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Abstract. To solve the problem that the performance of 
adaptive beamformer degrades severely in the presence of 
steering vector mismatch or non-stationary interference, 
a null broadening robust beamforming based on decompo-
sition and iterative second-order cone programming 
(SOCP) is proposed. The width and depth of the nulls is 
controlled. The magnitude response constraints are ap-
plied to control the beamwidth and ripple of mainlobe, so 
the SV mismatch can be overcome. Due to the decomposi-
tion of the non-convex magnitude response constraints, the 
proposed approach can be solved by decomposition and 
iterative SOCP. Simulation results show that the proposed 
approach can effectively broaden the null width and en-
hance the null depth, and it is also robust against SV mis-
match, especially large SV mismatch. The proposed ap-
proach is jointly robust against the SV mismatch and non-
stationary interference, and is still effective in the case of 
low snapshot, which enhances the robustness of adaptive 
beamformer in complex environments. 
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1. Introduction 
Adaptive beamforming is a classic problem in array 

signal processing and has been widely applied in radar, 
sonar, communications, microphone array processing, 
medical imaging and other fields [1]. The adaptive beam-
forming can enhance the desired signal (DS) and suppress 
the interferences as well as noise by adaptively adjusting 
the weight vectors of the array according to the received 
signal [2]. The traditional adaptive beamforming ap-
proaches are based on the ideal model in which the steering 
vector (SV) is accurately known and the DS components 
are not present in the received data. However, in practical 

situations, if there is signal SV mismatch due to signal look 
direction error, array location error and mutual coupling 
effect of array sensors, etc., the performance degradation of 
adaptive beamforming will occur [3], [4]. On the other 
hand, in most of applications, the DS components usually 
exist in the training data. In this case, a slight mismatch 
will also cause a serious degradation in the performance of 
adaptive beamforming. A series of robust adaptive beam-
forming algorithms against SV mismatch and covariance 
matrix estimation inaccuracy have been proposed, such as 
the diagonal loading (DL) technique [5], the eigenspace-
based (EIG) beamformer [6], the robust adaptive beam-
forming based on the uncertainty set of SV [4], [7], the 
interference-plus-noise covariance matrix (INCM) recon-
struction approach [8] and methods in [9], [10]. 

However, in many applications, there exists non-sta-
tionary interference that adaptive beamforming is also 
sensitive to. The nulls generated by the general adaptive 
beamformers are very sharp and narrow, which means that 
the interference can only be suppressed when it is strictly 
on the null position. When the interference moves quickly 
or the antenna platform vibrates, the update speed of adap-
tive weight vector may be slower than the speed of the 
interference, which will cause the mismatch between adap-
tive weight vector and data. At this time, the interference 
will move out of the null and cannot be suppressed effec-
tively. 

Null broadening is an effective method to suppress 
non-stationary interference and make it fall into the null. 
Covariance matrix tapers (CMT) [11–13] is a classic ap-
proach of null broadening. Mallioux [11] replaces the orig-
inal single interference source with a cluster of incoherent 
and equal power virtual interference sources, and Zatman 
[12] uses a continuous interference source to replace the 
original single interference signal. Guerci [13] introduces 
the concept of CMT to unify them into one form. The CMT 
approach essentially utilizes a matrix related to null width 
to enhance the covariance matrix and broaden the nulls 
with low computational complexity. However, the CMT 
approach will cause higher sidelobe, shallower null depth, 
and smaller array gain. In [14], [15], the derivative con-
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straint approach is proposed, which has been proved to be 
a form of the CMT approach by Zatman in [16]. A variety 
of null broadening methods based on optimization prob-
lems have been proposed in [17–20]. In [17], a null broad-
ening beamformer based on multi-parameter quadratic 
programming is proposed, which constrains the null depth 
and sidelobe level on the basis of the CMT method. Quad-
ratic constraint sector suppressed (QCSS) [18] controls the 
null depth by constraint, and its key idea is the array aver-
age output power on the interference angular sectors is 
lower than the pre-specified suppression level. However, it 
is too complicated to obtain the solution. In order to reduce 
the computational complexity, the original nonlinear quad-
ratic constraint is replaced by a set of linear constraints, 
which is called linear constraint sector suppressed (LCSS) 
approach [19]. Mao et al. [20] propose a null broadening 
approach based on projection transformation and diagonal 
loading (PDL). It combines the CMT method and projec-
tion transformation, and the width and depth of its nulls are 
better than those of the CMT method’s. The PDL approach 
has certain robustness to non-stationary interference and 
SV mismatch. In recent years, several null broadening 
methods based on covariance matrix reconstruction have 
been proposed [21], [22]. In [21], the nulls are imposed 
toward the angular sectors of the non-stationary interfer-
ences on the basis of INCM reconstruction. Meanwhile, 
similarity constraint is enforced to obtain well-maintained 
mainlobe of the beampattern. In [22], a reconstructed 
covariance matrix is derived from a simplified power spec-
tral density function, and the nulls are broadened according 
to the direction of arrival (DOA) of the time-varying 
interference.  

