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Abstract. With the increasing complexity of the electro-
magnetic environment and the continuous development of 
radar technology, more and more modern digital program-
mable radars using agile waveform will appear in the 
future battlefield. It is difficult to effectively identify these 
radar emitters with complex system only by relying on 
traditional recognition models. In response to the above 
problem, this paper proposes a recognition method of 
radar emitters with agile waveform based on hybrid deep 
neural network and attention mechanism to deal with the 
problem of variable conventional characteristic parame-
ters of radar emitter signals with agile waveform. First, we 
perform a distributed representation of the pulse signal 
data to generate high-dimensional sparse signal features. 
Then we design to use a dynamic Convolutional Neural 
Network to extract features of structural details of radar 
emitter signals with agile waveform at different levels, and 
use a Long Short-Term Memory to extract its timing fea-
tures. In order to obtain the deep features that can charac-
terize the agility of the waveform, the attention mechanism-
based method is used to fuse the extracted structural fea-
tures and timing features, and at the same time it can re-
duce the influence of noise in complex electromagnetic 
environment on the characteristic data of radar emitter. 
Finally, the deep feature is input into the Softmax layer to 
complete the recognition of radar emitters with agile wave-
form. The experimental results show that the method pro-
posed in this paper can effectively solve the problem of the 
recognition of radar emitters with agile waveform, and the 
recognition accuracy is improved by 1.26% compared with 
the traditional models and other deep models. 
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Agility waveform, radar emitter, hybrid deep neural 
network, attention mechanism 

1. Introduction 
Radar emitter recognition is a key link in radar coun-

termeasures and reconnaissance. It extracts the characteris-
tic parameters and working parameters of the radar emitters 
on the basis of sorting. Based on these parameters, we can 
obtain the information such as the system, use, type and 
platform of the target radar, and further deduce the battle-
field situation, threat level, activity rule, tactical intention, 
etc., and provide important intelligence support for the own 
decision-making [1]. 

When the pulse flow density of the radar emitters in 
the electromagnetic environment space is low, and the 
conventional characteristic parameters of the radar emitter 
signals are basically constant, the traditional recognition 
models can achieve good results. With the increasing com-
plexity of the electromagnetic environment and the con-
tinuous development of radar technology, more and more 
modern digital programmable radars using agile waveform 
will appear in the future battlefield. The signal forms in-
clude frequency agility, variable pulse width and repetition 
interval conversion, etc. However, it is difficult to effec-
tively identify these radar emitters with complex system 
only relying on conventional signal characteristics. There-
fore, it is urgent to adopt a new recognition model structure 
to study the recognition of radar emitters with agile wave-
form to meet the requirements of electronic warfare in the 
new era. 

In the early development of radar emitter recognition 
technology, due to the relatively simple electronic counter-
measure technology and electromagnetic environment, 
researchers mainly studied the template matching method 
based on signal characteristic parameters [2]. Its disad-
vantage is that it has a strong dependence on prior 
knowledge, and the recognition effect largely depends on 
the type of radar emitter signals in the database and the 
quality of the collected parameters. In order to make up for 
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the shortcomings of the template matching method and to 
deal with the increasingly complex electromagnetic envi-
ronment, researchers began to add artificial intelligence to 
the radar emitter recognition technology [3]. Its disad-
vantage is that it does not start with the characteristics of 
the radar signal itself for feature extraction and other work, 
and cannot deal with the complex and changeable radar 
emitters with new system. With the development of science 
and technology, the number of radars with new system in 
modern warfare is increasing. Researchers began to ana-
lyze the intrapulse characteristics of radar emitter signals 
[4]. Its disadvantage is that these methods are limited in 
signal types. Most of them are aimed at several specific 
radar emitters, and the influence of noise is not considered. 
To sum up, most of the existing methods do not focus on 
the research of radar emitters with agile waveform, which 
is not in line with the actual use situation. This problem is 
a difficult problem that must be faced in the current re-
search on radar emitter recognition in electronic counter-
measures. 

