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Abstract. Using the dual-polarized array for underdeter-
mined estimation of partially polarized (PP) signal param-
eters can lead to limited signal-to-ratio (SNR) and biased
reconstruction of the coherency matrix. In this paper, a new
non-iterative method is proposed with the tri-polarized nested
array. With the sub-covariance addition, the power of dif-
ferent polarized components of a signal can be completely
accumulated, which improves the SNR. Besides, it is proven
that with the optimized tri-polarized nested array, noise vari-
ance estimation without iterations becomes possible in the
underdetermined case, which is critical for unbiased co-
herency matrix reconstruction. The subspace-based method
is adopted to estimate the direction-of-arrival (DOA), and
the polarization parameters can be obtained based on the
reconstructed coherency matrices. The proposed method is
validated by numerical experiments and compared with other
representative methods. It has relatively high accuracy and
is about one order of magnitude faster than its competitor.

Keywords
Direction-of-arrival estimation, nested array, polariza-
tion estimation, partially polarized signal, tri-polarized
sensor

1. Introduction
The DOA estimation using sensor array has been a hot

topic of research over the past decades [1]. Apart from DOA,
the polarization describing the orientation of the electric field
is also an important property of the signal. For example, the
polarization information can enrich the signal features and
contribute to missions of sensing and recognition. For si-
multaneously extracting DOAs and polarization parameters
from signals, array signal processing with the polarization-
sensitive array, which consists of diverse polarized sensors,
should be adopted.

With the polarization-sensitive array, many methods
for joint estimation of DOA and polarization have been pro-
posed [2–6]. All these methods are based on the assumption
that the signals are completely polarized (CP). In fact, the
CP signal, which has a fixed polarization state [7], [8], is
a limiting case of the more general PP signal whose polar-
ization state can change with time [9]. The PP signal can be
expressed as the sum of a CP signal and a randomly polarized
signal, and can be found in numerous applications, e.g., radar
and ionospheric radio [10]. For the multiple parameters es-
timation for the PP signals, we also can find some innovative
methods in the literature [9, 11–13].

However, the above methods only consider the overde-
termined case, where the number of signals is smaller than the
number of sensors. For the underdetermined case, where the
number of signals is larger than the number of sensors, all the
above methods will not work. To resolve more signals than
sensors, we need to adopt the sparse array and take advan-
tage of the coarray concept. For the specially designed sparse
array, the corresponding coarray has an increased degree of
freedom (DOF), which enables the underdetermined param-
eter estimation. The well-known sparse arrays are the mini-
mum redundant array (MRA) [14], the nested array [15], and
the coprime array [16]. Unlike the nested array and coprime
array, the MRA can not be designed by an analytical expres-
sion. Besides, unlike the nested array and MRA, the coarray
of a coprime array is non-consecutive, which usually needs
high-complexity algorithms to perform interpolation [17].

Recently, some works which employ the sparse array
with dual-polarized sensors to perform parameters estima-
tion for the PP signals are proposed [18–20]. In [18], a set of
data correlation sequences is created to take advantage of the
increase DOF, and the DOA is estimated by the SS-MUSIC
(spatial smoothing-based MUSIC) method [15]. However,
no method for polarization estimation is given in this paper.
In [19], the quaternion theory is exploited to jointly estimate
the DOA and degree of polarization (DOP). Nevertheless,
firstly, this method requires that the horizontal and vertical
polarization components of a signal have equal power, which
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limits its practical application. Secondly, the estimation of
DOP in this method is biased under the underdetermined
case since the estimation of noise variance in that situation
is not possible. In [20], the DOAs and noise variance are
obtained by solving an annihilating relation based optimiza-
tion problem, and high-accuracy polarization parameters can
be estimated owing to the obtained noise variance. However,
this method needs iterative calculations, which results in high
computational complexity. Besides, the Hermitian property
of the coherency matrix has not been exploited during the co-
herency matrices reconstruction, which further increases the
computational complexity. In addition, these three methods
only use dual-polarized sensors, which leads to incomplete
power accumulation of different polarized components of
a signal and a low SNR.

