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Abstract. In this paper, we propose a fractional regular-
ized distorted Born iterative method (DBIM) to solve non-
linear ill-posed problems of microwave imaging. Fractional
regularization is a modification to Tikhonov regularization,
where singular values are weighed with fractional power. As
a result, the well-known effect of oversmoothing present in
Tikhonov regularization is reduced, thereby the output image
quality is improved. The results of this method are compared
with standard DBIM using Tikhonov regularization. Various
numerical examples of simulated and experimental datasets
containing homogeneous as well as heterogeneous scatterers
are considered to validate the effectiveness of the proposed
approach. It is found that the proposed method improves the
accuracy of estimated images over conventional DBIM.
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1. Introduction
Microwave imaging (MWI) is an electromagnetic sens-

ing technique for detecting the properties of unknown ob-
jects from multi-view, multi-static measured scattered field
data [1], [2]. MWI methods are classified as qualitative and
quantitative methods. Qualitative methods provide only the
morphological features (size, shape, and position) of the tar-
get. However, quantitative methods provide additional elec-
trical features (permittivity, conductivity, etc.) associated
with the target. Quantitative reconstruction problems are
non-linear and ill-posed in nature. These problems can be
solved easily with the help of non-iterative methods, which
assume certain conditions to simplify the problem [3]. How-
ever, this assumption does not consider the effect of multiple
scattering associated with strong dielectric objects. This
effect causes distortion in the reconstruction and results in
ghost images [4]. In order to overcome this difficulty, an it-
erative approach needs to be developed where the relation
between scattered field and permittivity profile is non-linear.

Generally, in this approach, the objective function for opti-
mization is constructed by the measure of the mismatch be-
tween the collected scattered field and the calculated scattered
field. The unknown permittivity is obtained by minimizing
this objective function. In the literature, many optimization
schemes have been proposed to evaluate this objective func-
tion. Among them, the Born iterative method (BIM) [5],
contrast source inversion (CSI) [6], distorted Born iterative
method (DBIM) [4], [7], and subspace optimization method
(SOM) [8] are themostwidely used techniques. TheDBIM is
an extensively used regularized iterative algorithm because
of its simplicity and fast convergence rate. This method
requires a regularization procedure to obtain a convergent
solution. Several regularization techniques have been pro-
posed in literature, most notably, Truncated Singular Value
Decomposition (TSVD) [9], and Tikhonov regularization
(TR) [10], [11]. The basic idea behind TSVD is to reduce the
condition number by neglecting the least significant singular
values [1], [9]. However, the choice of condition number
depends on the noise level in the data. Also, the choice
of the smallest considered singular value is often a critical
issue. The TR method is recognized as the widely con-
sidered filtering technique aimed at minimizing the residual
with the penalty term [12], [13]. However, it suffers from the
well-known effect of oversmoothing [14]. In this case, fine or
sharp features of the image are lost, which can be troublesome
in critical applications, where it is of high priority to recover.
This effect can be reduced by modifying the related filter
factors by introducing the fractional power term, and this
technique is called fractional regularization (FR) [14–16].
This modification allows controlling the amount of smooth-
ness or damping in the reconstructed solution and leads to
a more accurate reconstruction. In this work, the FR based
DBIM is applied to the numerical examples of synthetic and
experimental data [17], [18], and the results are found en-
couraging.

This paper is structured as follows. Section 2 formulates
the inverse scattering problem, which explains themathemat-
ical basis of inversion methods. Section 3 provides a detailed
description of a proposed algorithm. Numerical simulations
and results are presented in Sec. 4. The discussion and brief
conclusion of the work is drawn at the end in Sec. 5.