In this paper, we develop a null broadening robust 
beamforming algorithm based on decomposition and 
iterative second-order cone programming (NB-DISOCP). 
Firstly, a suppression level is set to make the array re-
sponses on the angular sectors of non-stationary interfer-
ences lower than it, so as to control the width and depth of 
nulls. And then the magnitude response constraints are 
applied to the mainlobe of the beam. The non-convex mag-
nitude response constraint is decomposed, and the problem 
can be solved by iterative SOCP. The magnitude response 
constraint of the mainlobe can control the beamwidth and 
ripple of the mainlobe to overcome the SV mismatch. 
Moreover, the proposed algorithm combines the worst-case 
performance optimization (WCPO) method to correct the 
covariance matrix, which makes the estimation of the co-
variance matrix more accurate and improves the robustness 
of the proposed algorithm. Simulation results show that the 
proposed NB-DISOCP approach can effectively broaden 
the null width and enhance the null depth, and it is also 
robust against SV mismatch. 

Our paper is organized as follows. In Sec. 2, the 
background of the adaptive beamforming is given. Our null 
broadening robust beamforming approach NB-DISOCP is 
introduced in Sec. 3. Section 4 presents our simulation 
results where the influence of parameters of the proposed 
NB-DISOCP is discussed and the performance of the 

proposed NB-DISOCP is compared with some existing 
algorithms. The conclusion is in Sec. 5.  

2. Problem Background 
Consider a uniform linear array of M omnidirectional 

sensors with the spacing of d, and assume that the received 
signals are far-field narrowband source signals. The re-
ceived data of the array at time k can be modeled as [1] 
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where xs(k), xi(k), and n(k) denote the DS, interference, and 
noise components, respectively. s0(k) and si(k) are the DS 
waveform and interference signal waveform, respectively. 
Assume that the DS, interference, and noise are statistically 
independent narrowband Gaussian random processes. 0 
and i are the DOAs of the DS and the interference, 
respectively. a(·) represents the M  1 dimensional signal 
SV, which can be written as 
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where λ is the wavelength, and (·)T denotes the transpose. 
The output of the narrowband adaptive beamformer is [1] 

 H( ) ( )y k k w x  (3) 

where w = [w1,w2,…wM]T is the M  1 dimensional adap-
tive weight vector. 

Signal to interference plus noise ratio (SINR) is an im-
portant index to evaluate the performance of beamformer, 
which is the ratio of array output power of the desired 
signal to that of the interference-plus-noise [1] 
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where 2
s is the desired signal power, Ri + n=

 

E{(xi(k) + n(k))(xi(k) + n(k))H} is the M  M dimensional 
actual INCM, E{·} is the statistical expectation, and (·)H is 
the Hermitian transpose. The adaptive weight vector of 
Capon beamformer is obtained by maximizing SINR, it can 
be written as [1] 
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The solution obtained from (5) is the Capon 
beamformer [1] 
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However, in practice, Ri + n is unavailable, so the sample 
covariance matrix [1] 
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is frequently adopted to replace Ri + n, where N is the num-
ber of snapshots. And the corresponding beamformer is the 
sample matrix inversion (SMI) beamformer [1] 

 
1

0
SMI H 1

0 0

ˆ ( )
ˆ( ) ( )


 






R a
w

a R a
. (8) 

3. The Proposed Algorithm 
In this section, a null broadening robust beamforming 

algorithm NB-DISOCP based on decomposition and itera-
tive second-order cone programming is proposed. The 
algorithm has joint robustness to SV mismatch and non-
stationary interference. In the first subsection, the array 
responses on the angular sectors of non-stationary interfer-
ences are limited lower than the pre-specified suppression 
level to broaden the null width and control the null depth. 
In the second subsection, the magnitude response con-
straints are applied to the main lobe. The covariance matrix 
is estimated in the third subsection. The NB-DISOCP opti-
mization problem and its solution as well as the complete 
algorithm steps are given in the fourth subsection. 