This paper proposes a method for jointly estimating
the DOA and polarization parameters that include the DOP,
polarization orientation angle (POA), and polarization ellip-
ticity angle (PEA) for PP signals using a nested array with
tri-polarized sensors. First, with the sub-covariance addition,
the power of different polarized components of a signal can
be completely accumulated, which improves the SNR. Be-
sides, it is proven that the noise variance estimation without
iterations becomes possible in the underdetermined case, pro-
vided the tri-polarized nested array is designed with a given
optimization rule. Then, with the estimated noise variance,
the unbiased coherencymatrix can obtained by a newmethod
which takes the Hermitian property of the coherency matrix
into account. The new proposed method does not require it-
erative calculations. It is validated by numerical experiments
and compared with other representative methods, including
the Cramer-Rao bound (CRB). The simulation results show
that the proposed method possesses high efficiency and rela-
tively high accuracy.

The major contributions of this article are summarized
as follows.

1) A non-iterative and accurate method for joint estima-
tion of DOA and polarization is proposed.

2) It is proven that only with the tri-polarized configu-
ration can the noise variance be estimated by the subspace
decompositionmethod under the underdetermined case. This
conclusion is critical for proposing the non-iterative method.

3) A rule for optimizing the nested array is proposed,
which is used to achieve unbiased reconstructions of the co-
herency matrices under the underdetermined case and con-
sequently to obtain the unbiased estimation of polarization.

4) To the best of our knowledge, this is the first time that
the CRB of tri-polarization configuration for PP signals that
is valid under overdetermined and underdetermined cases is
derived.

Notations: (·)T, (·)H, (·)∗, and (·)+ represent the trans-
pose, conjugate transpose, conjugate, and pseudo-inverse op-
erators, respectively. I𝐿 denotes the 𝐿 × 𝐿 identity matrix.

vec(·) is the operator that creates a column vector by stacking
the column vectors of a matrix below one another. E{·} rep-
resents the statistical expectation. rank(·) means the rank of
a matrix. diag{·} represents the operator to form a diagonal
matrix with entries of a vector. Arg(·) takes the principal
value of the argument of a complex number. ∥ · ∥2 represents
the ℓ2 norm. ⊗ denotes the Kronecker product. 𝑎𝑖 denotes
the 𝑖th element of vector a. A·, 𝑗 represents the 𝑗-th column
of A, and [A]𝑖, 𝑗 represents the element on the 𝑖-th row and
𝑗-th column of A.

2. Signal Model
Consider the nested array, which is composed of two

sub-ULAs. The first one consists of 𝐿1 sensors with inter-
element spacing 𝑑 = 𝜆/2, and the second one consists of 𝐿2
sensors with inter-element spacing (𝐿1 + 1)𝑑 [15]. 𝜆 repre-
sents the signal wavelength. According to [15], the number
of sensors will be 𝐿 = 𝐿1 + 𝐿2, and the positions of the
sensors can be represented by 𝛍𝑑 where

𝛍 = [1, 2, . . . , 𝐿1, 𝐿1 + 1, 2(𝐿1 + 1), . . . , 𝐿2 (𝐿1 + 1)]T. (1)

In order to enable the array to extract polarization informa-
tion from signals, we apply the sensors which can receive
multiple polarized components of signals to the nested ar-
ray. However, different from the conventional dual-polarized
configuration, we propose to adopt the tri-polarized configu-
ration. In the tri-polarized configuration, each sensor, which
is called the tri-polarized sensor, has three output ports cor-
responding to three orthogonal polarization directions, i.e.,
x, y, and z directions. With the tri-polarized sensors, the
conventional nested array becomes the tri-polarized nested
array, which is shown in Fig. 1.

Assume 𝐾 far-field uncorrelated narrowband signals
from the direction of 𝛉 = [𝜃1, 𝜃2, . . . , 𝜃𝐾 ] impinge on the
array, where 𝜃𝑘 ∈ [0, 𝜋]. The vector output of the 𝑙-th sensor
at snapshot 𝑛 can be written as

𝛈𝑙 [𝑛] =

𝜂𝑙,𝑥 [𝑛]
𝜂𝑙,𝑦 [𝑛]
𝜂𝑙,𝑧 [𝑛]

 =
𝐾∑︁
𝑘=1

𝑎𝑙 (𝜃𝑘)C𝑘s𝑘 [𝑛] + 𝛎𝑙 [𝑛] (2)

K
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e
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e

Fig. 1. The tri-polarized nested array.
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where 𝜂𝑙,𝑥 [𝑛], 𝜂𝑙,𝑦 [𝑛], and 𝜂𝑙,𝑧 [𝑛] are the outputs corre-
sponding to the x, y, and z polarization directions of the 𝑙th
sensor, and

