
RADIOENGINEERING, VOL. 30, NO. 4, DECEMBER 2021 713

UAV Communication Signal Recognition: A New Feature
Representation and Deep-Learning Method
Lin LI, Zhiyuan DONG, Xiaorui YU, Zhiyuan REN, Zhigang ZHU, Li JIANG

School of Electronic Engineering, Xidian University, 710071 Xi’an, China

lilin@xidian.edu.cn, zgzhu@xidian.edu.cn, yolanda_jiangli@163.com

Submitted April 16, 2021 / Accepted August 19, 2021

Abstract. As the threats from unmanned aerial vehicles
(UAVs) increases gradually, to recognize and classify un-
known UAVs have became more and more important in both
civil and military security fields. Classification of signal
modulation types is one of the basic techniques for spe-
cific UAV recognition. In this paper, to represent the hid-
den features involved in the transmitted signals from UAVs,
we propose a two-dimensional squeezing transform (TDST)
to characterize the UAV communication signals in a com-
pressed time-frequency plane. The new time-frequency rep-
resentation, TDST, retains the instantaneous characteristics
of the UAV signal, and is with excellent data reduction and
noise suppression capabilities. The TDST plane of differ-
ent modulation types are then considered as input features,
and we propose a convolutional neural network (CNN) based
on deep-learning to recognize the UAV signals. We design
an interception system and consider 10 types of UAV signals
with random initial phase, bandwidth and frequency offset.
Experimental results demonstrate the effectiveness and supe-
riority of the proposed algorithm.
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1. Introduction
Unmanned aerial vehicles (UAVs), which are com-

monly called “drones”, are growing rapidly in the worldwide.
With their inherent advantages, such as mobility, flexibility,
adaptive cruise, etc., UAVs have been applied successfully in
many fields of civil and military [1–6]. However, as what we
have witnessed, UAVs can deliberately or accidently violate
the social or national security. For instance, they can act
as a carrier for transfering explosive payloads, or violating
the periphery of security sensitive areas. To deal with these
threats, there is a rapid demand for the technologies that can
timely detect and recognize unknown UAVs. Identifying the

modulation type of the intercepted communication signal is
of great significance for signal demodulation and specific
UAV recognition. The current works on automatic modu-
lation classification (AMC) mainly focus on feature extrac-
tion. Such methods extract the effective representation of
the signal and then perform modulation recognition. For
example, A new AMC scheme is proposed using Extreme
Learning Machine (ELM) as a classifier, which use the Local
Binary Pattern (LBP) to extract the histogram features [7].
With the rapid development of deep learning in recent years,
automatic modulation recognition have been continuously
attracting wide attention. In [8], an automatic modulation
recognition framework is proposed for detecting radio sig-
nals in communication systems. This framework combines
in-phase, quadrature and fourth-order statistics of the modu-
lation signal by deep convolutional neural networks (CNN)
and long short-term memory networks (LSTM). Addition-
ally, more deep-learning architectures are utilized to achieve
automatic recognition of communication signals [9]. Es-
pecially, a CNN approach is introduced for a robust AMC
that classifies the received signals under heavy noises [10].
O’Shea et al. [11] considered a rigorous baseline method us-
ing higher order moments and strong boosted gradient tree
classification. In [12], the authors developed several meth-
ods to represent the modulated signal with CNN grid topol-
ogy, including the gray image and the enhanced gray image
of constellation diagram. After this, some deep models,
such as AlexNet and GoogLeNet, are used to achieve effec-
tive modulation recognition. Based on multi-domain fea-
tures and fusion strategies, [13] proposes a new multi-branch
asymmetric convolution squeezing and excitation (ACSE)
network to achieve better performance under low Signal-to-
noise ratio (SNR).

In this paper, we combine the squeezed time-frequency
analysis and the deep learning methods to propose an au-
tomatic modulation classification framework for UAV sig-
nal classification. First, we propose a new time-frequency
representation with a two-dimensional squeezing transform,
called TDST. Then, motivated by Visual Geometry Group
Network-16 (VGG-16), we propose a CNN model suitable
for UAV modulation signals, thereby identifying UAV sig-
nals effectively. We also give the size change process when
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the time-frequency spectrum passes through the proposed
network. Finally, we compare the recognition accuracy of
our proposed method with the other two methods under vari-
ous SNRs. Experimental results demonstrate that ourmethod
achieves superior performance.