3.1 Null Broadening 

Assume that the interference signals impinge from the 
direction θp(p = 1,…,P). When the interference moves 
rapidly, the incident directions of the interference signals 
are θk  [θp – Δθ/2, θp + Δθ/2] (k = 1,…,K). Let the array 
response on the angular sectors of non-stationary interfer-
ences lower than the pre-specified suppression level ξ, such 
as 

 H 1( ) , , ,kθ ξ k K  w a . (9) 

3.2 Magnitude Response Constraints 

In order to improve the robustness of the beamformer 
to the SV mismatch, the magnitude response constraints 
are applied to the angular region of the DS to form a flat-
topped mainlobe, that is [10] 

  H ) ,( , L UL θ U θ θ θ  w a  (10) 

where U, L are the upper and lower limits of the magnitude 
constraint, respectively. θU, θL are the upper and lower 
limits of the angular region of the DS, respectively. All the 
signals in the region can be received, which reduces the 
sensitivity of the beamformer to the SV mismatch. 

3.3 Covariance Matrix Estimation 

In practical applications, the actual covariance matrix 
R is unavailable, so that the sample covariance matrix R̂ is 

usually used instead. As N increases, R̂ converges to R. 
However, due to the limited number of snapshots, there 
exists mismatch between R̂ and R. R̂ can be corrected by 
the WCPO method as [10] 

 ˆ R R e  (11) 

where e is the mismatch vector between R̂ and R. Its norm 
has an upper bound ε > 0 (ε is a constant), that is, ||e|| < ε.  

According to (5), the objective function can be 
written as [10] 
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ε
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In practice, let ε = εr R̂(1,1) to enable ε to change with the 
input signal-to-noise ratio (SNR), where εr is a relative 
regularization factor, and R̂(1,1) is the first row and the 
first column element of R̂ [10]. 

3.4  NB-DISOCP Beamformer  

According to (5), (9), (10) and (12), the NB-DISOCP 
optimization problem can be written as 
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As for w, L  |wHa(θ)| is non-convex. Therefore, the opti-
mization problem with constraint (10) cannot be solved by 
convex optimization method. Let w = w1 + w2, when w1 is 
fixed, L  |wHa(θ)| can be transformed into a SOCP prob-
lem for w2, which can be solved by convex optimization 
toolbox.  

The constraints of optimization problem (13) can be 
written as 
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In order to solve the optimization problem (13), 
Lemma 3.1 in [23] is used as follows. 

Lemma 1 For any given a(θ)  CM, L and U, there 
exists w  CM such that (15) holds if and only if there exist 
w1  CM and w2  CM such that 
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If (15) is feasible, then w = w1 + w2 is a feasible 
solution of (14). 

For a proof, see [23]. According to Lemma 1, the 
optimization problem (13) can be transformed into 
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  (16) 

If w1 is fixed, as for w2, the optimization problem (16) 
can be transformed into a SOCP problem. If w2is fixed, it is 
same for w1. According to Lemma 1, w1 is fixed, and w2 is 
solved by (16), and then the optimal weight vector 
w = w1 + w2 of optimization problem (13) can be obtained. 
However, the fixed value of w1 may not be appropriate, 
and the corresponding w = w1 + w2 may not be the optimal 
solution. Therefore, we modify the value of w1 in an itera-
tive way, so as to obtain more accurate weight vector 
w = w1 + w2. 

The proposed NB-DISOCP algorithm is summarized 
as follows. 

Step 1. Obtain initial value of w  CM by solving (17) 
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Let w1 = w2 =w/2. 

Step 2. Fix w1, and the optimal value of w2 can be 
obtained by solving (16). 

Step 3. If ||w1 – w2||  δ (δ is a constant) or the number 
of iterations reaches the set value, go to Step 5. Otherwise, 
proceed to the next step. 

Step 4. Update w = w1 + w2 and let w1 =w/2, and then, 
go to Step 2. 

Step 5. Obtain the optimal weight vector w = w1 + w2. 

The computational complexity of the proposed 
method is dominated by solving the SOCP problem. There-
fore, the computational complexity of the proposed method 
is O(M3.5), and it is comparable to other robust beamform-
ing algorithms. 