DOI: 10.13164/re.2022.0062



RADIOENGINEERING, VOL. 31, NO. 1, APRIL 2022 63

2. Problem Formulation
For simplicity, we consider the two-dimensional inverse

scattering problem of transverse magnetic polarization. To
determine the relationship between the contrast function and
the scattered field, the scattering equations are represented
as,

𝐸 t (𝑟) = 𝐸 i (𝑟) + j𝜔`b

∫
𝜒(𝑟 ′)𝐸 t (𝑟 ′)𝐺 (𝑟, 𝑟 ′)d𝑟 ′, 𝑟, 𝑟 ′ ∈ Δ,

(1)

𝐸s (𝑟) = j𝜔`b

∫
𝜒(𝑟 ′)𝐸 t (𝑟 ′)𝐺 (𝑟, 𝑟 ′)d𝑟 ′, 𝑟 ∈ Ω, 𝑟 ′ ∈ Δ

(2)

where 𝐸 t, 𝐸 i and 𝐸s are the total field, the incident field,
and the scattered field, respectively. The spatial variables
𝑟, 𝑟 ′ ∈ (x,y) denotes the Cartesian coordinates of the mea-
surement point and the source point, respectively, 𝐺 (𝑟, 𝑟 ′) is
the free space Green’s function, and 𝜒 is the contrast func-
tion, which is defined as 𝜒 (𝑟) = [𝜖r (𝑟) /𝜖b − 1], where 𝜖b
and 𝜖r is the relative permittivity of the background and the
object, respectively. The test domain and observation do-
main are represented by Δ and Ω, respectively. From the
use of method of moments [19], Equation (1) and (2) can be
discretized. Consequently, the discretized expressions in the
matrix form are [20]

Et = Ei +
[
𝐺Δ

] [
𝐸 t
]
𝛘, (3)

Es =
[
𝐺Ω

] [
𝐸 t
]
𝛘 (4)

where
[
𝐺Δ

]
and

[
𝐺Ω

]
are the internal and external radiation

operators, respectively. Here, the variables in bold letter in-
dicate the vector, and the variables in [·] indicate the matrix.
In the inverse scattering problem,Ei,

[
𝐺Δ

]
,
[
𝐺Ω

]
, andEs are

known quantities, whereas 𝛘 and
[
𝐸 t
]
are unknown terms.

The problem of finding 𝛘 from these equations is non-linear.

3. Fractional Regularized Distorted
Born Iterative Method
The DBIM is a popular quantitative approach that esti-

mates solutions to the non-linear inverse scattering problems
by successive linear approximations [4]. In this approach,
at each iteration, the Green’s function is also updated [3].
Here, the optimization problem consists of determining the
deviation in scattering contrast 𝛿𝜒 inserted inside an inho-
mogeneous background. A penalty term is introduced to
stabilize the optimization. The objective function is selected
as the 𝐿2-norm of mismatch of the collected and calculated
scattered field as

𝑓 (𝛿𝜒) =
𝑁∑︁
𝑝=1

Es𝑝 −
[
𝐺Ω

]
[𝜒] Eb𝑝 −

[
𝐺b

]
[𝛿𝜒] Eb𝑝

2
+ _ ∥𝛅𝛘∥2 (5)

where 𝑁 (𝑝 = 1, 2, · · · , 𝑁) is the number of incident fields,
Eb𝑝 is the secondary incident field in the presence of inho-
mogeneous background medium,

[
𝐺b

]
is an inhomogeneous

background Green’s function operator, and _ is the regular-
ization parameter. The principle steps for solving the non-
linear integral equation using the regularized iterative DBIM
are briefly described below.

1. Initialize with 𝑛 = 0, Eb𝑝 = Ei𝑝 , 𝛅𝛘𝑛 = 0.

2. Find the secondary incident field as

Eb𝑝,𝑛 =

(
[𝐼] −

[
𝐺Δ

]
[𝜒𝑛]

)−1
Ei𝑝 . (6)

3. Update the Green’s function as[
𝐺b𝑛

]
=
[
𝐺Ω

] (
[𝐼] − [𝜒𝑛]

[
𝐺Δ

] )−1
. (7)

4. Calculate the kernel matrix [𝐺] and the data vector h
as [

𝐺 𝑝,𝑛

]
=
[
𝐺b𝑛

] [
𝐸bac𝑝,𝑛

]
, (8)

h𝑝,𝑛 = Es𝑝 −
[
𝐺Ω

]
[𝜒𝑛] Eb𝑝,𝑛. (9)