2. Proposed Method

2.1 Interception of UAV Communication
Signals

Like most of existing communication signal reconnais-
sance systems, we build a UAV signal interception and recog-
nition system as shown in Fig. 1.

First, the unknown UAV signals are received by
an omni-directional antenna with frequency ranging from
400MHz to 8GHz, which are transmitted to the receiver.
Then through the sweep-frequency receiver, the received sig-
nals are transformed to zero intermediate frequency signals
with the down converter. Subsequently, the zero intermediate
frequency signals are sampled by a 50MHz analog-to-digital
converter (ADC) and transmitted to the graphics processing
unit (GPU) system by the peripheral component interconnect
express (PCI-E) interface. The GPU further processes the
sampling results to obtain signal feature and various parame-
ters, and tests the modulation classification method. Finally,
the obtained signal parameters and classification results are
transmitted to the upper computer for display. It should be
noted that, to evaluate the classification performance, we will
use a RF signal generator to simulate the received UAV sig-
nals with 10 types of modulation signals and transmit them
to the receiver directly.

2.2 Two-dimensional Squeezing Transform
The TDST, in essence, is the squeezing transform of

continuous wavelet transform (CWT) in the direction of
time and frequency respectively. Different from the syn-
chrosqueezing transform (SST) methods [14–17], which fo-
cus on component recovery, the TDST obtains a clear time-
frequency representation by suppressing noise and preserving
the instantaneous characteristics of the signal. These lay the
groundwork for the subsequent classification process.

A function 𝜓(𝑡) ∈ 𝐿2 (R) is called a continuous wavelet
(or an admissible wavelet) if it satisfies the admissible con-
dition:

0 < 𝐶𝜓 =

∫ ∞

−∞

���𝜓(𝜉)���2 d𝜉|𝜉 | < ∞ (1)

where 𝜉 is the frequency, 𝜓(𝜉) is the Fourier transform of
𝜓(𝑡), defined by

𝜓(𝜉) =
∫ ∞

−∞
𝜓(𝑡) exp(−j2𝜋𝜉𝑡)d𝑡. (2)

Fig. 1. Interception system of UAV signals.
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form (CWT) of a signal 𝑥(𝑡) ∈ 𝐿2 (R) with a continuous
wavelet 𝜓 is defined by

𝑊𝑥 (𝑎, 𝑏) = ⟨𝑥, 𝜓𝑎,𝑏⟩ =
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𝑥(𝑡) 1

𝑎
𝜓
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𝑎

)
d𝑡. (3)

The variables 𝑎 and 𝑏 are called the scale and time variables
respectively.

In this paper, we consider the continuous wavelets:

𝜓𝜎 (𝑡) =
1
𝜎
𝑔

( 𝑡
𝜎

)
exp(j2𝜋𝜇𝑡) − 1

𝜎
𝑔

( 𝑡
𝜎

)
𝑐𝜎 (𝜇) (4)

where 𝜎 > 0 is the window width of wavelet 𝜓𝜎 (𝑡), 𝜇 > 0, 𝑔
is a function in 𝐿2 (R) with certain decaying order as 𝑡 → ∞,
and 𝑐𝜎 (𝜇) is a constant such that 𝜓𝜎 (0) = 0. If �̂�(0) ≠ 0,
we let 𝑐𝜎 (𝜇) = �̂�(𝜎𝜇)/�̂�(0). For example, if 𝑔(𝑡) is given
by

𝑔(𝑡) = 1
√
2𝜋
exp

(
− 𝑡2

2

)
, (5)

then 𝜓𝜎 is Morlet’s wavelet.

