RADIOENGINEERING, VOL. 31, NO. 1, APRIL 2022

69

Classification of Microwave Planar Filters
by Deep Learning

Jiri VESELY ", Jana OLIVOVA ', Jakub GOTTHANS ?, Tomas GOTTHANS ?, Zbynek RAIDA?

1 Dept. of Communication Technologies, Electronic Warfare and Radiolocation, University of Defense, Brno, Czechia
2 Dept. of Radio Electronics, Brno University of Technology, Brno, Czechia

{jiri.vesely, jana.olivova2} @unob.cz, {jgotthans, gotthans, raida} @vutbr.cz

Submitted September 24, 2021 / Accepted March 4, 2021

Abstract. Over the last few decades, deep learning has been
considered to be powerful tool in the classification tasks, and
has become popular in many applications due to its capabil-
ity of processing huge amount of data. This paper presents
approaches for image recognition. We have applied convolu-
tional neural networks on microwave planar filters. The first
task was filter topology classification, the second task was
filter order estimation. For the task a dataset was generated.
As presented in the results, the created and trained neural
networks are very capable of solving the selected tasks.
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1. Introduction

Functions and abilities of a brain have been fascinating
engineers for decades. First attempts on modeling a brain
by electronic systems appeared in years of World War II. In
1943, Warren McCulloch a Walter Pitts developed a simple
neural network with electrical circuits. In 1949, Donald Hebb
reinforced the concept and pointed out that neural pathways
are strengthened each time when being used.

Thanks to advances of computers, Nathanial Rochester
from the IBM research laboratories led the first effort to sim-
ulate a neural network in the 1950s. In 1956, the Dartmouth
Summer Research Project on Artificial Intelligence provided
a boost to both artificial intelligence and neural networks. In
the years following the Dartmouth Project, John von Neu-
mann developed a simple neuron by using telegraph relays
or vacuum tubes. After that, Frank Rosenblatt began to work
on the perceptron. The perceptron computed a weighted sum
of the inputs, subtracted a threshold, and passed one of two
possible values out as the result.
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In 1959, Bernard Widrow and Marcian Hoff presented
models called ADALINE (adaptive linear elements, see
Fig. 1) and MADALINE (multiple adaptive linear elements).
MADALINE, an adaptive filter eliminating echoes on phone
lines, was the first neural network to be applied to a real-world
problem.

Because of the earlier successes, the potential of neural
networks was overestimated, particularly due to limitations of
available electronics. The unfulfilled claims caused halting
the funding.

In 1982, John Hopfield presented an approach to sim-
ply model brains and created useful devices. At the same
time, Japan announced an effort to further develop neural
networks. The US have been funding the research once
again. That time, the new area of artificial neural networks
has been started.

Most applications of neural networks have been using
the feed-forward structure (see Fig. 2). Neurons in the input
layer distribute input signals to neurons in the first hidden
layer. Hidden neurons multiply input signals by synoptic
weights wlg’.’). Here, n denotes the number of the hidden
layer, i is the number of the neuron in the input layer and j
indicates the number of the neuron in the hidden layer [1].

X2 > W» > X >

Fig. 1. Adaptive linear element (ADALINE). Synoptic weights
and a summer forming the neuron correspond to a finite
impulse response adaptive filter.
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output
layer

Fig. 2. Feed-forward neural network. Two-element input pat-
terns are statically mapped into two-element output
targets [1].

The products of input signals and synoptic weights are
summed and the threshold bﬁ.") is subtracted. Indexes n and j
refer to the layer and the neuron as previously. The output
of the summer is limited by a non-linear activation function
(a Gaussian function, a unipolar sigmoid or a bipolar one in
most cases). That way, the output signal of the neuron is
obtained [1].

Feed-forward neural networks are trained to map vec-
tors of input patterns [py, p2...par]T into vectors of output
targets [71,15...ty )T where M is the number of input neurons
and N denotes the number of output neurons [1].

Let us assume that a feed-forward network is used to
model a patch antenna (see Fig. 3). In order to map di-
mensions of the antenna (the width A, the length B, the
width of the microstrip feeder w) and parameters of the sub-
strate (the dielectric constant €, the height %) to the input
impedance (Rj, + jXi) at the frequency f, input patterns
[A, B,w, €, h, f] have to correspond to 6 input neurons and
the output targets [Rj,, Xin] have to be related to 2 output
neurons. The number of hidden layers and neurons in those
layers should be sufficiently high to have capacity for absorb-
ing stored information [2].