5. Estimate 𝛅𝛘𝑛 by solving the linear equation[
𝐺 𝑝,𝑛

]
𝛅𝛘𝑛 = h𝑝,𝑛. (10)

6. Update the contrast function as 𝛘𝑛+1 = 𝛘𝑛 + 𝛅𝛘𝑛.

7. Return to step 2 and proceed until solution converges.

The convergence of the solution depends highly on the
ill-posed problem of (10) as it updates regularized solution
for each iteration. In order to solve such problem, this paper
is concerned with the estimation of an approximate solution
to the linear least-squares problem

min
𝛅𝛘

∥ [𝐺] 𝛅𝛘 − h∥ . (11)

Specifically, [𝐺] is a severely ill-conditioned matrix, and
such problems are often called discrete ill-posed problems.
Vector h denotes the available data, which is corrupted by the
error 𝛏. Errors may arise from measurement inaccuracies or
discretization. Therefore, h = ĥ + 𝛏, where ĥ represents the
unknown errorless vector associated with h. The solution of
the least-squares problem (11) is usually a poor estimate of
the exact solution, due to the ill-conditioning of the matrix
[𝐺] and the error 𝛏 in h. Therefore, it requires a regulariza-
tion strategy to obtain an approximate solution. In general,
the TR is used to solve this problem [4], [21]. However,
it suffers from the effect of oversmoothing. Therefore, in
this work, an FR approach is implemented to determine the
approximation of a solution. This scheme replaces the mini-
mization problem with the penalized least squares problem,
where the data fidelity term is penalized using the weight
matrix [14] [15]. Therefore, the penalized least squares ob-
jective function can be given as

Ψ = min
𝛅𝛘

(∥ [𝐺] 𝛅𝛘 − h∥2𝑊 + _ ∥𝛅𝛘∥22) (12)
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where ∥𝛅𝛘∥𝑊 =
(
𝛅𝛘∗ [𝑊] 𝛅𝛘

)1/2 and [𝑊] is the sym-
metric positive semidefinite matrix defined as [𝑊] =(
[𝐺] [𝐺]∗

) 𝛾−1
2 , where 𝛾 > 0 represents fractional power,

which controls the degree of smoothness or damping by in-
creasing the norm of the estimated solution [15]. Seminorm
∥.∥𝑊 allows the 𝛾 to be selected in such away that the solution
obtained in (12) is of good quality. By differentiating (12)
with respect to 𝛅𝛘 and equating to zero leads to( (

[𝐺]∗ [𝐺]
) 𝛾+1
2 + _𝐼

)
𝛅𝛘 =

(
[𝐺]∗ [𝐺]

) 𝛾−1
2 [𝐺]∗ h. (13)

The singular value decomposition (SVD) is a powerful
tool to solve linear inverse problems. By using SVD, the
system matrix [𝐺] can be represented as

[𝐺] = [𝑈] [Σ] [𝑉]∗ (14)

where [𝑈] = [u1, u2, . . . , u𝑀 ] and [𝑉] = [v1, v2, . . . , v𝑁 ]
are orthogonal matrices and are called as the left and
right singular matrices of [𝐺], respectively, and [Σ] =

diag [𝜎1, 𝜎2, . . . , 𝜎𝑁 ] is the diagonal singular value matrix.
Here ∗ represents the conjugate transpose operator. By sub-
stituting the SVD (14) into (13) yields(
[𝑉] [Σ] [𝑈]∗ [𝑈] [Σ]𝛾−1 [𝑈]∗ [𝑈] [Σ] [𝑉]∗ + _𝐼

)
𝛅𝛘 =

[𝑉] [Σ] [𝑈]∗ [𝑈] [Σ]𝛾−1 [𝑈]∗ h, (15)(
[𝑉] [Σ]𝛾+1 [𝑉]∗ + _𝐼

)
𝛅𝛘 = [𝑉] [Σ]𝛾 [𝑈]∗ h. (16)