4. Simulation Results 
In our simulations, the parameter setting is consistent 

with the existing reference [13, 19, 20]. The experimental 
results are all obtained by Monte Carlo simulation in 
MATLAB 7.11 environment, and the algorithms involving 
convex optimization are solved by CVX toolbox [24]. 
A uniform linear array of M = 10 omnidirectional sensors 
spaced half a wavelength is considered. The noise is 
Gaussian white noise with zero mean and unit variance. 
Assume that the DS impinges on the array from 0°, the 

input SNR is 0 dB, and the number of snapshots is 
N = 100.The two interference signals impinge on the array 
from –40° and 50° respectively, and the interference-to-
noise ratio (INR) is 30 dB. The proposed NB-DISOCP 
beamformer is compared with the following beamformers: 
the sample matrix inversion (SMI) beamformer (8), the 
eigenspace-based (EIG) beamformer [6], the RCB [7], the 
CMT method [13], the PDL approach [20], and the LCSS 
algorithm [19]. For a given ripple level rdB (dB), L and U 
are taken as dB 2010 rL   and dB 2010rU  , respectively. For 
the null broadening methods CMT, PDL, LCSS, and NB-
DISOCP, the null width is set to be 10°, that is, the angular 
sectors of the interferences are [–45°,–35°]  [45°,55°]. 

The uncertainty set parameter of the RCB is assumed to be 
ε = 0.3M [4]. The number of base vectors of PDL is taken 
as L = 6, and the diagonal loading factor is set to be 
λ = 0.01 [20]. In the LCSS beamformer, the pre-specified 
suppression level is taken as  = 10–7. In the NB-DISOCP 
beamformer, the angular sector of mainlobe is assumed to 
be [–5°,5°] , and the ripple level is rdB = 0.3 dB, εr = 0.1, 
ξ2 = 10–7. For each scenario, 100 Monte Carlo runs are 
performed. 

4.1 Impact of the Number of Iterations on the 
Performance of the NB-DISOCP 
Algorithm 

In the first example, the impact of the number of iter-
ations on the performance of the NB-DISOCP algorithm is 
examined. Figure 1 shows the beampattern of the NB-
DISOCP algorithm under different iteration times. It can be 
observed that the beampatterns under the 4th iteration and 
the 10th iteration are similar, and the beampatterns under 
the 10th iteration and the 15th iteration are almost over-
lapped, indicating that the NB-DISOCP algorithm basically 
converges under the 4th iteration. Figure 2 displays the 
output SINR of the NB-DISOCP algorithm versus the 
number of iterations. As the number of iterations increases, 
the output SINR increases, and it basically converges under 
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Fig. 1. Beampattern of the NB-DISOCP algorithm under 

different iteration times. 
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Fig. 2. Output SINR of the NB-DISOCP algorithm versus the 

number of iterations. 

converges under the 4th iteration. Therefore, the NB-
DISOCP iterative algorithm can effectively converge. 

4.2 Performance of Null Broadening 

In the second example, the normalized beampattern is 
examined to compare the performance of the null broaden-
ing. Figure 3 illustrates the normalized beampattern of 
these approaches, and the normalized beampattern at –40° 
is shown in Fig. 4. It can be seen from these figures that the 
nulls of the NB-DISOCP approach are wider than those of 
other approaches, which can better suppress non-stationary 
interference. In addition, the NB-DISOCP also widens the 
mainlobe to form a flat-topped mainlobe, which improves 
the robustness to SV mismatch with a small loss of antenna 
gain. At the same time, it reduces the sidelobe levels, and 
the average value of the sidelobe levels on both sides is 
about –30 dB. Consequently, NB-DISOCP demonstrates 
good performance of beamforming. In order to more intui-
tively compare the null broadening performance of these 
approaches, null widths of different gains at –40° are re-
ported in Tab. 1. As shown from Tab. 1, the null of CMT is 
the shallowest. The NB-DISOCP and LCSS can still broaden 
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Fig. 3. Normalized beampattern. 
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Fig. 4. Null broadening effect at –40°. 

 

Beamformer 
Gain 

–50 dB –60 dB –70 dB 
CMT 8.2° - - 
PDL 9.2° 7.6° - 

LCSS 23.4° 12.6° 9.8° 
NB-DISOCP 19.9° 16.6° 14.8° 

Tab. 1. Null width of different gains at –40°. 

the null at the gain of –70 dB. At this time, the null width 
of the NB-DISOCP is the widest, which is about 14.8°. 
Therefore, NB-DISOCP has good performance of null 
broadening and beamforming, and it attributes the success 
to the mainlobe and null constraints in the model. 

