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Abstract. In uplink (UL) grant-free sparse code multiple
access (SCMA) systems, unlike the conventional contention-
based transmission, users’ activities should be known be-
fore data decoding due to sporadic transmission in massive
machine-type communication (mMTC). Since compressed
sensing (CS) is the theory of sparse signal reconstruction
with fewer samples, this theory is a good solution to de-
tect active users. In this paper, we propose the dynamic
and sparsity adaptive compressed sensing (DSACS) based
active user detection (AUD) and channel estimation (CE) of
UL grant-free SCMA. Unlike most of the CS-based methods,
sparsity knowledge or potential active user list is not needed
in the proposed algorithm, which is already not known in the
practical systems. The proposed algorithm adopts a stage-
wise approach to expand the set of accurate active users for
adaptively achieve the sparsity level. It uses the temporal
correlation of users’ activity to improve performance and re-
duce complexity. Then, false detected users are eliminated
with joint message passing algorithm (JMPA), and channel
gains of the accurate active users are estimated again in CE
with feedback. The simulation results show that the proposed
method without sparsity knowledge is capable of achieving
detection in various scenarios in case of sporadic transmis-
sion in mMTC.

Keywords
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1. Introduction
Massive connectivity, high spectral efficiency and low

latency are crucial requirements to support the next genera-
tion communication system 5G and beyond 5G (B5G). With
new concepts such as internet of things (IoT) and massive
machine-type communication (mMTC), the importance of

these requirements has appeared. The current orthogonal
multiple access (OMA) methods are based on orthogonal re-
source to each user exclusively to avoid interference between
users [1]. Time division multiple access (TDMA), code di-
vision multiple access (CDMA) and orthogonal frequency
division multiple access (OFDMA) are examples of these
OMA methods. However, with massive connections, some
of these multiple access methods may not suitable for the
requirements in B5G because of orthogonality constraints.
Therefore, non-orthogonal multiple access (NOMA) meth-
ods that multiple users transmit simultaneously by sharing
the same resources have been proposed to improve system
throughput and accommodate massive users. The current
NOMA methods can be essentially classified as power and
code domains [2]. Multi-user shared access (MUSA), pattern
division multiple access (PDMA), interleave division multi-
ple access (IDMA), and sparse codemultiple access (SCMA)
are methods investigated in the code domain [3].

SCMA [4] is one of the promising code domain NOMA
techniques for 5G and B5G. SCMA is an upgraded form of
the low-density spreading (LDS) used in the CDMA method
characterized by sparse codebooks. These codebooks are
regulated based on multi-dimensional constellations, which
provide shaping gain [5]. Thanks to the shaping gain of
the multidimensional constellation, SCMA has better perfor-
mance compared to other NOMA methods [6]. In SCMA,
users’ data are directly mapped to sparse codewords in code-
books at different layers. The users’ codewords share the
same time-frequency resources of OFDMA, and due to this
sparsity, low-complexity near-optimal detection is achieved
with message passing algorithm (MPA) at the receiver. Such
low-complexity receiver detection enables massive connec-
tivity, a key feature of machine-type communication in 5G
and B5G.

In a conventional wireless communication system, the
request-grant procedure for the uplink transmission leads to
high signaling overhead and latency, which is undesirable
in 5G and B5G with massive connection [7]. Uplink (UL)
grant-free multiple access systems are proposed to reduce
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transmission latency and overhead related to control sig-
nals for scheduling. In UL grant-free multiple access sce-
nario, users are permitted to transmit data at any time with-
out request-grant procedure in pre-scheduled resources as
shown in Fig. 1. Users can select their codebooks and pilot
sequences and transmit their data in pre-scheduled resources
without any request-grant procedure inUL grant-free SCMA.
The pre-scheduled resource is referred to as contention trans-
mission unit (CTU) that combines time, frequency, codebook
and pilot for active users [8]. Therefore, it is required the re-
ceiver to be able to identify the active users, estimate their
channels and decode their transmitted data without having
the active user list.

The number of active users in themachine type commu-
nications is usually much less than the total potential users
even during busy hours as illustrated in Fig. 1. Thus, the
users can be considered as a sparse signal, which enables the
activity detection. Since compressed sensing (CS) theory [9]
is capable to reconstruct a sparse signal with less information,
CS algorithms can be used to detect active users and estimate
channel gains [10] to enable grant-free multiple access. Then
MPA can be utilized to active users’ data decode based on
the active user list (AUL).