The solution to this equation is given by

𝛅𝛘 =

𝑟∑︁
𝑖=1

𝜎
𝛾

𝑖

𝜎
𝛾+1
𝑖

+ _
⟨h, u𝑖⟩ v𝑖 (17)

where 𝑟 ≤ 𝑁 denotes the rank of the system matrix. It is
important to note that FR scales the singular values based
on the amount of fractional power. The choice of _ depends
on the amount of error 𝛏 in h. In general, the larger ∥𝛏∥,
the larger _ should be. However, it follows from (17) that
increasing _ reduces the norm of the calculated solution.
Therefore, the calculated solution may have a substantially
smaller norm than the expected solution. This difficulty can
be overcome by selecting 𝛾 < 1 because it increases the norm
of the calculated solution. The filter factor for the fractional
regularization is given by

𝜙frac (𝜎) = 𝜎𝛾

𝜎𝛾+1 + _
. (18)

The filtering factors are intended to suppress the contri-
bution of insignificant singular terms to the solution, thereby
providing a more stable and non-oscillating solution. The
asymptotics of the filter function are

𝜙frac (𝜎) = 𝜎𝛾

_
+ O

(
𝜎2𝛾+1

)
(𝜎 → 0) , (19)

𝜙frac (𝜎) = 1
𝜎

+ O
(
𝜎−(𝛾+2)

)
(𝜎 → ∞) . (20)
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Fig. 1. Comparison of filter factors with respect to 𝜎, for
different values of 𝛾.

Figure 1 displays the plot of 𝜙frac for_ = 0.01 and differ-
ent values of 𝛾. It can be seen that the contribution of minor
components is damped. Filter factors differ in how fast they
converge to 0 when 𝜎 reduces to 0. Fast convergence indi-
cates significant smoothing of the estimated solution. Here,
𝛾 = 1 indicates the Tikhonov filter factor

(
𝜙tikh

)
. The asymp-

totic behaviour of 𝜙frac (𝜎) as 𝜎 → 0 shows this function
provides less smoothing than the 𝜙tikh (𝜎) for 0 < 𝛾 < 1.
The components of the solution corresponding to small sin-
gular values are damped less by the 𝜙frac (𝜎) function. This
often produces the solution of higher quality than TR.

4. Reconstruction Results
In this section, numerical simulations are performed to

examine the performance of the fractional regularization for
dielectric objects (homogeneous as well as heterogeneous
scatterers). For the purpose of reconstruction, the size of Δ
is considered to be 20 cm × 20 cm and subdivided into 1681
cells (41 × 41). The permittivity of the background medium
is considered as 𝜖b = 1. The reconstruction is carried out at
a working frequency of 3GHz and adopted with synthetic as
well as experimental data (made available by the Institute of
Fresnel, France [17], [18]). In all cases, a 𝛾 = 0.6 value is
used for reconstruction, which is selected empirically based
on observations.

In order to quantify the reconstruction performance of
the algorithms, two important parameters are introduced.
These are the mean square error (MSE) and the Pearson’s
correlation coefficient (PCC). The MSE can be computed as

MSE =
∥𝜖r − 𝜖r∥2

∥𝜖r∥2
(21)

where 𝜖r and 𝜖r denotes the original and the estimated per-
mittivity, respectively. Similarly, the PCC can be defined
as [15]

PCC (𝜖r, 𝜖r) =
cov (𝜖r, 𝜖r)
𝑠 (𝜖r) 𝑠 (𝜖r)

(22)

where cov denotes the covariance and 𝑠 denotes the standard
deviation. This coefficient varies in the range of −1 to 1.
Larger value of PCC is desirable as it indicates detectability
of the target.
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4.1 Tests on Synthetic Data

In the synthetic examples, the scatterer under test is il-
luminated by a plane wave at angles of 0◦, 15◦, · · · , 345◦
and the resulted scattered fields in the far-field are measured
along the same angles. Here, the value of 𝜖r is chosen such
that

[𝐺Δ
]
𝛘
 > 1 for the considered frequencies so that the

object can be treated as a strong scatterer [22]. Three exam-
ples are used in this section to demonstrate the efficiency of
the proposed method.

