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Abstract. The subject of this paper is the revisit of the
Chebyshev (equiripple) and Papoulis (monotonic or stair-
case) low-pass filter in order to compare. It can be stated the
fair comparison of Papoulis and Chebyshev filters cannot be
found in the available literature. At the beginning, it is shown
that ripple parameter may be used in order the Chebyshev
filter to obtain a magnitude response having less passband
ripple than the standard Chebyshev response. At the same
time, the passband edge frequency is preserved at 3 dB. Fur-
ther, the unified approach to design odd and even degree
Papoulis filters is explained. For the purpose of comparison,
the Chebyshev filter as a counterpart of the Papoulis filter is
introduced. Thus obtained Chebyshev filter has the same stop
band insertion loss, group delay and transient response as
Papoulis filter. However, its passband performance is much
better. It is shown that Chebyshev filter counterpart offers
a better solution than Papoulis filter in all applications, ex-
cept in ones applications where is required that passband
attenuation to have a staircase shape.
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1. Introduction
The Papoulis propose allpole lowpass filters [1] which

may be considered as a good transition between Butterworth
filters from one side and Chebyshev filters on the other. The
passband amplitude characteristic of these filters decreases
monotonically withω and exhibits staircase behavior. "These
filters can be used in many applications; i.e., when the tran-
sient response is also considered, a high ripple in the pass-
band is not tolerated; one then uses as a simple compromise
the Butterworth filter whose cutoff properties are not too
good.", considers the author of the mentioned paper. Af-
ter the publication of that paper, the monotony filters have

attracted the attention of researchers. For examples, they
are: the class H (Halpern) filters [2] which yield maximum
asymptotic slope, the monotonic filters with improved stop-
band performance [3], LSM (least-square monotonic) fil-
ters [4] that provide the smallest passband loss among all
filters whose passband magnitude response is bound to be
monotonic and paper [5] in which authors shown that the
Halpern filters are only of academic interest. Comparison
of monotonic and parabolic filter is given in [6], while in
paper [7] comparison among monotonic filters can be found.
It should be also noted that monotonous filters occupy a large
part of the recently published book [8].

This paper has two main objectives. Firstly, it will be
shown that equiripple (Chebyshev) approximation offers bet-
ter or in the worst case equal performances in comparison
with staircase (Papoulis) approximation. Secondly, it has
been shown that Chebyshev filter, as a counterpart of Pa-
poulis filter, can be used instead of the Papoulis filter in all
applications. Finally, we got the general feeling that staircase
filters are only of academic importance.

2. Transfer Function of the Filters
Assume that a linear time-invariant doubly terminated

network is described by a linear differential equation of de-
gree n. The corresponding power loss [9] is a rational func-
tion of s and takes the form:��t2

n(jω)
�� = 1

1 + φn(ω2)
(1)

with φn(ω2) being the characteristic function complete even
or odd polynomial of degree n inω2. Insertion loss expressed
in dB is given by IL = 20 log10 |tn(jω)|.

The relationship between the power absorbed by the
load resistor and the power which reflected at input termi-
nals back to the source is given by the Feldtkeller equation
|tn(jω)|2 + |ρn(jω)|2 = 1, where ρ(jω) is reflection coef-
ficient at input ports. Putting expression for transmission

DOI: 10.13164/re.2021.0569 SIGNALS



570 N. STAMENKOVIC, N. STOJANOVIC, D. JANKOVIC, ET AL., A COMPARISON OF PAPOULIS AND CHEBYSHEV FILTERS . . .

coefficient (1) into the Feldtkeller’s equation, one gets

|ρn(jω)|2 =
φn(ω

2, ε)

1 + φn(ω2, ε)
(2)

and return loss expressed in dB is given in the following form
RL = 20 log10 |ρn(jω)|.

Having established φn(ω
2) the continuous time low-

pass transfer functions tn(s) can be found by using the stan-
dard procedure. The first step is the analytic continuation in
the complex s-plane1 of φn(ω2) by substitution ω2 → −s2.
The second step is factoring 1+ φn(−s2). The left half of the
s-plane factors being the desired denominators of stable and
time invariant transfer function:

tn(s) =
h0

n∏
i=1
(s − si)

=
h0

n+1∑
i=1

aisn−i+1
=

1
n+1∑
i=1

disn−i+1
(3)

where h0 = an+1/
√

1 + φ2
n(0) is constant that ensures that

amplitude |tn(ω)| is bounded above by unity, and di = ai/h0.
If n is odd then the characteristic function is equal to zero at
the zero frequency, i.e. tn(0) = 1, which gives h0 = an+1 and
dn+1 = 1.