C𝑘 =

−1 0
0 sin 𝜃𝑘
0 − cos 𝜃𝑘

 (3)

is the polarization response matrix of the 𝑘-th sig-
nal. 𝑎𝑙 (𝜃𝑘) = exp(j2𝜋𝜇𝑙𝑑 cos(𝜃𝑘)/𝜆) is the spatial re-
sponse of the 𝑘-th signal at the 𝑙-th sensor. s𝑘 [𝑛] =

[𝑠𝑘,H [𝑛], 𝑠𝑘,V [𝑛]]T, where 𝑠𝑘,H [𝑛] and 𝑠𝑘,V [𝑛] are the hor-
izontal and vertical polarization components of the 𝑘-th
signal, respectively, and the horizontal and vertical direc-
tions are reflected by eH and eV shown in Fig. 1. 𝛎𝑙 [𝑛] =

[𝜈𝑙,𝑥 [𝑛], 𝜈𝑙,𝑦 [𝑛], 𝜈𝑙,𝑧 [𝑛]]T is the noise vector corresponding
to the x, y, and z polarization directions of the 𝑙-th sen-
sor. 𝛎𝑙 [𝑛] ∼ CN(0, 𝜎2𝑛 𝑰3), where 𝜎2𝑛 is the noise vari-
ance, is temporally and spatially white and uncorrelated with
the signals.

The polarization characteristics of the 𝑘-th signal can
be captured by the coherency matrix R𝑠𝑘 , which is [13], [21]

R𝑠𝑘 = E{s𝑘 [𝑛]sH𝑘 [𝑛]} =
[
𝑟𝑘,HH 𝑟𝑘,HV
𝑟∗
𝑘,HV 𝑟𝑘,VV

]
=
𝜎2
𝑘,𝑢

2
I2 + 𝜎2𝑘,𝑐G(𝛼𝑘)w(𝛽𝑘)wH (𝛽𝑘)GH (𝛼𝑘)

(4)

where 𝑟𝑘,HH and 𝑟𝑘,VV are the power of horizontal and ver-
tical polarization components of the 𝑘th signal, respectively,
and 𝑟𝑘,HV is the correlation coefficient between 𝑠𝑘,H [𝑛] and
𝑠𝑘,V [𝑛].

G(𝛼𝑘) =
[
cos𝛼𝑘 sin𝛼𝑘
− sin𝛼𝑘 cos𝛼𝑘

]
(5)

and
w(𝛽𝑘) =

[
cos 𝛽𝑘
j sin 𝛽𝑘

]
. (6)

As shown in Fig. 2, 𝛼𝑘 denotes the POA with −𝜋/2 < 𝛼𝑘 ≤
𝜋/2, and 𝛽𝑘 denotes the PEA with −𝜋/4 ≤ 𝛽𝑘 ≤ 𝜋/4. 𝜎2

𝑘,𝑐

and 𝜎2
𝑘,𝑢
represent the power of polarized component and

unpolarized component of the 𝑘-th signal, respectively. The
DOP of the 𝑘-th signal is determined by the formula

𝜌𝑘 = 𝜎
2
𝑘,𝑐/(𝜎

2
𝑘,𝑢 + 𝜎

2
𝑘,𝑐). (7)

Thus, for a PP signal, we have 𝜌𝑘 ∈ (0, 1), and its coherency
matrix Rs𝑘 has a full rank.

H
e

V
e

Fig. 2. The polarization ellipse.

Now, the all outputs of the tri-polarized nested array
can be arranged in the following compact form

𝛈 [𝑛] ∈ C3𝐿×1 =
[
𝛈T𝑙 [𝑛], 𝛈

T
2 [𝑛], . . . , 𝛈

T
𝐿 [𝑛]

]T
=Bs[𝑛] + 𝛎 [𝑛]

(8)

where B ∈ C3𝐿×2𝐾 = [a(𝜃1) ⊗ C1, a(𝜃2) ⊗ C2, . . . , a(𝜃𝐾 ) ⊗
C𝐾 ], and a(𝜃𝑘) = [𝑎1 (𝜃𝑘), 𝑎2 (𝜃𝑘), . . . , 𝑎𝐿 (𝜃𝑘)]T is the ar-
ray steering vector. s[𝑛] =

[
sT1 [𝑛], s

T
2 [𝑛], . . . , s

T
𝐾
[𝑛]

]T and
𝝂[𝑛] =

[
𝝂T1 [𝑛], 𝝂

T
2 [𝑛], . . . , 𝝂

T
𝐿
[𝑛]

]T.
3. The Proposed Method

To make the proposed method easy to follow, we first
conclude it in Algorithm 1 and then give the details according
to the order of algorithm steps in the following subsections.