4.1.1L-shape Structure with Multilayer Cylinder
In this example, a complicated synthetic data profile is

inspected. As shown in Fig. 2, this example consists of one
L-shaped dielectric cylinder with 𝜖r = 1.75, and a multilayer
object with permittivity of inner and outer cylinders equal
to 2 and 1.5, respectively. The two-layer circular concentric
cylinder is centered at (4, 0) cm, with inner and outer radii
of 1.5 and 5 cm, respectively. This configuration is inhomo-
geneous that includes both weak and strong scattering parts.
A stratified elliptic cylinder is sufficiently complex to provide
a good test for numerical algorithms [1]. Figures 2(b)–(f)
show the reconstructed distributions of the permittivity. It
can be seen that the results with the fractional method are

close to the reference profile. The behavior of MSE with re-
spect to iteration number is reported in Fig. 2(d). The result
shows that the error is minimum for the proposed method.
Furthermore, the PCC values are plotted in Fig. 2(e). It
shows that the FR has a high value of PCC compared to TR.
In addition, as illustrated in Fig. 2(f), the permittivity value
is plotted in a one-dimensional (1D) plot. It displays the
permittivity values of the original and reconstructed profiles
along the x-axis (𝑦 = 0). As can be observed in this graph,
the proposed technique reconstructs the target accurately.

4.1.2Austria Profile
The algorithm is then validated on the Austria profile,

which is a challenging and well-known configuration in the
inverse scattering community [3] [23]. It consists of a ring
with inner and outer radii of 3 cm and 6 cm, respectively,
and two discs with radii of 2 cm each. The ring is centered
at (0, −2) cm, while the discs are centered at (3, 6) cm and
(−3, 6) cm, respectively. The permittivity distribution of this
target is uniform, with 𝜖r = 2. Figure 3 depicts the recon-
struction results, which show that the proposed algorithm
produces more precise reconstruction. The evaluation met-
rics (MSE, PCC and 1D plot) values show that the proposed
technique is more accurate than the TR-based DBIM.
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Fig. 2. Synthetic data results for L-shape structure with multi-
layer cylinder: (a) Original profile, (b) DBIM using TR,
(c) DBIM using FR, (d) MSE, (e) PCC, (f) 1D plot along
x-axis (𝑦 = 0).
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Fig. 3. Synthetic data results for Austria profile: (a) Original pro-
file, (b) DBIM using TR, (c) DBIM using FR, (d) MSE,
(e) PCC, (f) 1D plot along the center of the ring.
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4.1.3U-shaped Profile
In this example, we have considered the non-convex tar-

get, such as the U-shaped scatterer. The effect of multiple
scattering is stronger here, which increases the non-linearity
of the problem. The dimension of this target configuration
is (12 × 12) cm2, as indicated in Fig. 4(a). The permittivity
of this purely dielectric structure is 𝜖r = 2. Figure 4 de-
picts the corresponding simulation results. Here again, a su-
perior reconstruction is achieved using the proposed tech-
nique. The results of the evaluation measures show that
even for non-convex scatterers, the proposed methodology is
quite accurate.

4.2 Tests on Experimental Data
In this section, we will illustrate the experimental test

results. We considered the datasets provided by the Insti-
tute of Fresnel, Marseille, France, which are widely used
as a benchmark for inverse problems at microwave frequen-
cies [17], [18]. It is concerned with complicated structures
consisting of many materials. The test setup consists of
an anechoic compartment, which consists of a transmitter,
which is installed at a fixed position on the circular track,
while the receiver revolves around the vertical cylindrical
target. The measurement setup consists of linearly polarized

double ridged horn antennas, with a wideband frequency
range from 1GHz to 18GHz.

In experimental examples, we have considered three
different target configurations. All the targets are very large
along a vertical direction to form a nearly 2D structure. The
first example is taken from the Fresnel dataset 2001 [17],
which consists of a strongly scattering circular dielectric
cylinder. Thereafter, the algorithm is tested on two inho-
mogeneous scatterers from the Fresnel dataset 2005 [18],
FoamDielExtTM and FoamTwinDielTM.