Much research has been done in recent years on joint
user activity and data detection based on CS technology. One
of the first examples of an active user detector for SCMA is
presented in [8]. This detector identifies users who are ac-
tive and decreases the number of potential users. Orthogonal
pilot signals are allocated to different users, and the activ-
ity of the users is detected by active user detector (AUD)
in the receiver. Then, with joint-MPA (JMPA), false de-
tected inactive users are removed and active users’ data is
decoded. Hereafter, orthogonal matching pursuit (OMP)
and compressive sampling matching pursuit (CoSaMP) have
been applied to NOMA grant-free systems for sparse signal
detections in [11], [12], and these algorithms have superior
performance at low sparsity. However, since these methods
require a potential active users list, it is unlikely to be ap-
plied in practice. Therefore, methods possible in practice
that do not require the sparsity information have been devel-
oped in [13–15]. The channel state information is calculated
after AUD and the data of active users are decoded with
JMPA. In addition, a method that optimizes the sensing ma-
trix according to the SNR status has been developed in [15].
In [16], [17], under the block-sparsity frame, the active user
detection, and data decoding is performed for the case the
activity rate does not change in adjacent time slots. This is
the case for machine-type communication where statistically
approximately 10% of users are active.

In the UL grant-free SCMA system for massive user
connectivity, we propose an active user detection and chan-
nel estimation. We are motivated by the algorithm in [18]
used for multi-user detection and data decoding for UL grant-
free NOMA. Based on this algorithm, we developed a new
method for active user detection and channel estimation for
UL grant-free SCMA systems. In the study in [5], a method
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Fig. 1. Illustration of a typical grant-free SCMA system.

was developed using CS to reduce the complexity of MPA.
However, in this method, data of all users is decoded using
MPA. The complexity of MPA increases as there are also in-
active users inUL grant-free SCMAsystems. In the proposed
method, active user detection is performed at adjacent time
slots. The proposed algorithm adopts a stagewise approach to
expand the set of accurate active users for adaptively achieve
the sparsity level of user activity. Then, the algorithm ex-
ploits the idea of backtracking to improve the estimate of the
accurate active user set at each iteration for more accurate
reconstruction. Thus, it is used the temporal correlation of
active user sets to reduce the computational complexity and
improve performance.

The rest of the paper is structured as follows. Section 2
introduces the systemmodels includingULgrant-free SCMA
system, data and pilot transmission. The proposed algorithm
is presented in Sec. 3. Section 4 illustrates the simulation
results, and the conclusions are drawn in Sec. 5.

2. System Model
We consider an UL grant-free SCMA system with J

potential users. The users can be active or inactive in com-
pliance with their service specifications. In this system, ac-
tive user detection is required before multiuser detection due
to sporadic communication and lack of request-scheduling
processes. In general, the pilot signal is transmitted together
with the users’ data signal for activity detection. In this sec-
tion, the model of uplink grant-free SCMA transmitter and
receiver as illustrated in Fig. 2 is described. And pilot and
data transmission in the transmitter are explained in detail.

2.1 Uplink Grant-Free SCMA Transmitter
Consider an uplink grant-free SCMA system with J

potential users, A active users and K orthogonal resource
elements (REs), where K < A. Here, the overloading factor
λ = A/K is usually greater than 1 to allow massive connec-
tivity. This is characteristic of NOMA methods.
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Fig. 2. Uplink grant-free SCMA system model (J potential users and A active users).

In Fig. 2, the schematic diagram of the uplink grant-free
SCMA systemmodel can be seen. Each binary incoming bits
from active users are directly mapped into complex code-
words xj from the predefined NCB codebooks. The code-
words of each codebook are sparse designed with N < K
non-zero elements. Each non-zero element is modulated to
the orthogonal frequency divisionmultiple access (OFDMA)
subcarrier and overlapped with the subcarriers of other users.
The same time-frequency resources are used to transmit dif-
ferent active users’ codewords. Because of the sparsity of
codewords, inter-user interference is reduced. Each code-
book is linked with NP pilot sequences. As shown in Fig. 2,
active users map their data from their own codebook to code-
word and take the pilot sequence belonging to the users’ own
codebook from the pilot pool and transmit it to the receiver
together via the channel.