Algorithm 1: Joint estimation of direction and polariza-
tion for PP Signals using tri-polarized nested array.

Input: The array output 𝛈 [𝑛], 𝑛 = 1, 2, . . . , 𝑁 and
number of signals 𝐾 .

Output: The estimated DOAs and the polarization
parameters, including DOPs, POAs, and
PEAs.

1 Optimize the nested array via (11).
2 Perform sub-covariance addition via (16).
3 Extract the coarray according to (17).
4 Restore the rank according to (18).
5 Estimate the DOAs via the subspace-based
method, e.g. the root-MUSIC in (19) and (20).

6 Reconstruct the coherency matrices according
to (23), (24), (26), and (27).

7 Estimate the DOPs, POAs, and PEAs via (28)
and (30).

3.1 Optimization of the Nested Array
In Sec. 3.4, we will show that the estimation of the noise

variance 𝜎2𝑛 is critical for the unbiased reconstructions of the
coherency matrices, which will be employed for the estima-
tion of polarization. For the underdetermined estimation of
noise variance, we need to optimize the nested array. Before
giving the optimization rule, we present the following theo-
rem about the rank of BR𝑠BH, where R𝑠 = E{s[𝑛]sH [𝑛]}.

Theorem 1. Assume the PP signals are uncorrelated. Then,
for the tri-polarized configuration, the rank of BR𝑠BH has
the following property.

rank(BR𝑠BH)


≤ 2𝐾, if 𝐾 < 𝐿

≤ 𝐿 + 𝐾, if 𝐿 ≤ 𝐾 < 2𝐿
≤ 3𝐿, if 𝐾 ≥ 2𝐿

(9)

Proof. See the detailed proof in Appendix A.

Then, according to (8), the covariance matrix R can be
written as
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R = BR𝑠BH + 𝜎2𝑛I3𝐿 . (10)

On the basis of Theorem 1, we know, under the overde-
termined case, where 𝐾 < 𝐿, the dimension of the noise
subspace of R is at least 3𝐿 − 2𝐾 . Thus, the estimated noise
variance can be obtained by averaging the smallest 3𝐿 − 2𝐾
eigenvalues of R. This method can also be valid under the
underdetermined case, where 𝐾 ≥ 𝐿, by the introduction of
an optimization rule to the nested array. As we know, the
largest number of resolvable signals of the nested array is
(𝐿1 + 1)𝐿2 − 1. If we set (𝐿1 + 1)𝐿2 − 1 < 2𝐿, which is
equivalent to

𝐿1 <
𝐿2 + 1
𝐿2 − 2

(11)

then according to Theorem 1, the dimension of the noise sub-
space ofR is at least 2𝐿−𝐾 , and the estimated noise variance
can be obtained by averaging the smallest 2𝐿−𝐾 eigenvalues
of R. So, we can optimize the nested array according to (11)
in order to enable noise variance estimation under the under-
determined case. It needs to be noted that this noise variance
estimation method is not valid for the dual-polarized con-
figuration under the underdetermined case. This is because,
under that situation, the dimension of the noise subspace will
be zero.

3.2 Coarray Construction by Sub-covariance
Addition
One of the advantages of the nested array is that a coar-

ray can be constructed from its covariance matrix, and the
coarray has larger DOF than the original array, which can
improve resolution and enable underdetermined parameter
estimation. However, due to the full rank property of the
coherency matrix in the model of tri-polarized nested ar-
ray, direct application of conventional procedure [15] on
R = E{𝛈 [𝑛]𝛈H [𝑛]} to construct the coarray is infeasible.

