) a target with positive 
azimuth. 

signal processing-based methods and the NN-based 
method, we can clearly see three targets corresponding to 
the vehicles and a line of barriers corresponding to the 
lamps and the guardrail. This indicates our proposed NN-
based calibration method can work in the practical outdoor 
situation. Besides, in Fig. 7, we can observe some differ-
ences between the NN-based methods and the signal pro-
cessing-based methods, although the differences are not 
significant due to the large-scale scenario. 



554 Y. PAN, S. RAJENDRAN, S. POLLIN, 2D ANGULARLY DEPENDENT ARRAY ERROR CALIBRATION FOR 1D ARRAY VIA NN … 

Besides, we also extract the estimated DOAs related 
to one same target over multiple continuous frames. The 
results are shown in Fig. 8. In Fig. 8(a), the scatters of the 
target have negative azimuths. We can find the estimated 
DOAs of the signal processing-based methods start to 
deviate from those of the proposed NN method signifi-
cantly when the azimuth is around –8°, which is consistent 
with the noiseless DOA estimation performance shown in 
Fig. 3. In Fig. 8(b), the scatters have positive azimuth, and 
the deviation is smaller than that in Fig. 8(a), which can be 
explained by the fact that around azimuth of 10°, the per-
formance difference between the signal processing-based 
methods and the proposed NN method shown in Fig. 3 is 
small. Thus, the last experiment also confirms that the 
results of outdoor measurements are consistent with those 
of indoor measurements. 

5. Conclusion 
In this paper, we proposed a new NN-based method 

for calibrating the 2D angularly dependent array error. In 
this method, the measured calibration data is augmented by 
the proposed LMI technique to avoid overfitting of the NN 
model, and Gaussian noise is added into the calibration 
data to improve the generalization performance to the noisy 
data. The performance of the proposed method is verified 
by the indoor and outdoor measured data from a 77 GHz 
automotive radar. It shows the calibration performance of 
NN trained at the lowest SNR surpasses the conventional 
signal processing methods largely under all SNRs and is 
close to the performance of the perfect array without array 
error under low to medium SNR. Since the model trained 
at the lowest SNR works well for a large range of SNR, 
there is no need to do training for a range of SNR. 
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