The choice of the parameter 𝜎 for the wavelet 𝜓𝜎 af-
fects the representation of the CWT. In this paper, we propose
an ensemble CWT to suppress noises, defined by

𝑊𝑥 (𝑎, 𝑏) =
∫
𝐼𝜎

∫ ∞

−∞
𝑥(𝑡) 1

𝑎
𝜓𝜎

(
𝑡 − 𝑏

𝑎

)
d𝑡d𝜎 (6)

where 𝐼𝜎 = [𝜎0, 𝜎1] ⊂ R+ is a given interval of 𝜎. The
values of 𝜎 are different for different modulation signal pa-
rameters. In order to adapt to more modulation signal types,
we take the average in the simulation.

Then we define the new phase transform

𝜔𝑥 (𝑎, 𝑏) = Re

𝜕𝑏

(
𝑊𝑥 (𝑎, 𝑏)

)
j2𝜋𝑊𝑥 (𝑎, 𝑏)

 (7)

where𝑊𝑥 (𝑎, 𝑏) ≠ 0. The modified SST is defined by

𝑇m𝑥 (𝜉, 𝑏) =
∫
{𝑊𝑥 (𝑎,𝑏)≠0}

𝑊𝑥 (𝑎, 𝑏)𝛿
(
𝜔𝑥 (𝑎, 𝑏) − 𝜉

) d𝑎
𝑎
(8)

where 𝜉 is the frequency variable.
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For non-stationary and frequency modulation signals,
the second-order SST is introduced to improve the concen-
tration furthermore. However, the UAV signals are usually
stationary locally and suitable to use the first order SST as
defined by (8). Take a simple 2 Phase Shift Keying (2PSK)
signal for example,

𝑠(𝑡) = exp(j2𝜋𝜔0𝑡)𝑔
(
𝑡

𝑇𝑔

)
− exp(j2𝜋𝜔0𝑡)𝑔

(
𝑡

𝑇𝑔
− 1

)
(9)

where 𝑔(𝑡) is gate function with 𝑔(𝑡) = 1 only for 𝑡 ∈ [0, 1],
𝑇𝑔 is the width of 𝑔(𝑡).

Then the modified SST 𝑇m𝑠 of 𝑠(𝑡) is extremely sparse
in view of 𝜎 ≪ 𝑇𝑔. In other words, |𝑇m𝑠 (𝜉, 𝑏) | is constant
except for 𝑏 ∈ [𝑇𝑔 − △𝜓𝜎1

, 𝑇𝑔 + △𝜓𝜎1
], where △𝜓𝜎1

is the
duration of 𝜓𝜎1 .

We propose a squeezing operator along the time axis 𝑏
of 𝑇m𝑥 (𝜉, 𝑏) as follows

T (𝑎, 𝑘△ℎ) =
1
ℏ

∫
R

1
𝜆
𝑇m𝑥 (𝜉, 𝑏)ℎ

(
𝑏 − 𝑘△ℎ

𝜆

)
d𝑏 (10)

where ℎ is an admissible window with ℏ =
∫
R
ℎ(𝑡)d𝑡 and

duration △ℎ. In order to discretize (10) to compute the fea-
tures, the scale 𝑎 is discretized as 𝑎 𝑗 = 2 𝑗𝑛v△𝑡, where 𝑛v is
the number of voice.

Observe that (10) is a low-pass filter capitalized on the
local stationary of the UAV signals. Then T (𝑎, 𝑘△ℎ) in (10)
is called the two-dimensional squeezing transform.

Remark: the TDST algorithm is essentially a compres-
sion transformation of continuous wavelet transform both in
the time and frequency directions. This new feature repre-
sentation can effectively mine the hidden features in UAV
transmitted signals. The experimental results to be presented
in Sec. 3 also show that the combination of wavelet trans-
form and squeezing transform can obtain a clear feature rep-
resentation of the signal, which is conducive to subsequent
classification.

2.3 The Proposed CNN Model
Deep learning (DL), as a novel development method,

can extract more meaningful features through its hierar-
chical learning process. DL-based methods can automat-
ically learn distinctive representations of high-dimensional
data [18], [19].

Fig. 2. The schematic diagram of the proposed CNN
architecture.