Information is stored in synoptic weights of the net-
work during training: input patterns are introduced to input
neurons, and synoptic weights are changed to obtain corre-
sponding output targets at output neurons. Hence, knowledge
is distributed over the whole network [2].

Introducing an unknown input pattern to the input of
a trained network, a proper output target is obtained at output
neurons. Therefore, the feed-forward network is usually used
as a black-box model approximating results of measurements
or CPU-time expansive numerical analyses [2].

During the latest development of artificial neural net-
works, several researchers pointed out that artificial neural
networks have sometimes been used to understand brain func-
tions but the primary design has not been intended to be real-
istic models of the biological function. Therefore much more
general term deep learning is used nowadays [3].

Fig. 3. Patch antenna fed by microstrip transmission line. Di-
mensions of the layout and parameters of the substrate
form the input pattern. Input impedance of the antenna
(resistance and reactance) correspond to the output target.

The term deep learning emphasizes the fact that neu-
ral architectures consist of a relatively high number of hid-
den layers. Or, various neural networks are composed into
a cascade identifying edges, classifying objects and sorting
outputs, for example [3].

When searching for keywords microwave-filter-deep-
learning in the IEEE Xplore database, about 20 papers pub-
lished in last years can be obtained. Contributions can be
divided into following categories:

* A conventional mapping is performed by conventional
feed-forward networks [4-6].

* A conventional mapping is performed by several feed-
forward networks arranged into a cascade creating the
deep structure [7-9].

* An inverse mapping is performed by different types of
neural networks arranged into a cascade creating the
deep structure [10], [11].

Moreover, IEEE published in 2021 two special issues
devoted to machine learning in microwaves [12] and to arti-
ficial intelligence in electromagnetics [13]. From the view-
point of terminology, the deep learning is a subset of machine
learning, and the machine learning is a subset of artificial in-
telligence [3]. From the viewpoint of contents:

e Feed-forward networks were exploited for fast
parametrized electromagnetic modeling of microwave
filters [12]. Using transfer functions as prior knowl-
edge for model development, a CPU-efficient tool was
obtained for the high-level electromagnetic design with
repetitive geometrical variations. Hence, conventional
mapping was boosted in a clever way using conventional
neural networks.

* Anoverview of artificial intelligence techniques applied
to forward modeling, remote sensing, adaptation of re-
configurable antenna arrays, biomedical imaging and
inverse design was provided [13]. Dealing with the
inverse design, an application of deep learning tech-
niques covers forward and inverse mapping of elec-
tromagnetic structures (meta-structures, reﬂect-arrays,
nano-structures) using feed-forward networks, support
vector machines and generative adversarial networks.
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Obviously, exploitation of deep learning structures
consisting of different neural networks are in field of
electromagnetics (and microwave filters, especially) quite
rare. Moreover, those structures are dominantly used for
an inverse mapping.

In this paper, a deep structure consisting of different
neural networks is applied to the identification of planar fil-
ters from images of their layout:

* The first neural network identifies edges in the layout.

* Depending on edges, the second network identifies in-
ductive and capacitive segments of the layout.

 Considering topology created by inductive and capac-
itive segments, the third neural network classifies the
filtering structure.

¢ Identifying the number of repetitions of the fundamen-
tal segment of the filter, the fourth network estimates
the order of the filter.

According to our knowledge, the described approach has not
been published in the open literature yet. In Sec. 2, planar
filters used for the training of the deep structure are briefly
presented. Section 3 describes particular neural networks
creating the deep structure and discusses the software im-
plementation, training patterns and training itself. In Sec. 4,
functionality of the trained deep structure is verified. And
Section 5 concludes the paper.

2. Planar Filters

In order to approve functionality of the deep structure
classifying planar filters, following filters using design syn-
thesis were included into the training [14]:

* Stepped impedance low-pass filter;
e Low-pass filter with shunts;

e Band-pass filter consisting of short-ended quarter-
wavelength shunts.

The training set can be completed by other filter types
like elliptic low-pass structures, filters consisting of coupled

(a)

resonators, etc. [14]. No matter the deep structure becomes
larger and the training process takes longer time, the funda-
mental principles stay unchanged.

In order to prepare training patterns, a MATLAB script
based on closed-form descriptions of planar segments was
created. Particular segments were described by ABCD ma-
trices, and the whole filtering structure was cascaded by their
multiplication. Accuracy of the generated training models is
very limited because mutual couplings among segments are
neglected, fringing fields are not taken into an account and
parasitic phenomena are not considered.