2.2 Pilot and Data Transmission
In the UL grant-free SCMA, the data of each user is

encoded from the corresponding codebook, then the pilots
are used to identify active users and estimate the channel at
the receiver. The received pilot signal at the receiver is

yp =

J∑
j=1

αjhjφ j + w = Φh + w (1)

where J is the registered user set, αj for j = 1, . . . , J, is
a binary logical variable of user j, αj = 1 if j th user is active,
otherwise αj = 0 if j th user is inactive. hj and φ j represent
channel gain and pilot sequences of user j, respectively and
w is complex white gaussian noise. Also, Φ = [φ1, . . . , φJ ]
and h = [α1h1, . . . , αJhJ ] are diagonal matrix and sparse
matrix, respectively. The problem, therefore, is to find active
users and to estimate channel gains among potential users
by finding which αJ ’s are 1. The received data signal at the
receiver is

yd =

J∑
j=1

hj xj + w (2)

where hj is channel vector of user j, xj is transmitted vector
of the user j chosen from assigned codebook and w is addi-
tive white Gaussian noise with zero mean and σ2 variance
per element.

xj = qj(bj) = [x1, x2, . . . , xj] (3)

where qj and bj are referred to as the mapping matrix and
the binary sequence, respectively.

2.3 Uplink Grant-Free SCMA Receiver
In [8], transmitted pilot and data signals from the trans-

mitter are processed in a 3-step process in the UL grant-free
SCMA receiver and the data of active users are decoded.
These are active user detection (AUD), channel estimation
(CE) and joint-MPA (JMPA).

In the AUD process, active users are detected in the
received pilot signal. In (1) the received pilot signal can be
expressed as yp = [y1, y2, . . . yL] where L is the length of the
signal. Φ = [φ1, . . . , φJ ] is the pilot signal including J reg-
istered pilot sequence. Each element of the channel matrix
h is associated with one pilot. w = [w1,w2, . . . ,wL] is the
noise vector. The received pilot signal is rewritten as in (4).

yp = Φh + w

=


φ11 φ21 . . . φJ1
φ12 φ22 . . . φJ2
...

...
. . .

...
φ1L φ2L . . . φJL



α1h1
α2h2
...

αJhJ


+


w1
w2
...
wL


(4)

In UL grant-free receiver structure, after a CS algo-
rithm such as the focal underdetermined system solver (FO-
CUSS) [19] process applied to the pilot signals in [8] for
AUD, it is stated that the user is active if | h2 | is greater than
a threshold value. The threshold value is set to 0.01. Channel
gain of users also positively detected in AUD is estimated.
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False detected inactive users can exist due to signal
noise and fading channel in the AUD process. In the JMPA
process, therefore, it is aimed to correct this false detection
and then decode only the updated active users’ data. In this
process, it is assumed that the false detected inactive user
virtually transmit zero codewords whose values are zero 0.
We defined the zero codeword as c0

j = 0, then assumed the
extended codebook as C j = Cj ∪ c0

j . The only difference of
JMPA from MPA is that it implements the extended code-
book and eliminates false detected inactive users. In JMPA
the probability of constellation point zero is represented as

p(c0
u) =

∏
m pk(cmu )

(
∏

m 1 − pk(cmu )) +
∏

m pk(cmu )
. (5)

If some users have a high probability of zero codeword,
that user is considered a false detected inactive user and is
removed from the active user list. After elimination of false
detected users, the distance Pk(cmu ) between the received sig-
nal and the k-node is calculated by

Pk(cmu ) = exp

{
−

1
σ2
n

yk −∑
m∈ζk

hkmcmk ,m

2
}
. (6)

Then, according to the calculated distance, the message
passed from functional node fk to variable node va and the
message passed from variable node va to functional node fk
represented as

I ifk→va
(cmu ) =

∑
∼cmu

Pk(cmu ).
∏

l̃∈ξk \{a}

I i−1
vl→ fk

(cml ),

I iva→ fk
(cmu ) =

∏
n∈ζa\{k }

I i−1
fn→va

(cmn )
(7)

where ξk and ζa are sets of the position of the nonzeros in
column k and a , respectively, with index of iteration i. After
i iterations the final output for each codeword is calculated as

Q(cmu ) =
∏
k∈ζa

I ifk→va
(cmu ). (8)

Since the number of users in MPA increases the com-
plexity proportionally [20], eliminating the false detected
inactive users in JMPA significantly reduces the complexity.
In addition, the achivement of the AUD process also plays
an important role in reducing the complexity of JMPA.