Layer (type) Output shape Parameters number
Conv2- Pool2 64, 256, 8 144
Conv2- Pool2 64, 128, 8 576
Conv2- Pool2 64, 64, 8 576
Conv2- Pool2 32, 32, 8 576

Conv2- Conv2 - Pool2 16, 16, 16 2 304
Conv2- Conv2 - Pool2 8, 8, 32 9 216
Conv2- Conv2 - Pool2 4, 4, 64 36 864
Full Connected 1 024 262 144
Full Connected 128 131 072
Softmax 10 1 280

Tab. 1. Simulation parameters.

To adapt to the classification of UAV signals, we build
a special CNN architecture which is shown in Fig. 2. The
motivation for choosing the CNN is that it can automatically
extract the hidden features involved inside of the signal (in-
cluding the signal feature representation through TDST in
this paper). We can see that, the matrix size of the input
model after TDST is 64×512×2, consisting of real and imag-
inary parts. Then we separate the real and imaginary parts of
the complex value, and form a dual channel mode to input the
CNN architecture. In each channel, the convolutional kernels
of CNN perform arithmetic operations with real values. Sim-
ilar to VGG-16 [20], our CNN structure consists of 19 layers,
including convolutional layer, pooling layer, fully connected
layer and softmax layer. Table 1 shows the detailed model
configuration.

In Fig. 2, the first four convolutional kernels is set to 8.
The next 8 convolutional layers are divided into 3 types, each
of which has the same 2 convolutional layers. The number of
convolution kernels included in each convolutional layer is
16, 32 and 64, respectively. We use a convolution kernel with
the size of 3×3 to extract distinctive features. Compared with
the 7×7 convolution kernel, the convolution kernels with the
size of 3×3 not only increase the CNN depth but also reduce
the amount of parameters. We also introduce a pooling ker-
nel with the size of 2×2 to reduce the parameters. To avoid
network overfitting, dropout operator with a ratio of 0.5 is in-
troduced to follow the convolutional layer. A sliding average
and L2 regularization are introduced to the model. Rectified
Linear Unit (ReLU) is selected as an activation function. As
mentioned in [9] and [11], our proposed CNN is built on
the VGG-16 according to the actual properties of the dataset
with two fully connected layers too. Specifically, we set the
number of neurons in the last two fully connected layers to
1024 and 128 (both of fully connected layers’ dimensions of
VGG-16 are 4096) to adapt to the proposed CNN structure,
respectively. Finally, the last layer of the network is con-
nected to a softmax classifier to obtain the predicted scores
of modulation categories. The loss function and optimizer of
the model are the cross entropy error function and the Adam
respectively. The cross entropy error function is as follows:

𝑙𝑜𝑠𝑠 = −
𝑛∑︁
𝑖=1

𝑦𝑖 log (𝑦𝑖) + (1 − 𝑦𝑖) log (1 − 𝑦𝑖) (11)

where 𝑦𝑖 represents the prediction and 𝑦𝑖 represents the
groundtruth label.
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2.4 Benchmarks
Time-Domain based method: As a comparison, this

method uses the same structure proposed in Sec. 2.3. The
dataset used in this method is the modulated signal. The
input of the network is still dual-channel input. Finally, we
input the test set to predict the category.

ANN based method: As a comparison, this method
uses an artificial neural network (ANN) based on character-
istics. The ANN used in this method is a back propagation
(BP) artificial neural network. In addition, we introduce mul-
tiple signal features as the input of ANN, including signal
instantaneous frequency, multiple high-order cumulants, etc.

3. Experiments

3.1 Dataset
In this experiment, we consider to classify 10 common

UAV modulation signals, including 2 Frequency-Shift Key-
ing (2FSK), 4FSK, 8FSK, 2PSK, 4PSK, 8PSK, 16 Absolute
Phase Shift Keying (16APSK), 16 Quadracture Amplitude
Modulation (16QAM), 32QAM and Gaussian-filtered Mini-
mum Shift Keying (GMSK). As mentioned in Sec. 2.1, here
we use a RF signal generator to simulate different UAV sig-
nals and transmit them to the receiver directly. For each
modulation type, 3 200 samples are available, where the SNR
varies from –10 dB to 5 dB with 200 samples. The size of
each signal sample is 256×256 and it includes real and imag-
inary parts. The real and imaginary parts of each signal
sample are stored in two folders separately. The sampling
frequency we use is 50 MHz. The signal bandwidth and
frequency offset are 3–6 MHz and 0–200 kHz respectively.