In order to verify classification abilities of the deep
structure, photographs of implemented filters were used. Ex-
amples of testing structures are shown in Fig. 4 and Fig. 5.
Training details are given in Sec. 3, verification details are
provided in Sec. 4.

(a)

(b)
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Fig. 5. Planar filters included into the training set: (a) stepped
impedance low-pass filter, (b) low-pass filter with shunts,
(c) band-pass filter consisting of short-ended quarter-
wavelength shunts.

(©)

Fig. 4. Planar filters used for verifying functionality of the deep structure: (a) stepped impedance low-pass filter, (b) low-pass filter with shunts,
(c) band-stop filter consisting of open-ended quarter-wavelength shunts.



72 J. VESELY, J. OLIVOVA, J. GOTTHANS, ET AL., CLASSIFICATION OF MICROWAVE PLANAR FILTERS BY DEEP LEARNING

3. Proposed Architecture

CNNs are type of feed-forward neural networks with
modified architecture. The architecture of CNNs usually
consists of convolutional layers followed by a pooling lay-
ers, where each neuron in a convolutional layer is connected
to some region in the input. This region is usually called
a local receptive field. All weights (filters) in CNNs are
shared based on the position within a receptive field. The
convolution operation can be described as follows [15]:

(fx)@ =) D fluy-glz-xz-y) (D)
x y

where f(x,y) is the input image at position (x,y) and
g(z—x,z—y) is atrainable filter. The pooling layers in CNN
reduce the dimensionality of features which leads to reduction
of connection between layers, hence it reduces computational
time [16].

Due to type of input data and required filter clas-
sification, CNN was selected and proposed. Selected
lightweight CNN architecture described in Tab. 1 repre-
sents a good choice compared to state of the art architec-
tures that are purely designed to achieve great results on
competitive datasets (NMIST, CIFAR, etc.) containing hun-
dreds of classes. All the layers and it’s parameters were
used from [17]. These models then have high computational
demands [17].

The proposed architecture requires input image of
224x224 px. To comply with this condition, each input im-
age was adjusted to the correct resolution. For both training
scenarios, the Adam optimization algorithm with default set-
ting was chosen and the cross entropy method was used as
the loss function.

Layer Activation Activation | Parameters
shape size
Input 224%224%3 150528 0
Convolution 2D | 226x226x90 4,596,840 180
MaxPool 113x113%90 1,149,210 0
Convolution 2D 58%58x100 336,400 1,000
MaxPool 24x%24x100 57,600 0
Convolution 2D 24x24%50 28,800 500
MaxPool 12x12x50 7,200 0
Convolution 2D 10x10x50 5,000 500
Convolution 2D 6Xx6x60 2,160 300
MaxPool 3x3x60 540 0
Convolution 2D 2x2x10 40 100
Fully connected 1x1x40 40 1,600
Fully connected 1x1x40 40 1,600
Fully connected 1x1x40 40 1,600
Output # of classes N/A N/A

Tab. 1. Architecture of used CNN for classification of
microwave planar filters.

4. Dataset

The dataset used was generated by MATLAB program
for the purpose of training the neural networks. The aim
of the generation was to generate a set of images that rep-
resent planar structures and that are physically correct. The
generation was based on predefined values of permittivities
&=[2.10,2.55,2.55,2.59,3.00,3.38,3.78,4.43,4.80, 6.22]
and frequencies f. =[433, 888, 1200, 1600, 2400, 2800,
5200, 8200, 28000, 32000] MHz. The dataset was gener-
ated using grayscale pixels. The background is represented
by black color, the planar structure is represented by white
color, and the vias (an electrical connections between copper
layers in a printed circuit board) are represented by gray color.

For the purpose of structure and order recognition of
the planar filters, we have generated 2 datasets:

* Structure dataset - the dataset consists of three classes
split into folders: bandpass, lowpass shunt and low-
pass spepped impedance. Each class consists of 1000
images. Hence the total number of images is 3000.

¢ Order dataset - the dataset consists 6 classes represent-
ing orders [3,5,7,9, 11, 13]. Each folder consist of 500
images. The total number of images is 3000 images.

The presented datasets can be downloaded from [18]. Exam-
ple of generated structures can be found in Fig. 6.