In recent years, with the rise of deep learning technol-
ogy [5], the field of electronic warfare has also set off 
a deep learning boom [6–8]. Deep learning relies on opti-
mized network structure and training method to achieve 
models with more layers, stronger expression capabilities, 
and faster convergence speed, making it possible to process 
large-scale feature data. On the other hand, deep learning 
can realize self-learning and self-extraction of features, and 
verify the effectiveness of feature extraction rules from the 
data dimension, thereby improving the overall recognition 
performance. 

Inspired by the above ideas, in order to deal with the 
problem that the conventional characteristic parameters of 
radar emitter signals with agile waveform are variable, this 
paper proposes a recognition method of radar emitters with 
agile waveform based on hybrid deep neural network and 
attention mechanism. First, we perform a distributed repre-
sentation of the pulse signal data to generate high-dimen-
sional sparse signal features. Then we design to use a dy-
namic Convolutional Neural Network to extract features of 
structural details of radar emitter signals with agile wave-
form at different levels, and use a Long Short-Term 
Memory to extract its timing features. In order to obtain the 
deep features that can characterize the agility of the wave-
form, the attention mechanism-based method is used to 
fuse the extracted structural features and timing features, 
and at the same time it can reduce the influence of noise in 
complex electromagnetic environment on the characteristic 
data of radar emitter. Finally, the deep feature is input into 
the Softmax layer to complete the recognition of radar 
emitters with agile waveform. 

Our contributions are as follows: 

1. Regarding the problem of radar emitter recogni-
tion, most researchers are mainly focusing on conventional 
radar emitters, while this article focuses on in-depth re-
search on the characteristics of radar emitters with agile 
waveform. 

2. The hybrid deep neural network constructed in 
this paper can automatically extract features of different 
levels and details, and can deal with irregular changes and 
unknown distribution of radar emitter signals with agile 
waveform. 

3. This paper uses the method based on attention 
mechanism for feature fusion, which can overcome the 
influence of noise in complex electromagnetic environ-
ment. 

2. Problem Definition 
Radar emitters with agile waveform refer to the radar 

emitters whose signal parameters change rapidly. The pa-
rameters mainly include carrier frequency, pulse width, and 
pulse repetition interval. Therefore, a variety of complex 
signals such as frequency agility signals, variable pulse 
width signals, and repetitive interval conversion signals 
belong to this category. Frequency agility signals can be 
divided into pulse-to-pulse agility and pulse group agility. 
Their commonly used types are fixed, jitter, sine, slippage, 
sweep, random, group, etc. The variable pulse width sig-
nals mean that the pulse width of the radar emitter signals 
is changeable. Usually, they can be divided into multiple 
signals according to the pulse width. If and only when 
multiple sub-signals exist, they are considered to exist. The 
repetitive interval conversion signals refer to the various 
forms of pulse repetition interval used by radars to distin-
guish the distance blur or the speed blur or to counter the 
reconnaissance interference. Their commonly used types 
are stable, jitter, sine, slippage, jagged, dwell&switch, 
hopping, etc. 

The input of recognition of radar emitters with agile 
waveform is the pulse sequence obtained after the radar 
signal is sorted. Each pulse can usually be represented by 
pulse description words, namely pulse amplitude (PA), 
carrier frequency (CF), pulse width (PW), pulse repetition 
interval (PRI) and angle of arrival (AOA). These parame-
ters are calculated from pulses classified as the same radar. 
The purpose of recognition of radar emitters with agile 
waveform is to determine the specific type of radar emit-
ters. Because the above-mentioned characteristic parame-
ters usually change, the radar emitter cannot be represented 
by a certain set of radar pulse description words, that is, the 
traditional processing method is no longer applicable, but 
must be represented by multiple groups of radar pulse 
description words, which increases the difficulty of feature 
representation and extraction of radar emitters with agile 
waveform. 

Suppose that after the radar signal sorting step, m 
pulses of a certain radar emitter with agile waveform are 
obtained. These pulses are arranged together according to 
the time of arrival (TOA) to form a pulse sequence that can 
represent the entire radar emitter signal. The data structure 
of the pulse sequence is PDWSeq = [P1,P2,…,Pm], where 
the number of pulses m is not fixed. The data structure of 
the i-th pulse is Pi = (pai, cfi, pwi, prii, aoai), where pai is 
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the characteristic value of the amplitude of the pulse, cfi is 
the characteristic value of the carrier frequency of the 
pulse, pwi is the characteristic value of the width of the 
pulse, and prii is the repetition interval of the pulse, aoai  is 
the characteristic value of the angle of arrival of the pulse. 