2.1 Scaled Chebyshev Characteristic Function
As well known, the optimum filter design with respect

to the cutoff slope can be obtained using Chebyshev polyno-
mials [10]. When a high ripple in the filter’s pass-band can-
not be tolerated, to reduce the pass-band ripples and to pre-
serve the pass-band edge frequency at ω3dB = 1 is necessary.
Therefore the scaling the standard Chebyshev transcendental
function with the ripple parameter ε and the renormalizing
with respect to the real angular frequency ξn(ε) will be used.
The scaled Chebtshev characteristic function of the lowpass
filter can be now obtained in the following form

φn(ω
2, ε) = ε2 cos2 (n arccos(ω · ξn(ε))) . (4)

Since the 3 dB passband cutoff frequency normalized to unity
is considered, i.e. φn(1, ε) = 1, the angular frequency for
renormalization of the characteristic function can easily be
found in the closed form as follows

ξn(ε) = cos
(
1
n

arccos
(
1
ε

))
≥ 1. (5)

Thus, on the interval [0,ωrb], where ωrb = 1/ξn(ε) ≤ 1 is the
ripple band, φn(ω2, ε) oscillates between 0 and ε2, causing
the |tn(jω,ε)| to oscillate between 1 and 1/

√
1 + ε2, while at

the same time |tn(j, ε)| = 1/
√

2. Insertion loss level over the
ripple band can be computed as Lr = 10 log10(1 + ε2).

It can be noted that characteristic function (4) is squared
Chebyshev polynomial of the degree n, scaled with ε and
renormalised by ωrb = 1/ξn(ε), which has the form

T
(ε)
n (ω) = ε cos

[
n arccos

(
ω

ωrb

)]
. (6)
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Fig. 1. Scaled Chebyshev characteristic functions for ε = 0.35
and n = 3, 5 and 7. Ripple bands, ωrb, are labeled.

Hereinafter it is referred to as Scaled Chebyshev polynomial
or only Chebyshev polynomial since his pass band is equirip-
ple. It can be also considered that ripple factor ε can be
referred as the order of the Scaled Chebyshev polynomial.
Embedded parameter ε act as a degree of freedom in the
same away as order ν in the case of Gegenbauer polynomi-
als [11]. These polynomials are not orthogonal with respect
to the Chebyshev weighting function (1 − ω2)−0.5 over the
interval ω ∈ [−1,1], since the renormalized frequency ωrb
depends both on the filter’s degree and the ripple parameter ε.
On the other hand, these polynomials are pure even or pure
odd polynomials with real roots lying in the passband.

The plot of three Scaled Chebyshev characteristic func-
tions, φn(ω,ε), for ε = 0.35 and n = 3,5 and 7 are given in
Fig. 1.

Ripple bands [0,ωrb] of these characteristic functions
are also depicted in Fig. 1. Thus, the Scaled Chebyshev poly-
nomials (6) are the variety of Chebyshev polynomials and
they can be used in the approximation of the filter magnitude
function of the transmission coefficient.

2.2 Characteristic Function of Papoulis Filter
In the original papers [1] and [12] Professor Papoulis

proposed monotonic (staircase) lowpass filters for the odd
and even degree2, respectively. The class of filters is called
L-filters, because in the original derivation Legendre poly-
nomials were used. In the following text a unique solution
for the odd and even a filter degree in details is described.

The generating equation for the odd and even character-
istic function of the staircase case filter of the degree n with
real coefficients, can be expressed in the following form [14]

φn(ω
2) =

∫ ω

0
xu2

n−1(x
2)dx (7)

and it is positive real function of ω2. To achieve that φn(ω2)
is a monotonic polynomial (dφn(ω2)/dω ≥ 0), the poly-
nomial u2

n−1(x
2) is used to be a perfect square. To deter-

mine un−1(x2), it is expanded as a sum of squared orthogonal
1 s = σ + jω
2 The same results for even degree were published by Fukada [13].
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polynomials in the interval of orthogonalitymatching the nor-
malized passband of the lowpass filter, i.e. ω ∈ [0,1]. Using
shifted Jacobi’s polynomials instead of Legendre polynomi-
als [1] the staircase (monotonic) Papoulis filter can also be
derived.