‘”

(b)

J—
I

©

Fig. 6. Planar filters included into the training set: (a) band-
pass filter consisting of short-ended quarter-wavelength
shunts - thirteenth order, (b) low-pass filter with shunts -
ninth order, (c) stepped impedance low-pass filter - fifth
order.
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5. Experiments and Discussion

Techniques of data augmentation (rotation, gray scale,
normalization, and resizing) were applied to datasets (de-
scribed in Sec. 4) in order to improve generalization of trained
model and increase number of input data. With applied aug-
mentation the number of images in datasets was tripled. After
CNN training, the trained models were validated on a separate
evaluation dataset that had not been used for training before.

5.1 Filter Classification

Measured results from training and evaluation using
CNN architecture from Tab. 1 for classification of microwave
planar filters are shown in Fig. 7 and 8. High accuracy (99.8%
on evaluation data) and low loss (inverted function of accu-
racy) was achieved during 20 epochs of training. Figure 8
shows confusion matrix, where each row represents the in-
stances in an actual class (band pass filter, low pass shunt
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Fig. 7. Accuracy function of CNN during training on basic classi-
fication of filters.
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Fig. 9. Accuracy function of CNN during training on classification
of orders of filters.

filter and low pass stepped filter) while each column repre-
sents the instances in a predicted class. Given 100 evaluation
samples per class (in total 300 images), the proposed CNN
architecture missed 2 images, which instead of predicted as
low pass shunt filters were predicted as band pass filters.

5.2 Filter Order Estimation

Achieved results from training and evaluation using
CNN architecture from Tab. 1 for classification of orders
are shown in Fig. 9 and 10. High accuracy (94.87% on eval-
uation data) and low loss (inverted function of accuracy) has
been achieved during 20 epochs of training. Figure 10 shows
confusion matrix, where each row represents the instances
in an actual class (order of filter) while each column repre-
sents the instances in a predicted class. Given 26 evaluation
samples per class (in total 156 images), the proposed CNN
architecture missed 6 images of 3" order, one image of 5%
order and one image on 13" order.
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Fig. 8. Confusion matrix representing CNN accuracy on evaluation
data. The color bar represents quantity.
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Fig. 10. Confusion matrix representing CNN accuracy on evalua-
tion data. The color bar represents quantity.
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5.3 Real Data Evaluation

In order to verify the constructed neural networks, we
used photographs of planar filters. Examples of the pho-
tographs can be seen in Fig. 4.

Therefore, for the presented mechanism to work, it is
crucial to present the image in grayscale, where the white
color represents the conductive layer, the black color the sur-
roundings, and the gray color the vias. To function properly,
it is necessary to provide high quality patterns - especially
sharp edges.

The achieved accuracy for tested images (40 images) for
the task of filter classification is 98%. For the task of order
estimation, the accuracy is 91%.

y e B e

Fig. 11. Upper: Photograph of printed circuit board of low-pass
stepped impedance filter. Bottom: Extracted image of
the photograph used as an input for NNs.

Fig. 12. Upper: Photograph of printed circuit board of low-pass
filter with shunts. Bottom: Extracted image of the pho-
tograph used as an input for NNs.

6. Conclusion

This paper demonstrates benefits of deploying CNNs
for filter classification and its orders. The proposed architec-
ture has been trained to recognize three categories of planar
filters and its order (from 3" to 13 order). In our case we
simplified training datasets of filters which were generated
by MATLAB due to insufficiency of real data, where mutual
coupling among segments was neglected, fringing fields were
not taken into an account and parasitic phenomena was not
considered. However, the neural network architecture could
be extended to recognize additional filter types or adapted for
other attributes of filters with minimum modifications. The
CNNs themselves could be further improved by trying to use
bitwise compression of individual variables to achieve faster
network response, but this was not considered [19]. Finally,
the presented network was tested using real photographs of
planar filters. The accuracy for the filter classification task
is 98% and for the order estimation task is 91%. Neverthe-
less, the algorithm proved to be powerful, the result accuracy
highly depends on the quality of input images.

Acknowledgments

The presented research was supported by the Czech
Ministry of Defence (AIROPS, the University of Defence
development program), by the Technology Agency of the
Czech Republic (TM02000035, NEOCLASSIG) and by the
Internal Grant Agency of Brno University of Technology
(FEKT-S-20-6526).