3. Recognition of Radar Emitters with 
Agile Waveform Based on Hybrid 
Deep Neural Network and Attention 
Mechanism 
In order to analyze and process the pulse sequence to 

determine the specific category of the radar emitters, the 
recognition of radar emitters with agile waveform can be 
divided into four steps: distributed representation of pulse 
signal data, feature extraction, feature fusion and classifica-
tion recognition. The specific process is shown in Fig. 1. 

3.1 Distributed Representation of Pulse 
Signal Data 

In 1986, Hinton et al. introduced the idea of distrib-
uted representation to symbolic data. Distributed represen-
tation of symbolic data is one of the core ideas of neural 
network models. Usually after determining the statistical 
learning model to be used, the quality of the constructed 
input features will directly determine the performance of 
the radar emitter recognition system. Inspired by the above 
idea, this section intends  to perform  a distributed represen- 

 
Fig. 1. The recognition process of radar emitters with agile 

waveform. 
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Fig. 2. (a) Traditional feature representation method; 
(b) Distributed feature representation method. 

tation of pulse signal data, and its goal is to generate vec-
tors (or matrices) of the same length for input into the deep 
network. 

At present, the most commonly used feature represen-
tation method in the radar emitter recognition system is to 
average or simply splice each element Pi in the pulse se-
quence PDWSeq = [P1,P2,…,Pm], so that a fixed-length 
feature vector can be generated. However, this simple way 
of feature representation will lose valuable information in 
the original pulse signal data. If a sparse distributed 
method is used for feature representation, and Pi is con-
verted to HPi = (Hpai, Hcfi, Hpwi, Hprii, Haoai), where 
Hpai, Hcfi, Hpwi, Hprii and Haoai are five high-dimen-
sional real number vectors, and their dimensions are all set 
to 100. Then the Euclidean distance between different 
values of each feature will be closer, which can retain more 
valuable information in the pulse signal data. In addition, 
although the features generated by distributed representa-
tion are high-dimensional and sparse, such equal-length 
high-dimensional sequences are particularly suitable as 
input to deep networks. The traditional feature representa-
tion method and the distributed feature representation 
method are shown in Fig. 2. 
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3.2 Hierarchical Feature Extraction of Radar 
Emitters Based on Hybrid Deep Neural 
Network 

Aiming at the variable characteristics of the conven-
tional characteristic parameters of radar emitter signals 
with agile waveform, a method for extracting the hierar-
chical features of radar emitters based on hybrid deep neu-
ral network is proposed. The input is a pulse sequence 
HPDWSeq = [HP1,HP2,…,HPm] that has been distributed 
and can be used to synthesize information from hundreds 
or even thousands of pulses. 

3.2.1 Use Dynamic CNN Model to Extract Features 
of Structural Details 

Due to the special structure of local weight sharing, 
the Convolutional Neural Network (CNN) has unique 
advantages in local feature processing, and its layout is 
closer to the actual biological neural network, reducing the 
complexity of the network. In this section, we design to use 
the dynamic CNN model [9] to convert the distributed 
features of the pulse signal data into a structural feature 
vector with a fixed dimension. Compared with the tradi-
tional CNN model, the dynamic CNN model contains filter 
windows of different sizes [10], which can extract features 
of structural details of radar emitter signals at different 
levels. The key technical points are wide convolution and 
dynamic k-max sampling. 

3.2.1.1 Wide Convolution 

The input of the dynamic CNN model is the prepro-
cessed distributed feature HPDWSeq = [HP1,HP2,…,HPm]. 
The convolution operation refers to the use of filters to 
extract the local information in the input. The filter fr 
performs a wide convolution operation on the input 
HPDWSeq to generate the local feature matrix. 

 

1 2 1

1
( + 1) 1

1
0

[ , , , ],

g .

r n r

r
n r

i j j i
j

 


 

 




 
   

 


C c c c

c f HP b R


  (1) 

where ci that exceeds the range is set to 0, r is the width of 
the filter, n is the dimension of each distributed feature, g is 
a non-linear function, and b is a bias term. 