3. Proposed Algorithm
In this section, we developed a CS-based method for

active user detection and channel estimation in UL grant-free
SCMA systems. In this method, unlike the CS-based meth-
ods developed in the literature, it detects active users without
potential active user list, i.e. sparsity prior knowledge is not
required.

As can be seen in Fig. 3, active user list 1 is detected
in DSACS-based AUD. After the AUD, the channel gains of
active users 2 are estimated with AUL. In JMPA, if there
are false detected users, they are eliminated and the updated
AUL 3 comes back the channel estimation process again,

and the updated AUL and channel gain information 4 is
sent back to the JMPA for decode. Then, the data signal of
active users is decoded 5 in JMPA by using the channel
gain information of active users.

In MPA, the sub-optimal receiver of SCMA, its com-
plexity increases considerably as the number of users in-
creases [21]. In addition, since only a small part of the
registered users in mMTC is active in a time slot, an active
user detection is required for this receiver structure. And this
problem can be considered as a compressed sensing recon-
struction problem since there are few active users in a time
slot.

In order to reconstruct the signal, the signal must also
satisfy to the restricted isometry property (RIP). We assume
the pilot matrix Φ satisfies the RIP of order K [22]. RIP is
defined as

(1 − δk)
h[t]

2
2 ≤

φ jh[t]
2

2 ≤ (1 + δk)
h[t]

2
2 (9)

for RIP constant δk ∈ (0,1). RIP indicates that the pilot
sequence is approximately orthogonal with sparsity of k.

In this paper, we used Zadoff-Chu (ZC) sequences as
a pilot sequence due to their high autocorrelation and low
cross-correlation properties [15]. In MTC, users are gener-
ally active for adjacent time slots rather than activity in the
entire time block. Therefore, we performed the AUD process
based on the number of active users in adjacent time slots
and considered the activity as a high probability in previous
time blocks. Received pilot signal in T adjacent time slots:

y[t] = Φ[t]h[t] + w[t] (10)

where y[t],Φ[t] and h[t] denote the received pilot signal, pilot
sequence and channel matrix in the t-th time block, respec-
tively, and w[t] is the Gaussian noise vector in the t-th time
block. The proposed algorithm step-by-step detects active
users and estimates channel gains. Details of the proposed
method are available in Algorithm 1.

At the beginning of the DSACS-based AUD, the num-
ber of active users initially estimated in the first time slot is
considered l = 1 and initial support Ic = ∅. The support in
the (t −1)th time slot can be used for the predicted support in
the tth time block due to temporal correlation in time slots.
Here, the absolute |Ic | refers to the number of elements, and
da e denotes the ceil function, so this function rounds off to
the smallest integer greater than or equal to a.

DSACS-based
AUD

JMPA𝑦𝑃  
AUL

Updated AUL

AUL & Channel 
Responses

Decoded
Data

Channel 
Estimation

𝑦𝐷  

Updated AUL & 
Channel Responses

1
2

3

4

5

Fig. 3. Proposed UL grant-free SCMA receiver structure includ-
ing AUD, channel estimator, JMPA.
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Algorithm 1. The Proposed DSACS-based Algorithm.