References

[11 HAYKIN, S. Neural Networks and Learning Machines: A Compre-
hensive Foundation. Third Edition. Upper Saddle River (New Jersey):
Pearson Education, 2009. ISBN: 0131471392

[2] RAIDA, Z. Modeling EM structures in the neural network toolbox of
MATLAB. IEEE Antennas and Propagation Magazine, 2002, vol. 44,
no. 6, p. 46-67. DOI: 10.1109/MAP.2002.1167264

[3] GOODFELLOW, I.,
Learning. Cambridge (Massachusetts):
ISBN: 0262035618

BENGIO, Y., COURVILLE, A. Deep
The MIT Press, 2016.

[4] SEKHRI, E., KAPOOR, R., TAMRE, M. Double deep Q-learning
approach for tuning microwave cavity filters using locally linear em-
bedding technique. In IEEE International Conference Mechatronic
Systems and Materials (MSM). Bialystok (Poland), 2020, p. 1-6.
DOI: 10.1109/MSM49833.2020.9202393

[5]1 WANG,Z., YANG,J., HU, J., et al. Reinforcement learning approach
to learning human experience in tuning cavity filters. In /IEEE Inter-
national Conference on Robotics and Biomimetics (ROBIO). Zhuhai
(China), 2015, p. 1-6. DOI: 10.1109/ROBIO.2015.7419091

[6] WANG, Z., OU, Y., WU, X. et al. Continuous reinforce-
ment learning with knowledge-inspired reward shaping for au-
tonomous cavity filter tuning. In International Conference on Cy-
borg and Bionic Systems (CBS). Shenzhen (China), 2018, p. 53-58.
DOI: 10.1109/CBS.2018.8612197



RADIOENGINEERING, VOL. 31, NO. 1, APRIL 2022

75

(7]

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

JIN, J., FENG, F., ZHANG, W., et al. Recent advances in deep neu-
ral network technique for high-dimensional microwave modeling.
In IEEE International Conference on Numerical Electromagnetic
and Multiphysics Modeling and Optimization (NEMO). Hangzhou
(China), 2020, p. 1-3. DOI: 10.1109/NEM049486.2020.9343496

JIN, J., ZHANG, C., FENG, F,, et al. Deep neural network tech-
nique for high-dimensional microwave modeling and applications to
parameter extraction of microwave filters. IEEE Transactions on Mi-
crowave Theory and Techniques, 2019, vol. 67, no. 10, p. 4140-4155.
DOI: 10.1109/TMTT.2019.2932738

ZHANG, S., HU, X, LIU, Z., et al. Deep neural network behavioral
modeling based on transfer learning for broadband wireless power
amplifier. IEEE Microwave and Wireless Components Letters, 2021,
vol. 31, no. 7, p. 917-920. DOI: 10.1109/LMWC.2021.3078459

PAN, G., WU, Y., YU, M., et al. Inverse modeling for filters us-
ing a regularized deep neural network approach. IEEE Microwave
and Wireless Components Letters, 2020, vol. 30, no. 5, p. 457-460.
DOLI: 10.1109/LMWC.2020.2986156

OHIRA, M., TAKANO, K., MA, Z. A novel deep-Q-network-based
fine-tuning approach for planar bandpass filter design. /EEE Mi-
crowave and Wireless Components Letters, 2021, vol. 31, no. 6,
p. 638-641. DOI: 10.1109/LMWC.2021.3062874

SARRIS, C., ZHANG, Q. J. (Eds.) Machine learning in microwaves.
IEEE Microwave Magazine, 2021, vol. 22, no. 10 (special issue).
ISSN: 1527-334

HAUPT, R., ROCCA, P. (Eds.) Artificial intelligence in electromag-
netics. IEEE Antennas & Propagation Magazine, 2021, vol. 63, no. 3
(special issue). ISSN: 1045-9243

HONG, J. S., LANCASTER, M. J. Microstrip Filters for
RF/Microwave Applications. New York: J. Wiley and Sons, 2001.
ISBN: 0471388777

SURYANI, D., DOETSCH, P., NEY, H. On the benefits of convo-
lutional neural network combinations in offline handwriting recogni-
tion. In 15th International Conference on Frontiers in Handwriting
Recognition (ICFHR). The Shenzhen (China), 2016, p. 193-198.
DOLI: 10.1109/ICFHR.2016.0046

MANOHARAN, K. G., NEHRU, J. A., BALASUBRAMANIAN, S.
Artificial Intelligence and IoT: Smart Convergence for Eco-Friendly
Topography. 1st ed., Springer, 2021. ISBN: 9789813364004

GOTTHANS, J, GOTTHANS, T., MARSALEK, R.