The most commonly used narrow convolution re-
quires that the condition of n  r must be met, that is, the 
width of the input feature matrix cannot be less than the 
width of the filter, so the edge information of the input 
pulse signal data will be ignored, resulting in incomplete 
structure features extracted. Figure 3 is a schematic dia-
gram of narrow convolution and wide convolution when 
the filter dimension is 1, and the width r is 3. 

Therefore, this section finally chooses wide convolu-
tion technology to extract more complete features, which 
can cover all the information of the input data, including 
edge information. 

Input Layer
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Layer
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Fig. 3. (a) Narrow convolution; (b) Wide convolution. 

3.2.1.2 Dynamic k-max Sampling 

The local feature matrix Cr  R(n +r – 1)  (n +r – 1) 

extracted by the wide convolutional layer contains a large 
number of local features, but not all the features are helpful 
for the radar emitter recognition task. The sampling tech-
nique is used to compress the local feature matrix Cr, 
which can avoid a lot of useless calculation and noise in 
the deep model. 

The dynamic parameter k in dynamic k-max sampling 
means that the largest k values of each row in the matrix Cr 
will be selected, and the k-max pooling score matrix 
cmax  R(n +r – 1)  k can be calculated. Its specific form is 
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The arrangement of the k largest values in each row 
must maintain its original order to preserve the relative 
position information between different feature values. 
Different from max sampling, dynamic k-max sampling 
saves the most significant k features in the local feature 
matrix Cr, and can retain relevant detailed feature infor-
mation as much as possible, such as the number of occur-
rences of the maximum value and the relative position of 
the feature value. 

The dynamic in dynamic k-max sampling means that 
the parameter k will continuously change with the number 
of layers of the CNN model and the size of the distributed 
features of the input. The specific calculation method is 
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where M is the number of layers of the CNN model, m is 
the location of the current dynamic k-max sampling layer, 
n is the total number of input features, and ktop is a fixed 
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value, specifically referring to the value of k in the last 
sampling layer in the CNN model. 

Therefore, this section chooses dynamic k-max sam-
pling technology to flexibly extract features and reduce 
redundancy as much as possible. 

3.2.2 Use Long Short-Term Memory to Extract 
Timing Features 

Long Short-Term Memory (LSTM) [11] is a variant 
of Recurrent Neural Networks (RNN), which solves the 
gradient dispersion problem during RNN training, and is 
very useful for mining long-distance sequence structure 
information. In this section, we use LSTM to model each 
pulse signal over a long distance to extract timing features 
of the pulse signal data, including short-term agility be-
tween pulses and long-term agility between batches. The 
LSTM in this section is divided into the following three 
layers: distributed feature layer, LSTM layer and output 
layer. Its structure is shown in Fig. 4. 

The distributed feature layer contains the prepro-
cessed distributed feature HPDWSeq = [HP1,HP2,…,HPm], 
which can be used as the input of the entire LSTM layer. 
The output layer contains the timing features obtained by 
the LSTM layer processing, that is, a timing feature vector 
with a fixed dimension. 

Each LSTM component in the LSTM layer is equiva-
lent to a memory block. The memory block adds three 
kinds of gates to the hidden layer nodes of RNN, namely 
the input gate, the forget gate and the output gates, denoted 
as it, ft and ot. At the same time, the memory block also 
contains one or more memory cells. A memory cell is 
a type of memory that maintains a cell state ct and can 
retain long-term historical information. Therefore, the data 
source of each LSTM component mainly includes three 
parts: the distributed feature vector HPt of the pulse at the 
current moment, the feedback feature ht – 1 or ht + 1 at the 
adjacent moment, and the stored value ct – 1 in the memory 
cell. The calculation formula of the LSTM component 
during forward propagation is 
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Fig. 4. The structure of LSTM. 
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where  is the logistic function, W is the weight matrix, b 
is the bias vector, and its subscripts indicate different 
objects corresponding to the parameters. 