Inputs: Φ,y[t]p
Ic ← ∅
for t = 1 to T do

if t = 1 then
l = 1

else
l = d|Ic |/3e

end if
i = 1, I[t](0) = Ic
h =

(
Φ
[t]

I [t ](0)

)†
y[t](0)

r [t](0) = y − Φ
[t]

I [t ](0)

while ‖r [t](i−1)‖22 > Nσ2 do
P[t](i) = max

(��(Φ[t])Hr [t](i−1)
��, l)

C[t](i) = I[t](i−1) ∪ P[t](i)

I[t] = max
(��(Φ[t]

C[t ](i)
)†y[t]

��, l)
r [t] = y[t] − Φ

[t]

I [t ]
(Φ
[t]

I [t ]
)†y[t]

if ‖r [t]‖22 ≤ Nσ2 then
Quit the iteration

else if ‖r [t]‖2 > ‖r [t](i−1)‖2 then
l = l + 1

else
I[t](i) = I[t] , r [t](i) = r [t]

i = i + 1
end if

end while
Ic = I[t]

h[t] =
(
Φ
[t]

I [t ]

)†
y[t]

end for
Outputs: h[t], I[t]

After the initialization steps, in each iteration, the l
indices of the users that best match the residual signal are
selected as follows.

P[t](i) = max
(���(Φ[t])Hr [t](i−1)

��� , l) (11)

where r [t](i−1) is the residual vector in the last iteration. The
max

(��(Φ[t])Hr [t](i−1)
��, l) function returns l indices, which

have the largest absolute values in vector (Φ[t])Hr [t](i−1).
Then, to correct the error estimation of the active user set
in the last iteration, the preliminary support set and the es-
timated support in the last iteration are combined to form
the candidate list C as shown in (12). This is called back-
track [18].

C[t](i) = I[t](i−1) ∪ P[t](i). (12)

Finally, the candidate vector is generated using the can-
didate list with the Least Squares (LS) method, and the l
indices with the largest absolute value of this vector forms
the final support in the t-th time slot as seen in (13).

I[t] = max
(���(Φ[t]

C[t ](i)
)†y[t]

��� , l) . (13)

Then, after obtaining the final support set in (13), the
residual vector is calculated as follows:

r [t] = y[t] − Φ
[t]

I [t ]
(Φ
[t]

I [t ]
)†y[t]. (14)

If the energy of the residual vector is greater than or
equal to the energy of the residual vector in the (i − 1)th it-
eration, the next iteration starts and the estimated number of
active users is gradually increased until the correct number of
active users is reached. The transmitted channel gain vector
belonging to active users is calculated by the LS method as
in (15).

ĥ[t] =
(
Φ
[t]

I [t ]

)†
y[t]. (15)

The termination of iteration in the algorithm is deter-
mined as N times the energy of the noise.r [t]

2
2 ≤ Nσ2. (16)

Calculating the number of active users as one third of
the number of elements of the final support computed in the
last iteration reduces complexity and makes the algorithm
dynamic. This calculation can be changed according to the
busy period of the system (such as active time, quiet time).
As can be seen in Fig. 3, after the active user detection, the
channel gain is calculated with AUL. Then the data signal
of active users is decoded in JMPA using the channel gain
information.

4. Simulation Results
In this section, simulation results are obtained by ap-

plying the proposed DSACS-based active user detection and
channel estimation algorithm using MATLAB programming
language. The basic set of simulation parameters is shown
in Tab. 1. Rayleigh fading channel is used in the simulations
and also Monte Carlo simulations (100000 iterations) have
been used to better show the reality. All simulationswere per-
formed in 9 time blocks and the results in these time blocks
were averaged in all graphs. In the simulations, a system
with varying number of uniformly distributed active users
from 4 to 16 and a total of 36 registered users is considered.
Since a pilot sequence is required for each registered user, 36
ZC sequences were obtained with 6 cyclic shifts each of the
6 root ZC sequences. Users are divided into 6 groups and
in these groups, 6 different codebooks and pilot sequences
can be used for transmission. Moreover, each user use LTE
UL Demodulated Reference Signal (DMRS) as their pilots’
location [8].

Parameter Setting
Registered users (J) 36

The number of pilot sequences (NP) 36
The number of codebooks (NCB) 6
The length of pilot sequence (L) 23

Channel model Rayleigh

Tab. 1. Set of basic simulation parameters.
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There are several parameters that are important in the
UL grant-free scenario. These are miss detection probabil-
ity, false alarm probability and mean square error (MSE).
Miss detection is the detection of an active user as inactive.
False detection means that inactive users are detected as ac-
tive users. MSE is a criterion for estimating channel gain
information. High miss detection probability and high false
alarm probability reduce receiver performance. The false
alarm probability is reduced by JMPA, but miss detection is
not compensated. Therefore, low miss detection probabil-
ity and MSE values are the most important features for the
receiver.