Deep convolutional neural network for fire detection.
In Proceedings of the 30th International Conference
Radioelektronika.  Bratislava  (Slovakia), 2020, p. 1-6.

DOI: 10.1109/RADIOELEKTRONIKA49387.2020.9092344

GOTTHANS, T. BUT Dataset: Classification of Microwave
Planar Filters by Deep Learning. [Online]. Available at:
https://gitlab.com/tgott/classification-of-microwave-planar-filters-
by-deep-learning

IANDOLA, F. N., HAN, S, MOSKEWICZ, M. W, et
al. SqueezeNet: AlexNet-level accuracy with 50x fewer pa-
rameters and <0.5MB model size. arXiv, 2016, p. 1-13.
DOI: 10.48550/arXiv.1602.07360

About the Authors...

Jiri VESELY was born in Liberec, Czech Republic on July 3,
1972. He graduated as Ph.D. on Low Flying Target location
using Surface Seismic Waves in 2001, and as Associate Pro-
fessor with Habilitation treatise on Modern ELINT System
Principles Extension at University of Defense in Brno, Czech
Republic in 2012. His main field of study is modern signal
source location principles and algorithms, radar signal an-
alysis and classification for ELINT and EW systems, radar
tracking and data fusion in complicated environment. He
begins his teacher carrier in 1996 at Radar Department in
Military Academy in Brno and from 2019 he is leader of De-
partment of Communication Radar and Electronic Warfare
Technology, Faculty of Military Technology, University of
Defense.

Jana OLIVOVA received her masters degree in Communica-
tion Engineering in 2007 and from 2007 to 2010 she worked
on several projects in the field of numerical modelling and op-
timization of high-frequency structures. In 2011 she finished
her Ph.D. studies on Multiobjective Optimization in EMC
at Brno University of Technology and received Ph.D. Since
2011 she has been working at the University of Defense, Fac-
ulty of Military Technology, Department of Communication
Technologies, Electronic Warfare and Radiolocation. She is
interested in use of optimization methods in radiolocation
and in new methods of antenna structures manufacturing.

Jakub GOTTHANS received his masters degree in System
Engineering and Informatics from the Brno University of
Technology in 2014. In 2019 started his Ph.D. degree from
the Brno University of Technology. Since 2014 he worked
on multiple SATCOM projects (in collaboration with Hon-
eywell Aerospace). His research interests include SATCOM
systems and machine learning.

Tomas GOTTHANS received the bachelor and the Ing. de-
grees in Electrical Engineering from the Brno University of
Technology in 2008 and 2010, respectively, and the Ph.D.
degree from the Universite de Marne-La-Vallee, France, in
January 2014. In 2011, he joined the ESIEE Paris, ESY-
COM Laboratory, where he worked on the project AMBRUN
(in collaboration with Thales Communications and Security,
TeamCast, Supelec). He is currently an Associate Professor
with the Department of Radio Electronics, Brno University
of Technology. His research interests include digital predis-
tortion of power amplifiers, wireless communications theory,
and chaos theory.

Zbynek RAIDA (born 1967 in Opava) graduated from Brno
University of Technology (BUT), Faculty of Electrical En-
gineering and Communication (FEEC). Since 1993, he has
been with the Department of Radio Electronics, FEEC BUT.



76 J. VESELY, J. OLIVOVA, J. GOTTHANS, ET AL., CLASSIFICATION OF MICROWAVE PLANAR FILTERS BY DEEP LEARNING

In 1996 and 1997, he occupied the position of indepen-
dent researcher at Laboratoire de Hyperfrequences, Univer-
site Catholique de Louvain, Belgium, working on variational
methods for numerical analysis of electromagnetic structures.
He and his team have been researching methods of numerical
modeling and optimization of electromagnetic structures, and
ways of applying artificial neural networks to solving elec-
tromagnetic compatibility issues, and advanced approaches

to the design of special antennas. From 2002 to 2006, he
occupied the position of the Vice Dean for Research. From
2006 to 2013, he headed the Department of Radio Electron-
ics. Since 2010, he has managed the SIX Research Center.
He is a Senior Member of the IEEE. He is active in the
Antennas and Propagation Society, Microwave Theory and
Techniques Society, Computational Intelligence Society, and
Signal Processing Society.