4.2.1Example I: Single Dielectric
For this example, the transmitting and receiving antenna

were kept at a distance of 0.72m and 0.76m, respectively,
from the center of the test region [17]. The scatterer is illu-
minated at an angle of 0◦, 10◦, · · · , 350◦, and the scattered
fields are collected at an angle of 60◦, 65◦, · · · , 300◦ with
respect to the corresponding emitter. The scatterer profile
consists of single circular, homogeneous, dielectric cylinder
of permittivity 3±0.3. The cylinder has a radius of 1.5 cm and
kept at a distance of 3 cm from the origin. The reconstructed
permittivity distributions at a frequency of 3GHz are shown
in Fig. 5. It can be observed that the quality of the reconstruc-
tion obtained using FR is quite good in terms of accuracy.
Also, the rate of convergence is faster for this method.
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Fig. 4. Synthetic data results for U-shaped profile: (a) Original
profile, (b) DBIM using TR, (c) DBIM using FR, (d) MSE,
(e) PCC, (f) 1D plot along x-axis (𝑦 = 0)
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Fig. 5. Experimental data results for single dielectric cylinder:
(a) Original profile, (b) DBIM using TR, (c) DBIM using
FR, (d) MSE, (e) PCC, (f) 1D plot along y-axis (𝑥 = 0).
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Fig. 6. Experimental data results for FoamDielExtTM: (a) Orig-
inal profile, (b) DBIM using TR, (c) DBIM using FR,
(d) MSE, (e) PCC (f), 1D plot along x-axis (𝑦 = 0).
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Fig. 7. Experimental data results for FoamTwinDielTM: (a) Orig-
inal profile, (b) DBIM using TR, (c) DBIM using FR,
(d) MSE, (e) PCC, (f) 1D plot along x-axis (𝑦 = 0).

4.2.2Example II: FoamDielExtTM

In this example, the scatterer is illuminated at an angle
of 0◦, 45◦, · · · , 315◦, and the scattered fields are collected
at an angle of 60◦, 61◦, · · · , 300◦ with respect to the cor-
responding emitter. The transmitting and receiving antenna
were kept at a distance of 1.67 m from the center of the
test region [18]. As shown in Fig. 6(a), the scatterer pro-
file consists of two circular dielectric cylinders. The first one
consists of a centered foam cylinder with a radius of 4 cm and
permittivity of 1.45 ± 0.15. Another target consists of a plas-
tic cylinder of radius 1.55 cm, permittivity 3 ± 0.3, placed
at a distance of 5.55 cm from the origin. The reconstructed
permittivity distributions after 20 iterations are displayed in
Fig. 6. Here again, excellent reconstructions are obtained
(visibly and quantitatively) with the proposed method.

4.2.3Example III: FoamTwinDielTM

Finally, in this example, a more complex target is in-
spected. As shown in Fig. 7(a), this target configuration is the
same as used in Example II, except that there is an additional
plastic cylinder inside the foam cylinder. This geometry of

the target is favorable to the occurrence ofmultiple scattering.
The simulation results at a frequency of 3GHz are shown in
Fig. 7(b)–(f). From the results, it is observed that the profile
of the target is clearly and most accurately identified by the
fractional regularization approach.

5. Conclusion
A fractional regularization based distorted Born iter-

ative method (DBIM) is studied for the reconstruction of
two-dimensional dielectric scatterers of Microwave imaging.
It introduces the fractional power term (𝛾) for weighing sin-
gular values, which can control the smoothness of the so-
lution. Applying this scaling to singular values results in
a better reconstruction. The performance of this algorithm is
evaluated using numerical examples of simulated and experi-
mental data. In all the cases, the proposedmethod has a faster
convergence rate and produces higher reconstruction quality
compared to the conventional Tikhonov regularization based
DBIM. Furthermore, it has been shown that the error in the
output is minimum for this method.
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