In Fig. 4, we compare themiss detection probability per-
formance among OMP [23], FOCUSS [19], CoSaMP [24],
DGOMP [13] and proposed DSACS-based algorithms at dif-
ferent activity levels. The proposed algorithm has the best
performance compared to other methods when the number
of active users is 6 in Fig. 4(a). While the number of ac-
tive users is 10 as seen in Fig. 4(b), the performance of the
proposed algorithm decreases relatively compared to other
algorithms, but as the SNR increases, its performance in-
creases. CoSaMP also performs well, but the sparsity is
assumed to be known, which is not possible in practice.

Figure 5 shows the effect of pilot length on the prob-
ability of missed detection versus SNR. As can be seen,
increasing the ZC pilot length, decreases the miss detection
probability, thus increasing the performance of the method.
However, it also increases complexity. Therefore, there is
a trade-off between complexity and performance. In Fig. 5,
it is seen that while the pilot length is L = 11 and L = 17,
miss detection probability is very high. However, when the
pilot length at low SNR is L = 23, it appears that there is
not much difference compared to L = 29 and L = 37. For
this reason, the pilot length value was used as L = 23 due to
the complexity-performance trade-off in other simulations,
as well.

Figure 6 shows the performance of the proposedmethod
and other algorithms according to the number of active users
of miss detection probability at SNR = 10 dB. The proposed
method has a better performance in low sparsity, ie. a few
active users. As the number of active users increases, the
FOCUSS and DGOMP methods have a good performance.
The performance of the proposed method is low but close to
good. For this reason, it can be thought that the proposed
method can be used in sporadic communication where the
number of active users is low.
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Fig. 4. Miss detection probability performance comparison among OMP, FOCUSS, DGOMP, CoSaMP and proposed DSACS-based algorithm
according to different SNRs at two different activity levels.
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Fig. 7. False alarm probability performance of the proposed al-
gorithm at different SNRs.
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Fig. 8. MSE against SNR performance of the proposed and state-
of-art algorithms, number of active users = 6.

Figure 7 shows the performance of the false alarm prob-
ability value of the proposed algorithm according to the num-
ber of active users at different SNR values. When the SNR
value increases, the false alarm probability of the proposed
algorithm decreases, that is, its performance increases pro-
portionally. As it increases the computational complexity,
the high false alarm probability increases the complexity of
MPA. This is prevented by JMPA and the updated AUL is
sent back for channel estimation as feedback. As can be seen,
as the number of active users increases up to 8, the false alarm
probability decreases, and this probability increases after 8.
As expected in compressed detection theory, the proposed
method performs well when there is sparsity.

Figure 8 provides the MSE performance against SNR
for the proposed and state-of-art algorithms. This graph gives
the MSE of all algorithms in the channel gains of active users
estimated from the received pilot signal. The proposed al-
gorithm has about 3 dB and 6 dB and more gain compared
to the DGOMP, the FOCUSS, and the OMP algorithms, re-
spectively. However, it is seen that the CoSaMP algorithm
also provides a gain of approximately 2 dB at low SNRs and
approximately 5 dB at high SNRs compared to the proposed
algorithm. Since the sparsity knowledge in the CoSaMP al-
gorithm is assumed to be known, the proposed algorithm is
quiet good in terms of usability and performance compared
to other algorithms.

5. Conclusion
In this paper, DSACS-based active user detection and

channel estimation without prior knowledge on user sparsity
is proposed for UL grant-free SCMA systems, taking into
account the temporal correlation of activity in adjacent time
slots. The proposed algorithm adopts a stagewise approach to
expand the set of accurate active users for adaptively achieve
the sparsity level of user activity. Then, the algorithm ex-
ploits the idea of backtracking to improve the estimate of the
accurate active user set at each iteration for more accurate
reconstruction. Thus, it is used the temporal correlation of
active user sets to reduce the computational complexity and

improve performance. The simulation results show that the
performance of the algorithm in different criteria is almost
superior to the algorithms that have prior knowledge on user
sparsity. The proposed method is highly practical with its
high performance in systems where users are sparse, such as
massive machine-type communication.
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