3.3 Radar Emitter Feature Fusion Based on 
Attention Mechanism 

In order to reduce the influence of noise on the char-
acteristic data of radar emitters in a complex electromag-
netic environment and to fuse the above-mentioned hierar-
chical features, we propose a radar emitter feature fusion 
method based on attention mechanism. Inputting the 
above-mentioned hierarchical features into the attention 
layer of the deep network at the same time can make the 
essential features in the agile waveform get more attention, 
that is, to assign greater weight to it, and at the same time 
to allocate limited attention to the noise signal part, that is, 
to assign a smaller weight to it. This method can realize the 
feature fusion of radar emitters with agile waveform, and 
minimize the interference between signals which are play-
ing a role in a noisy signal environment. 

The attention mechanism is a mechanism for distrib-
uting attention in the process of simulating the human brain 
to recognize external things. In the process of human brain 
cognition, attention is usually only focused on the most 
critical part, and for the remaining uncritical parts, alt-
hough the human brain can also receive that part of the 
information, it only allocates very limited attention to it. 
Attention mechanism was initially applied to machine 
vision task by researchers [12], which can significantly 
improve the performance of image recognition and target 
detection. Later, Kelvin et al. [13] introduced the attention 
mechanism into the image-text conversion task, which can 
effectively convert the form of pictures into the form of 
text. In recent years, the attention mechanism has begun to 
be successfully applied to sequence data processing task 
[14]. Inspired by the above ideas, we intend to use the 
attention mechanism to process pulse signal data. 

The attention mechanism has two main aspects: de-
ciding on the input part that needs attention and allocating 
limited information processing resources to the important 
part. The essence of the attention mechanism is weighted 
summation. When using the attention mechanism for fea-
ture fusion, the input is p feature vector fi(i = 1,2,…,p), 
where p is the total number of feature vectors of structural 
details and timing feature vectors extracted above. We 
denote all the feature vectors that need to be calculated as 
F = [f1,f2,…,fp],

 and the calculation formula for the weighted 
sum operation based on the attention mechanism is 
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where  is the normalized weight vector,  is the parameter 
vector, and the final deep feature is s = Att(HPDWSeq; ), 
and  represents all the above-mentioned adjustable param-
eters. The processing focus of the attention mechanism is 
to enable the weight  to be calculated reasonably. The 
structure of the attention layer is shown in Fig. 5. 

3.4 Radar Emitter Classification and Recog-
nition 

We pass the deep feature vector s obtained by the 
attention layer to a standard fully connected neural net-
work, and use the softmax layer for probability normaliza-
tion to generate a conditional probability distribution 
P(y  HPDWSeq), which represents the conditional proba-
bility of belonging to category y under the condition of 
known pulse sequence HPDWSeq that has been distrib-
uted, and a category with the highest conditional probabil-
ity can be assigned to the pulse sequence, so as to realize 
the recognition of radar emitters with agile waveform. 

We use “softmax + cross entropy” as the cost function, 
and define a tagging vector T for each HPDWSeq. If 
a HPDWSeq falls into the i-th type, then the i-th element 
in the vector T is 1 and other elements are all 0. To train 
the parameters, we use stochastic gradient descent to 
optimize the cross entropy errors between Y and T. For 
each HPDWSeq, we define objective function 

 min( log( ))j i
j


T Y  (6) 

where  denoted unknown parameters. The pre-training is 
to minimize the objective function by stochastic gradient 
descent. 

Deep learning models use activation functions to 
make them have the ability to fit nonlinear data. Frequently 
used activation functions include Sigmoid, tanh, and 
ReLU. These activation functions must have three charac-
teristics, namely, non-linearity, monotonicity, and differen-
tiability. By comprehensively weighing and considering 
the advantages and disadvantages of various activation 
functions, we use the Rectified Linear Unit (ReLU) func-

tion for nonlinear transformation in the above hybrid deep 
neural network. 

The ReLU function is a threshold function about 0, 
and its definition is as follows: 
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The advantages of the ReLU function are as follows: 
1) The output of the ReLU function for negative numbers 
is 0, and only the output of positive numbers is retained, so 
that the parameters in the models can be kept sparse, and 
the efficiency of model training can also be improved; 
2) Compared with the activation functions such as Sigmoid 
and tanh, the ReLU function is more consistent with the 
original neuron signal from the excitation principle, and 
can also overcome the problem of gradient dispersion. In 
addition, the ReLU function can also significantly 
accelerate the convergence of the stochastic gradient 
descent algorithm; 3) After applying the ReLU function to 
the deep learning models, better performance can be 
achieved without pre-training. 