To solve this problem, we propose a technique called
the sub-covariance addition. Denote the array outputs cor-
responding to the x, y and z polarization directions by x[𝑛],
y[𝑛], and z[𝑛], respectively. Then, we have

x[𝑛] = 𝛈1:3:3𝐿−2 [𝑛]
y[𝑛] = 𝛈2:3:3𝐿−1 [𝑛]
z[𝑛] = 𝛈3:3:3𝐿 [𝑛]

(12)

where 𝛈1:3:3𝐿−2 [𝑛] = [𝜂1 [𝑛], 𝜂4 [𝑛], . . . , 𝜂3𝐿−2 [𝑛]]T, and
other expressions are similar. According to (8), the co-
variance matrices of x[𝑛], y[𝑛], and z[𝑛] can be expressed
respectively as

R𝑥𝑥 =

𝐾∑︁
𝑘=1

a(𝜃𝑘)aH (𝜃𝑘)𝑟𝑘,HH + 𝜎2𝑛I𝐿 , (13)

R𝑦𝑦 =

𝐾∑︁
𝑘=1

a(𝜃𝑘)aH (𝜃𝑘)𝑟𝑘,VV sin2 𝜃𝑘 + 𝜎2𝑛I𝐿 , (14)

R𝑧𝑧 =
𝐾∑︁
𝑘=1

a(𝜃𝑘)aH (𝜃𝑘)𝑟𝑘,VV cos2 𝜃𝑘 + 𝜎2𝑛I𝐿 . (15)

Then, by adding these three covariance matrices, we obtain
a new covariance matrix, which is

R′ =R𝑥𝑥 + R𝑦𝑦 + R𝑧𝑧

=

𝐾∑︁
𝑘=1

a(𝜃𝑘)aH (𝜃𝑘)𝑝𝑘 + 3𝜎2𝑛I𝐿
(16)

where 𝑝𝑘 = 𝑟𝑘,VV+𝑟𝑘,HH = 𝜎2
𝑘,𝑢

+𝜎2
𝑘,𝑐
. SinceR𝑥𝑥 ,R𝑦𝑦 and

R𝑧𝑧 are all the sub-covariance matrices ofR, we call (16) the
sub-covariance addition.

From (16), two points need to be stated. The first is
that (16) is similar to the covariance matrix of the conven-
tional nested array model, which means the coarray can be
constructed by conventional procedure. The second is that
𝑘-th signal in (16) is the sum of the powers of horizontal
and vertical polarization components. Thus, the powers of
different polarized components of a signal are completely ac-
cumulated. By contrast, in the dual-polarized configuration
like [18] and [19], the powers of different polarized compo-
nents of a signal can at most be partially accumulated.

Then, by vectorizing R′ and averaging the elements
corresponding to the same lags, we can obtain the coarray
outputs 𝛄. According to the theory of nested array [15],
𝛄 can be written as

𝛄 ∈ C(2𝐿2 (𝐿1+1)−1)×1 = A′p + 3𝜎2𝑛 i. (17)

Since the coarray of the nested array is a virtual uniform
linear array (ULA), A′ is the manifold matrix of a ULA
with 2𝐿2 (𝐿1 + 1) − 1 elements and 𝑑 inter-element spac-
ing. p = [𝑝1, 𝑝2, . . . , 𝑝𝑘]T, and i is a vector whose middle
element is 1 with the remaining elements being 0.

3.3 Toeplitz Matrix for Rank Restoration
It is worth noting that (17) is a single measurement

vector (SMV) model, leading to rank(E{𝛄𝛄H}) = 1. The
rank deficiency problem makes it difficult to estimate param-
eters of multiple signals. The classical solution is the spatial
smoothing technique, which has been adopted in [18]. How-
ever, this method requires some matrices addition. Here,
we replace the spatial smoothing with Toeplitz construction
which requires no matrices addition. Especially when the
number of sensors is large, the computational complexity
of Toeplitz construction will be far less than that of spatial
smoothing. By using the Toeplitz construction method, we
can obtain a new covariance matrix RT which is expressed
as [22]

RT =


𝛾𝐿2 (𝐿1+1) 𝛾𝐿2 (𝐿1+1)−1 . . . 𝛾1
𝛾𝐿2 (𝐿1+1)+1 𝛾𝐿2 (𝐿1+1) . . . 𝛾2

...
...

. . .
...