The Jacobi polynomial of degree n with two inherent
parameters α and β, P(α,β)n (x), is orthogonal with respect to
the weight function w(x) = (1− x)α(1+ x)β over the interval
x ∈ [−1,1]. It have n distinct zeros for α , β but they are
neither even nor odd. Such type of the polynomial is not
suitable to be a filter characteristic function, and it needs to
be modified in order to meet the requirements to be a filter
function [15]. For the purpose of the monotonic filter de-
sign shifted Jacobi polynomials are used. They are defined
by linear substitution, Gn(p,q, y) = P(α,β)n (2y − 1), where
p = α + β + 1 and q = β + 1 (with q ≥ 0 and p ≥ q − 1).
These polynomials are orthogonal on the interval y ∈ [0,1]
with respect to the weight function w(y) = (1− y)p−qyq−1. It
can be shown that if q ≥ 1 and p = q, then w(y) = yq−1

and Gi(q,q,1) = 1. Shifted Jacobi polynomials can be
easily determined through the Matlab symbolic function
jacobiP(n,a,b,x).

Since parameter values p = q ≤ 2 are restricted to
be the integer values and let y = x2, then Gi(q,q, x2)
is a pure even orthogonal polynomial with respect to the
weight function w(x) = x2q−1. In other word, polynomial
un−1(x2) = xq−1Gi(q,q, x2) is orthogonal wit respect to the
weight x. Then

2
∫ 1

0
x
[
xq−1Gn(q,q, x2)

] [
xq−1Gm(q,q, x2)

]
dx = 0 (8)

with dy = 2xdx and it can be used in the certain place in the
filter characteristic function.

In order to determine the characteristic function of the
Papoulis filters (7), we first expand polynomial un−1(x2) into
the form of a series of the shifted Jacobi orthonormal poly-
nomials, the following expression arises

φn(q,ω2) =

∫ ω

0
x
xq−1

(n−q)/2∑
j=0

cjKjG j(q,q, x2)


2

dx (9)

where q is 2 for n even and 1 for n odd. The constant Ki is
calculated from the orthonormality condition for the polyno-
mial un−1(x2). The inner product is first calculated for that
purpose∫ 1

0
x
[
xq−1Gi(q,q, x2)

]2
dx =

{
1

4i+2 for i odd
1

4i+4 for i even
(10)

So, equation (10) implies Ki =
√

4i + 4, where the val-
ues for i are bounded by q/2 − 1 ≤ i ≤ n/2 − 1 for n even
and Ki =

√
4i + 2, where the values for i are bounded by

(q− 1)/2 ≤ i ≤ (n− 1)/2 for n odd. Since φn(q,1) = 1 it fol-
lows that

∑
i c2

i = 1, then the ω3 dB bandwidth is normalized
to be unity.

From equation (9), the cutoff rate of the characteristic
function at the passband edge frequency ω = 1

dφn(q,ω2)

dω

����
ω=1
=


(n−q)/2∑

j=0
cjKj


2

(11)

is maximum, as it is introduced by Papoulis [1]. The
unknown coefficients cj can be determined by solving
an extremal-value problem with the help of the Lagrange
multiplier λ and the Lagrange function as

F(c, λ) =
(n−q)/2∑

j=0
cjKj − λ


(n−q)/2∑

j=0
c2
j − 1

 = 0 (12)

where c is the vector contains coefficients cj . The partial
derivatives of F(c, λ) give (n − q)/2+ 1 equations, which are
solved by setting them to zero, as

∂F
∂cj
= Ki − 2λcj = 0, for j = 0,1, . . . ,

n − q
2

(13)

and
∂F
∂λ
=

∑
j

c2
j − 1 = 0. (14)

By using equation (13), the coefficients ci can be expressed
as cj = Kj/2λ. Putting these values into equation (14) pa-
rameter λ is obtained and then ci . Since the coefficients ci
are known, the characteristic function is obtained by using
definite integral as it is given in (9). For example, let n = 6
and q = 2. Then i = 0,1,2, c = [

√
6/6,
√

3/3,
√

2/2] and
φ6(2,ω2) = 50ω12 − 120ω10 + 105ω8 − 40ω6 + 6ω4.

The plot of three odd degree Papoulis (staircase) char-
acteristic functions (q = 1) for n = 3,5 and 7 are given in
Fig. 2. The inflection points closest to the passband edge are
labeled. These frequencies are used to define the staircase
band ωs and staircase insertion loss level, Ls. If filter degree
increases, the staircase passband increase and the correspond
passband attenuation slightly increased.
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Fig. 2. Papoulis characteristic functions for n = 3, 5 and 7.
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D(s) = d1s
n + d2s