4. Experimental Analysis 
This section first introduces the dataset used of radar 

emitters with agile waveform, then describes the specific 
details of the experiment, and finally analyzes the results of 
the comparison experiment and gives a conclusion. 

4.1 Dataset of Radar Emitters with Agile 
Waveform 

In order to verify the performance of the method pro-
posed in this paper, we simulated to generate a dataset of 
radar emitters with agile waveform, including 100 radar 
emitters, each radar emitter corresponds to 1000 working 
modes, each mode is a pulse sequence composed of differ-
ent numbers of pulse description words (PDW). The differ-
ent number specifically means that the number of pulses 
available for different radiation sources is different. The 
characteristic parameters of each pulse of a radar emitter 
with agile waveform may change. Usually 40 to 200 PDWs 
can represent a mode of the radar emitter. 

The dataset of radar emitters with agile waveform 
contains a total of 100,000 groups of radar emitter pulse 
sequences, that is, 100,000 signal samples, which are di-
vided into training set, validation set and test set according 
to the ratio of 7:1:2. The training set contains 70,000 signal 
samples, which are mainly used for model training, the 
validation set contains 10,000 signal samples, which are 
mainly used for model correction and tuning, and the test 
set contains 20,000 signal samples, which are mainly used 
for model performance evaluation. 

The simulation parameter setting of the dataset of 
radar emitters with agile waveform is shown in Tab. 1. The 
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Type Specification 
Frequency

range band 500 MHz–18 GHz 
resolution band 1.5 MHz 

modulation 
type 

fixed, jitter, sine, slippage, sweep, random, group 

agile range 30% 
PW 

range band 50 ns–100 μs 
resolution band 50 ns 

PRI 
range band 20 μs–10 ms 

resolution band 50 ns 
modulation 

type 
stable, jitter, sine, slippage, jagged, dwell&switch, 

hopping 

Tab. 1. Simulation parameter setting of the dataset of radar 
emitters with agile waveform. 

included 100 radar emitters can be roughly divided into 4 
categories, of which the first and second categories are 
conventional radar emitters, and the third and fourth cate-
gories are radar emitters with agile waveform. 

The first category refers to radar emitters with fixed 
characteristic parameters. 

The second category refers to radar emitters that use 
a fixed pulse set, but the order of the pulses will change. 

The third category refers to the radar emitters with 
agility between pulses, which has short-term agility charac-
teristics, and its characteristic parameters will change with 
each pulse. The parameter values will vary in the same 
range or mostly overlap, but the parameter change patterns 
of different radar emitters are significantly different. 

The fourth category refers to radar emitters that are 
agile between dwells. They have long-term agility charac-
teristics. They use the same parameters to transmit a set of 
pulses, and then transmit the next set of pulses with differ-
ent characteristic parameters, of which the range has a low 
overlap. 

4.2 Implementation Details 

This section builds a deep learning development 
environment of Python3.7+Tensorflow1.15+Cuda10.0 to 
implement the method of this paper. We use batch gradient 
descent (BGD) to train the model, and use the recognition 
accuracy of each category of radar emitters and the overall 
recognition accuracy of the radar emitters to measure the 
performance of radar emitter recognition. The calculation 
formula is as follows: 
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where Pi
r is the recognition accuracy rate of i-category 

radar emitters, Pr is the overall recognition accuracy rate, 
Ni

r is the number of i-category radar emitters accurately 

recognized, and Ni is the total number of i-category radar 
emitters. 

In this section, we use 10-fold cross-validation to de-
termine the hyper-parameters in our model, and get the 
final recognition result on the validation set. In the end, we 
identify a set of hyper-parameters that can achieve the 
highest overall accuracy, which will be used in the follow-
ing experiments. The filter size of the wide convolution in 
the dynamic CNN component is set to 5, the fixed parame-
ter ktop in the dynamic k-max sampling is set to 3, the di-
mensions of all hidden layers in the LSTM component are 
set to 200, and the dimensions of the remaining hidden 
layers are all set to 100. The dropout operation is per-
formed on hidden layer nodes, the dropout rate [15] is set 
to 0.5, the minimum batch size is set to 30, and the initial 
learning rate is set to 0.0005. We use Batch Normalization 
to process input data, and Max-norm Regularization to 
process feature parameters. 