𝛾2𝐿2 (𝐿1+1)−1 𝛾2𝐿2 (𝐿1+1)−2 . . . 𝛾𝐿2 (𝐿1+1)


. (18)

It can be proven that when 𝐿2 (𝐿1 + 1) > 𝐾 , we have
rank(RT) > 𝐾 , and the signal subspace of RT is the same as
the column space of V = [v(𝜃1), v(𝜃2), . . . , v(𝜃𝐾 )], where
𝑣𝑙 (𝜃𝑘)=exp(j2𝜋(𝑙−1)𝑑 cos(𝜃𝑘)/𝜆), 𝑙=1, 2, . . . , 𝐿2 (𝐿1+1).
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3.4 Direction and Polarization Estimation
For the algorithm realization, all the covariance ma-

trices are estimated by their sample covariance matri-
ces. For example, R𝑥𝑥 in (13) is estimated by R𝑥𝑥 =∑𝑁
𝑛=1 x[𝑛]xH [𝑛]/𝑁 , where 𝑁 is the number of snapshots.

1) Direction Estimation

Since the rank of RT is larger than 𝐾 , we can adopt
the subspace-based method, e.g., MUSIC, root-MUSIC, or
ESPRIT, to perform DOA estimation. Take the root-MUSIC
method for instance. Perform eigendecomposition on RT
to extract the noise subspace U𝑛 which is spanned by the
eigenvectors corresponding to the smallest 𝐿2 (𝐿1 + 1)/2−𝐾
eigenvalues, and then construct the following polynomial [23]

𝑓 (𝜐) = 𝛖′TU𝑛UH𝑛 𝛖T (19)

where 𝛖′ = [1, 𝜐−1, 𝜐−2, . . . , 𝜐−𝐿2 (𝐿1+1)+1]T, and 𝛖 =

[1, 𝜐, 𝜐2, . . . , 𝜐𝐿2 (𝐿1+1)−1]T. Denote its 𝐾 largest roots in-
side the unit circle by 𝜐1, 𝜐2, . . . , 𝜐𝐾 . The DOAs can be
estimated as

𝜃𝑘 = arccos
[
∠(𝜐𝑘)𝜆
2𝜋𝑑

]
, 𝑘 = 1, 2, . . . , 𝐾 (20)

where ∠(·) is used to take the principal argument of a com-
plex number.

2) Polarization Estimation

To estimate the polarization, we first need to recon-
struct the coherency matrices R𝑠𝑘 , 𝑘 = 1, 2, . . . , 𝐾 . In
other words, we first need to estimate 𝑟𝑘,HH, 𝑟𝑘,VV, and
𝑟𝑘,HV, 𝑘 = 1, 2, . . . , 𝐾 .

For the estimation of 𝑟𝑘,HH, vectorizing R𝑥𝑥 and sub-
stituting 𝜃𝑘 into (13), we have

vec(R𝑥𝑥 − 𝜎2𝑛I𝐿) = Â1rHH (21)

where rHH = [𝑟1,HH, . . . , 𝑟𝐾,HH]T, and Â1 = [a∗ (𝜃1) ⊗
a(𝜃1), . . . , a∗ (𝜃𝐾 ) ⊗ a(𝜃𝐾 )]. For the estimation of
𝑟𝑘,VV, we additionally introduce R𝑦𝑧 = E{y[𝑛]zH [𝑛]} =

−∑𝐾
𝑘=1 a(𝜃𝑘)aH (𝜃𝑘)𝑟𝑘,VV sin(𝜃𝑘) cos(𝜃𝑘). Then vectoriz-

ing R𝑦𝑦 , R𝑧𝑧 , and R𝑦𝑧 and replacing 𝜃𝑘 with 𝜃𝑘 , we have
vec(R𝑦𝑦 − 𝜎2𝑛I𝐿)
vec(R𝑧𝑧 − 𝜎2𝑛I𝐿)
vec(R𝑦𝑧)

 = Â2rVV (22)

where rVV = [𝑟1,VV, . . . , 𝑟𝐾,VV]T, and

[Â2] ·,𝑘 =


sin2 𝜃𝑘
cos2 𝜃𝑘

− sin(𝜃𝑘) cos(𝜃𝑘)

 ⊗
(
a∗ (𝜃𝑘) ⊗ a(𝜃𝑘)

)
.