n−1 + · · · + dnx + dn+1

n 3 4 5 6 7 8 9 10 11

a1 1.7320508 2.4494898 4.4721360 7.07106782 13.2287569 22.1359444 42.0 72.7461319 139.298248
a2 2.3079948 3.8345675 6.9871788 12.1278400 22.7857418 40.6406403 77.5139389 140.83223 271.064789
a3 2.2697771 4.5777082 9.7567472 18.9272881 39.3909187 75.9192657 156.357117 301.549255 617.50238
a4 1.0 2.9713612 7.4948750 16.9495487 38.3167419 81.1383209 176.202393 363.348633 773.079041
a5 1.0080065 3.9588523 11.4509706 30.5599766 73.5000687 176.926605 397.415161 911.598999
a6 1.0 4.7394233 16.1055908 46.2091255 124.912025 311.501251 769.243103
a7 1.0065688 5.7465262 21.8450184 71.0707932 204.038589 562.743774
a8 1.0 6.5706539 28.300066 98.7220383 311.780029
a9 1.0049937 7.58414555 35.8750725 138.497711
a10 1.0 8.43657398 44.1699791
a11 1.00385964 9.45252609
a12 1.0

εn 0.1831807 0.1267956 0.144913 0.1148077 0.118908 0.1000614 0.1009258 0.08794392 0.08781151
Area 0.100025 0.0674987 0.0485481 0.0365567 0.0292278 0.0234262 0.0197498 0.0164727 0.0143424
AS 1.7321 2.4495 4.4721 7.0711 13.2288 22.1359 42 72.7461 139.2982
ωrb 0.7507 0.8022 0.8769 0.8966 0.9241 0.9339 0.9474 0.9532 0.9610

Lr [dB] 0.1433 0.0693 0.0903 0.0569 0.0610 0.0433 0.0440 0.0335 0.0334

Tab. 1. The normalized coefficients of the polynomials in the denominator of the equiripple filters designed as the counterparts of staircase filters.

3. The Chebyshev Filter as a Counter-
part of the Papoulis Filter
The first border class of the Scaled C filters, obtained

when ε → 0, correspond to the Butterworth filters. The
second border class (ε = 1 and ξn(1) = 1) corresponds to
the Chebyshev filter with 3 dB passband ripples. One can
observe, if the ripple parameter ε increases from 0 to 1, the
asymptotic slope3 increase from 1 for Butterworth filters,
to 2n−1 for Chebyshev filters, where n is filter degree. The
asymptotic slope of the Papoulis filter lies between these two.
It will be shown in the following text that the Chebyshev filter
can be considered as the counterpart of Papoulis filter, if it
has the same asymptotic rate as Papoulis filter.

Since both filters should have the same asymptotic
slope, the order ε of the Chebyshev filter can be found by
solving the following nonlinear equation ASC = ASP, where
ASC is asymptotic slope of Chebyshev filter

ASC =

[
d2n

dω2n φn(ω
2, ε)

] 1
2

= ε2n−1 cosn
(
1
n

arccos
1
ε

)
(15)

and ASP is known asymptotic slope of Papoulis filter. In other
word, asymptotic slope is squared root of the leading coef-
ficient of filter characteristic function φn(ω2). For example,
if n = 9 then asymptotic slope of Papoulis filter is ASP = 42
and Chebyshev filter, as the counterpart of the Papoylis filter
filter, is characterized by ε9 = 0.1009258.

Table 1 contains coefficients of the Chebyshev filters
as the counterparts of the Papoulis filters up to 11th degree.
Table also summarizes the corresponding performances: the
counterparts values of εn, the area under the characteristic
function in the passband4 (Area), the asymptotic slope (AS),

the ripple band (ωrb), and insertion loss level over the ripple
band (Lr). The insertion loss level of the Chebyshev filters
(counterpart of Papoulis filter) is less than Lr < 0.1 dB and
decease if degree of filter increase. Therefore, it can be said
that it is approximately monotonous in the passband [16].

Performances of Papoulise filter can be calculated by
using the procedure proposed in Sec. 2.2, or there may be
found in [7].

4. Comparison
The frequency responses of the 9th degree Papoulis,

Chebyshev and Butterwort filters are given in Fig. 3. Re-
ducing order ε of the Chebyshev filter to the value ε9 =
0.1009258 makes the group delay response and the stop band
insertion-loss of the Chebyshev filter the same as is those of
the Papoulis filter. Both filters have the same asymptotic
slope, as can be seen in Fig. 3.
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Fig. 3. Frequency responses of Papoulis filter and Chebyshev
filter as its counterpart.

3 The asymptotic slope will be expressed as the square root of the leading coefficient in characteristic function φn(ω
2). Asymptotic slope of a Chebyshev

filter with 3 dB passband ripple is ASC = 2n−1.
4 The area required is obtained by integration: Area =

∫ 1
0 φ(ω2, ε)dω, and it is in the relation to reflection power at the input terminals of the filter.
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Fig. 5. Comparison of the step responses of equiripple and stair-
case filter.