The following section will analyze the effectiveness 
of different parts of our method through experiments. 

First, in order to evaluate the effectiveness of the dis-
tributed representation method (denoted as H-net) pro-
posed in the paper, we compare it with the method of aver-
aging the input pulse sequence (denoted as A-net) and the 
method of splicing the input pulse sequence (denoted as  
J-net), and the rest of the model remains unchanged. The 
experimental results are shown in Tab. 2. The distributed 
representation method H-net achieved the highest perfor-
mance. Compared with J-net, its final overall recognition 
accuracy has increased by 3.07%, indicating that the dis-
tributed representation method does help to improve the 
performance of the model. A-net has the worst perfor-
mance, with an accuracy rate of only 76.34%, which shows 
that averaging the input pulse sequence will lose a lot of 
useful information. 

In order to verify the performance of dynamic CNN, 
and also to verify the effectiveness of the hybrid deep neu-
ral network (denoted as DCNN+LSTM) constructed in the 
article, we combine it with the non-dynamic hybrid deep 
neural network (denoted as CNN+LSTM) and the hybrid 
deep convolutional belief neural network (denoted as 
CNN+DBN) and hybrid deep belief memory neural net-
work (denoted as DBN+LSTM), and the rest of the model 
remains unchanged. Among them, the non-dynamic normal 
CNN components use a composite filter strategy, the filter 
size is 7, 5, and 3, the number of which is 10, 15 and 20 
respectively, and the traditional maximum pooling function 
is used for sampling. The experimental results are shown in 
Tab. 3. DCNN+LSTM achieves the highest accuracy rate, 
and is 0.72% higher than CNN+LSTM, which shows that 
dynamic CNN can perform feature extraction more flexi-
bly, and is beneficial to the improvement of the overall 
performance of the network. The performance of 
CNN+DBN and DBN+LSTM is reduced by about 2%–3%, 
which shows that other types of hybrid deep networks 
cannot improve the performance of radar emitter recognition. 
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Representation strategy Pr (%) 
H-net 83.62 
A-net 76.34 
J-net 80.55 

Tab. 2. Performance comparison between distributed 
representation method and traditional representation 
method. 

 

Network structure Pr (%) 
DCNN+LSTM 83.62 
CNN+LSTM 82.90 
CNN+DBN 80.32 

DBN+LSTM 80.97 

Tab. 3. Performance comparison between hybrid deep neural 
network and other network structures. 

 

Fusion strategy Pr (%) 
attention 83.62 

direct 82.41 

Tab. 4. Performance comparison between Attention and Direct. 

Finally, in order to verify the effectiveness of the 
attention-based method (denoted as Attention), we com-
pare it with the method of directly connecting dynamic 
CNN and LSTM using only one fully connected layer 
(denoted as Direct), and the rest of the model remains un-
changed. The experimental results are shown in Tab. 4. 
The overall recognition accuracy of Attention is 1.21% 
higher than that of Direct, which shows that the feature 
fusion method based on the attention mechanism can in-
deed obtain better deep features. 

4.3 Comparative Experiment Results 

In order to verify the overall superiority of the method 
in this paper, this experiment constructed the shallow mod-
els SVM, NN and the deep models DBN, Autoencoder, 
CNN, DCNN, LSTM as the baseline systems to compare 
with the method in this paper. Because the structure of the 
shallow models is relatively simple, SVM and NN still use 
the traditional feature representation method, which are 
recorded as J-SVM and J-NN respectively. Since the effec-
tiveness of the distributed feature representation method 
has been proved above, DBN, Autoencoder, CNN, DCNN, 
and LSTM all take the distributed representation features 
as input, which are respectively denoted as H-DBN,  
H-Autoencoder, H-CNN, H-DCNN and H-LSTM. We get 
the recognition accuracy rate of each category of radar 
emitters, the overall recognition accuracy rate and the run-
ning time of the models on the test set. The specific com-
parative experiment results are shown in Tab. 5, where P1

r, 
P2

r, P
3
r and P4

r are the recognition accuracy rate of the first 
category, the second category, the third category and the 
fourth category of radar emitters respectively. 