3.2 Experiment Procedure and Model Training
For the modulated signal, we calculate the correspond-

ing TDST. The frequency is discretized to 64 bins and the
time axis is squeezed to 512 points. Note that here we just
use a constant 𝜎 to calculate the TDST. For the TDST of
each sample, the input size is 64×256×2. Then, half the
samples are selected for training and the rest are for testing.
The training set and testing set are selected equally for each
SNR and modulation type.

For hyper-parameters, when the initial value of expo-
nential decay learning rate is set to 0.005, the best recognition
performance of the method is selected for the final predic-
tion. The batch size in the training is set to 128. These
hyper-parameters configuration have been used for the fi-
nal modulation signal classification. As the two compari-
son methods mentioned in Sec. 2.4, CNN model based on
time-domain dataset and ANN based on features use the
same original dataset and experimental conditions. For the
built CNN model based on time-domain dataset, the hyper-
parameters are the same as them proposed in this paper.

The GeForce RTX 2080 Ti GPU is used as the main hard-
ware execution environment for CNN implementation, train-
ing and testing. The deep learning framework used in this
article is Tensorflow, which uses Python to achieve various
functions.

3.3 Modulation Classification Performance
As shown in Fig. 3, we give the convolutional features

and TDST results of 2FSK, 2PSK and 16QAM. It can be
clearly seen that after TDST, the three kinds of signals con-
tain almost no features in the time-frequency domain and
have obvious discrimination. At the same time, the corre-
sponding deep representations are also quite different. They
reflect the rationality of the proposed CNN architecture.

Figure 4 shows the classification performance of 10
signals. In general, when the SNR is greater than –5 dB, the
accuracies of all modulation types are over 80%. When the
SNR is greater than 0 dB, the accuracies exceed 90%. Even
if the SNR is –10 dB, the accuracies of 4PSK, 8PSK and
GMSK are around 70%. We also observe that the proposed
method has high recognition accuracies for FSK signals. For
16QAM and 32QAM that are difficult to distinguish, our
method can also keep the accuracies above 90% in the SNR
range of –10 dB to 5 dB.

Fig. 3. TDST and corresponding deep representation.
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Figure 5 shows the average recognition accuracy varia-
tions ofmodelswith SNRs. It is observed that theCNN-based
methods significantly outperform the traditional handcrafted
one. Although the feature-based ANN model shows an over-
all upward trend, the average recognition rate at low SNR
is 10% to 20% lower than that of the other two methods.
However, when the SNR is less than –5 dB, the TDST-based
deep learning model can maintain a high average accuracy.
Instead, the average accuracy of the CNN model based on
time-domain information has dropped significantly. It can
be seen that our proposed method significantly exceeds the
CNN model based on pure time-domain information, which
proves the validity of TDST representation.

Based on the above two result figures, the method pro-
posed in this paper provides a better classification perfor-
mance. Even when the SNR is low, TDST can still guarantee
that the average classification accuracy is close to 90%.

4. Conclusions Proposing
This paper proposes a new automatic modulation clas-

sification based on time-frequency analysis. We first pro-
pose a new two-dimensional compression transform (TDST)
to represent UAV communication signals. Then, we build
a special CNN architecture for identifying UAV signals. Fi-
nally, they are concatenated into awhole architecture for UAV
modulation classification. Experimental results demonstrate
that compared with the feature-based artificial neural net-
work (ANN)method and the time-domain signal-based CNN
method, the proposed method achieves superior recognition
performance. Future work will focus on extracting hidden
features based on multiple types of deep networks and using
the obtained features to jointly identify more types of signals.
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