Chebyshev filters offer better performances in the pass-
band. Insertion loss level over ripple band, Lr = 0.044 dB, is
much lower than the insertion loss level over staircase band,
Ls = 0.6229 dB. The staircase band ωs = 0.9275 is slightly
narrower than ripple band ωrp = 0.9474. The area under the
staircase characteristic function Areas = 0.0639 is almost
four times larger than the area under equiripple characteris-
tic function Area = 0.01975. In other words, the reflection
power of Papoulis filter is about four times larger.

The return loss responses of the filters whose frequency
responses are given in Fig 3, can be seen in Fig. 4. The return
loss level of the Chebyshev filter is RL = −19.9640 dB and
it is about 12 dB under the return loss level of the Papoulis
filter.

The zeroes of the reflection coefficient can be obtained
by finding the roots of the Scaled C polynomial (6). Solving
T
(ε)
n (−js) = 0, yields the reflection zeros in the closed form

sk = j
cos

(
(2k + 1)

π

2n

)
cos

(
1
n

arccos
1
ε

) , for k = 0,1, . . . ,
⌊n − 1

2

⌋
(16)

where bxc denotes the flooring function. Obviously, all re-
flection zeros lie on the jω-axis in the passband, and max-
imum power transmission through the filter occurs at these
frequencies.

There are no differences between unite step responses of
Papoulis and Chebyshev filter as its counterpart, as is shown
in Fig. 5.

As explained by Orchard [17], zero sensitivity of the
filter transfer function to the variation of elements (in the
passband) can be achieved if there are frequencies at which
power transfer from the source to the load is maximal. The
Chebyshev filter is also designed for maximum power trans-
fer at certain frequencies (reflection zeroes) in the passband.
Maximum power transfer for n = 9 occurs at four frequencies
where the transmission coefficientmagnitude |tn(jω)|2 equals

one, and these values cannot be exceeded. At those frequen-
cies Chebyshev filter realized as the LC ladder circuit exhibits
zero sensitivity to variations in coil and capacitor values and
keeps the sensitivity low through the whole passband [17].
As a consequence, with passband ripples decreasing, sensi-
tivity also decreases. On the other hand, the Papoulis filter
is not designed for the minimum passband sensitivity to ele-
ment variations as the maximum power transfer occurs only
at d.c. Therefore, the sensitivity in the passband of the Pa-
poulis filter is much higher than sensitivity of its Chebyshev
counterpart.

5. Conclusion
A new kind of allpole lowpass filters with the equiripple

(Chebyshev) response in the passband has been proposed in
this paper. A comparison of proposed with the allpole Pa-
poulis filters is discussed, because both filters have the same
asymptotic slope. Table containing the Chebyshev transmis-
sion coefficients for filter degrees from 3 to 11which are used
for comparison with Papoulis filters, are presented. Themain
advantages of the proposed filters over the staircase filters can
be listed as follows:

1. One additional degree of freedom allows to adjust the
ripples in the pass-band, and thus the properties of the
filter The counterpart of the staircase filter can be gen-
erated.

2. The Butterwort filter, as a special case of Chebyshev
filter, is obtained for ε → 0.

3. The characteristic function, reflection zeros, asymptotic
and cutoff slope are expressed in a closed form.

4. The passband insertion loss and area under the charac-
teristic function in the passband are smaller for every
known staircase filter degree.

5. Numerical computation of the filter coefficients is sim-
ple. Coefficients of staircase filter are obtained by using
complex mathematical apparatus.
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6. If the degree of filter increases then insertion loss and
sensitivity to element changes decreases, while in the
case of staircase filter the insertion loss and sensitivity
increases.

7. The return loss is equiripple in the passband and its level
is below the return-loss level of the Papoulis filters. The
frequencies at which the return loss is zero are given in
the mathematically closed form.

8. The passband sensitivity is zero at certain frequencies
and it is significantly lower through the whole pass-
band. At these frequencies, the filter characteristics can
be further adjusted.

9. The odd degree characteristic function is perfectly
square and it has zero at the origin, therefore, the real-
ized LC ladder network is symmetric with an additional
reduction of sensitivity which is not valid for the stair-
case filter.

Thus, it can be concluded that among filters with the
staircase passband response and optimized cutoff slope and
filters with the equiripple passband response, the latter offer
a better solution in all applications. Since the design equa-
tions of the equiripple filter are simple and its performances
are the same or better than the performances of the stair-
case filter, according to the comparison presented above, one
gets the general feeling that the latter is mostly of academic
importance.
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