The experimental results show that compared with 
other baseline systems, the method in this paper achieves 
the best overall recognition accuracy rate, which improved 
by 1.26%. It proves that the feature representation, feature 
extraction and feature fusion methods used in this paper 
can  obtain multi-level features  with different details, and 

 

Model P1
r (%) P2

r (%) P3
r (%) P4

r (%) Pr (%)
Running 
time (s) 

J-SVM 95.53 42.16 54.91 83.12 68.93 86.71 
J-NN 94.31 46.93 48.89 81.11 67.81 0.70 

H-DBN 95.77 66.82 62.10 84.39 77.27 0.95 
H-Autoencoder 95.69 63.23 64.94 83.98 76.96 0.98 

H-CNN 96.11 69.88 65.20 85.01 79.05 1.23 
H-DCNN 96.25 70.62 72.50 84.99 81.09 1.45 
H-LSTM 96.49 71.54 77.10 84.67 82.45 1.12 

Our Method 96.24 75.22 81.22 82.16 83.71 1.83 

Tab. 5. Comparative experiment results. 

their characterization ability is strong. The shallow models 
J-SVM and J-NN have the lowest accuracy, which shows 
that the features obtained by simple models have weak 
adaptability and are difficult to deal with the complex task 
of the recognition of radar emitters with agile waveform. 
Among the remaining deep models, H-LSTM has the high-
est accuracy rate, reaching 82.45%, indicating that the 
timing features extracted by LSTM are more important 
than structural features for radar emitter recognition task. 
The accuracy of H-DCNN is 1.04% higher than that of H-
CNN, indicating that too many or too few filters will have 
an adverse effect on the recognition results, and the dy-
namic way can automatically build a more suitable network 
structure. 

The accuracy of all models on the first category of ra-
dar emitters is very high, reaching about 95%, mainly be-
cause the characteristic parameters of this category of radar 
emitters are fixed, so they are easy to identify. For the 
second and third categories of radar emitters, the accuracy 
of all models is significantly reduced, but the method in 
this paper has achieved the best performance on both cate-
gories of radar emitters. Compared with other models, our 
accuracy has been significantly improved, reaching 
75.22% and 81.22% respectively. The main reason is that 
the features obtained by the method in this paper can better 
characterize the information contained in sequence changes 
and pulse agility. For the fourth category of radar emitters, 
the method in this paper does not perform well, and only 
achieves an accuracy of 82.16%, while H-CNN achieves 
the best performance, and its recognition accuracy reaches 
85.01%, indicating that the structural features may be the 
most important for radar emitters that are agile between 
dwells. 

In terms of running time, J-SVM takes the longest 
time, up to 86.71 s, which is significantly higher than other 
neural network models, while J-NN requires the shortest 
time, only 0.70 s, mainly because its model structure is the 
simplest, so the required running time is the shortest. The 
method in this paper combines a variety of different net-
work structures, resulting in a very complex overall model 
structure, so the required running time has been increased 
to 1.83 s. In addition, Figure 6 shows the loss curve of our 
method and other baseline systems. From the figure, it can 
be seen that our method requires more iterations to achieve 
convergence, that is, its training time will be longer. Although 
the method in this paper has a slight extension in running 
time and training time, it is still within a tolerable range. 
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Fig. 6. Loss curves of the method in this paper and other 

baseline systems. 

In summary, the method in this paper is still a more 
practical solution in terms of the recognition accuracy, 
running time, and training time. 

5. Conclusion 
This paper analyzes the shortcomings of the tradi-

tional radar emitter recognition method, and conducts 
a preliminary discussion on the recognition of radar emit-
ters with agile waveform. We use the powerful function 
expression ability and feature extraction ability of the deep 
network structure to apply it to the problem of the recogni-
tion of radar emitters with agile waveform. In addition, in 
order to reduce the influence of noise in the complex elec-
tromagnetic environment on the characteristic data of radar 
emitters, we use an attention mechanism-based method for 
feature fusion. Experiments have proved the effectiveness 
of each component of the method in the paper, and our 
method can achieve good recognition accuracy. The next 
step will continue to lighten the deep network to speed up 
the running speed of the model and improve the practi-
cability of our method. 
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