4.3 Mismatch Due to Signal Look Direction 
Error 

In the third example, we show the impact of signal 
look direction error on the output SINR. Figure 5 reveals 
the output SINR versus the pointing error for 
SNR = 20 dB. It can be observed from the figure that the 
output SINR of the NB-DISOCP remains unchanged ver-
sus pointing error, and it has good performance under both 
large and small signal pointing error. Although the output 
SINR of the PDL under the small signal pointing error is 
higher than that of the NB-DISOCP, when the pointing 
error is greater than 7°, the performance of the PDL will 
severely degrade. The output SINR of other approaches 
tested is much lower than that of the NB-DISOCP and 
PDL. Figure 6 depicts the output SINR versus the input 
SNR when the signal pointing error is 7°. As shown in the 
figure, when the signal pointing error is 7°, the output 
SINR of the PDL and NB-DISOCP is high in a large range 
of input SNR, and they can still maintain a good perfor-
mance with high input SNR. Moreover, the output SINR of 
the NB-DISOCP is better than that of the PDL. The output 
SINR of other approaches tested will decrease with high 
input SNR. In the proposed method, we control the 
mainlobe beamwidth in a large region and mainlobe ripple 
in a small region. Therefore, the NB-DISOCP has good 
robustness to SV mismatch, especially large SV mismatch.  
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Fig. 5. Output SINR versus pointing error. 
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Fig. 6. Output SINR versus input SNR when the signal 

pointing error is 7°. 

4.4 Mismatch Due to Signal Look Direction 
Error and Non-stationary Interference 

In the last example, we simulate the situation when 
there exist both signal look direction error and non-
stationary interference. Assume that the actual DS 
impinges on the array from 0° with a 7° mismatch in the 
signal look direction. Figure 7 describes the output SINR 
versus the deviation of interference arrival direction when 
both the signal look direction error and non-stationary 
interference exist. From the figure, we can see that the 
SMI, EIG, and RCB are not robust against non-stationary 
interference because they do not broaden the nulls, and the 
output SINR of them decreases as the deviation of 
interference arrival direction increases. The output SINR of 
the CMT, PDL, LCSS, and NB-DISOCP decreases when 
the deviation of interference arrival direction reaches 4°, 
5°, 6°, and 7°, respectively. And the output SINR of the 
NB-DISOCP is better than others. Therefore, the NB-
DISOCP has the strongest robustness when signal look 
direction error and non-stationary interference exist sim-

ultaneously. In Fig. 8 and Fig. 9, the directions of the two 
interference signals are random and uniformly distributed 
in [–45°,–35°]  [45°,55°], and the DOAs of the interfer-

ence signals change from run to run while remaining fixed 
from snapshot to snapshot. Figure 8 exhibits the output 
SINR versus the input SNR when both the signal look 
direction error and non-stationary interference exist. As 
shown in the figure, the output SINR of the NB-DISOCP is 
the highest and is relatively close to the optimal SINR. 
Furthermore, the NB-DISOCP can still maintain a high 
output SINR under the high input SNR. The output SINR 
of the PDL is inferior to that of the NB-DISOCP, and the 
output SINR of the SMI, EIG, RCB, CMT, and LCSS 
decreases seriously with the increase of the input SNR. 
Therefore, the NB-DISOCP has strong joint robustness to 
SV mismatch and non-stationary interference in a large 
input SNR range. Figure 9 displays the output SINR versus 
the number of snapshots when the signal look direction 
error and non-stationary interference exist simultaneously. 

 
Fig. 7. Output SINR versus deviation of interference arrival 

direction when the signal look direction error and non-
stationary interference exist simultaneously. 
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Fig. 8. Output SINR versus input SNR when the signal look 

direction error and non-stationary interference exist 
simultaneously. 
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Fig. 9. Output SINR versus number of snapshots when the 

signal look direction error and non-stationary 
interference exist simultaneously. 

It can be observed that the performance of most algorithms 
is affected when the number of snapshots is lower than the 
number of array elements, while the output SINR of the 
NB-DISOCP remains unchanged, indicating that the NB-
DISOCP can still work effectively in the condition of low 
snapshot. In summary, the NB-DISOCP has good joint 
robustness to SV mismatch and non-stationary interfer-
ence. Readers interested in this article can refer to the rele-
vant source code from the link in footnote.1 

5. Conclusions 
In order to improve the robustness of the beamformer 

when the SV mismatch and non-stationary interference 
exist simultaneously, a null broadening robust beamform-
ing algorithm based on the decomposition and iterative 
second-order cone programming is proposed in this paper. 
The algorithm constrains the magnitude of the mainlobe 
and the depth of the null respectively, and then converts the 
non-convex optimization problem into an iterative second-
order cone programming problem to solve. Simulation 
results demonstrate that the proposed algorithm has joint 
robustness to SV mismatch and non-stationary interfer-
ence, and it can still work effectively in the case of low 
snapshot. In future, we will study the other method which 
is based on first-order Taylor expansion to solve the pro-
posed model. 
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