As shown in (21) and (22), we still need to estimate the
noise variance 𝜎2𝑛 in order to achieve unbiased estimations
of the coherency matrices. According to Sec. 3.1, the esti-
mated noise variance 𝜎̂2𝑛 can be obtained by averaging the
smallest 2𝐿 − 𝐾 eigenvalues of R in the underdetermined
case or by averaging the smallest 3𝐿 − 2𝐾 eigenvalues of R

in the overdetermined case. Then, substituting 𝜎̂2 into (21)
and (22), we can estimate 𝑟𝑘,HH and 𝑟𝑘,VV, 𝑘 = 1, 2, . . . , 𝐾
by

r̂HH = Â+
1vec(R𝑥𝑥 − 𝜎̂2𝑛I𝐿) (23)

and

r̂VV = Â+
2


vec(R𝑦𝑦 − 𝜎̂2𝑛I𝐿)
vec(R𝑧𝑧 − 𝜎̂2𝑛I𝐿)
vec(R𝑦𝑧)

 , (24)

respectively.

For the estimation of 𝑟𝑘,HV, we introduce R𝑥𝑦 =

E{x[𝑛]yH [𝑛]} = −∑𝐾
𝑘=1 a(𝜃𝑘)aH (𝜃𝑘)𝑟𝑘,HV sin 𝜃𝑘 andR𝑥𝑧 =

E{x[𝑛]zH [𝑛]} =
∑𝐾
𝑘=1 a(𝜃𝑘)aH (𝜃𝑘)𝑟𝑘,HV cos 𝜃𝑘 . Then we

can derive the following equation

vec(R𝑥𝑧) − vec(jR𝑥𝑦) = Â1𝚽̂rHV (25)

where 𝚽̂ = diag{[exp(j𝜃1), . . . , exp(j𝜃𝐾 )]T}, and rHV =

[𝑟1,HV, . . . , 𝑟𝐾,HV]T. Then 𝑟𝑘,HV, 𝑘 = 1, 2, . . . , 𝐾 can be
estimated by

r̂HV = (Â1𝚽̂)+
[
vec(R𝑥𝑧) − vec(jR𝑥𝑦)

]
. (26)

Then, the 𝐾 coherency matrices can be reconstructed as
vec(R̂𝑠1 )
vec(R̂𝑠2 )

...

vec(R̂𝑠𝐾 )


= vec

(
[r̂HH, r̂∗HV, r̂HV, r̂VV]

T
)

(27)

where the Hermitian property of the coherency matrix is
exploited.

At last, the polarization parameters of the 𝑘-th signal
can be estimated based on the reconstructed coherency ma-
trix R̂𝑠𝑘 , 𝑘 = 1, 2, . . . , 𝐾 . Assume that the two eigenvalues of
the matrix R̂𝑠𝑘 are 𝑢𝑘,1 and 𝑢𝑘,2 that satisfy 𝑢𝑘,1 > 𝑢𝑘,2, and
the eigenvector corresponding to 𝑢𝑘,2 is 𝛏𝑘 = [𝜉𝑘,1, 𝜉𝑘,2]T.
Then, according to the definition of coherency matrix in (4),
the DOP of the 𝑘-th signal can be estimated as

𝜌̂𝑘 =
𝑢𝑘,1 − 𝑢𝑘,2
𝑢𝑘,1 + 𝑢𝑘,1

. (28)

Moreover, on the basis of subspace orthogonality, it is easy to
find that the POA and PEA of the 𝑘-th signal can be estimated
by solving the following equations

[G(𝛼𝑘)w(𝛽𝑘)]H 𝛏𝑘 = 0 (29)

and the solutions are

𝛼̂𝑘 = Arg(𝜔)/2, 𝛽𝑘 = 𝜋/4 − arctan |𝜔 | (30)

where
𝜔 =

j𝜉𝑘,2 − 𝜉𝑘,1
j𝜉𝑘,2 + 𝜉𝑘,1

. (31)

The proof of (30) can be found in Appendix B.
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Parameter Signal 1 Signal 2 Signal 3 Signal 4 Signal 5 Signal 6 Signal 7 Signal 8
DOA 30.00◦ 47.14◦ 64.29◦ 81.43◦ 98.57◦ 115.71◦ 132.86◦ 150.00◦

DOP 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
POA −60.00◦ −42.86◦ −25.71◦ −8.57◦ 8.57◦ 25.71◦ 42.86◦ 60.00◦

PEA −36.00◦ −25.71◦ −15.43◦ −5.14◦ 5.14◦ 15.43◦ 25.71◦ 36.00◦

Tab. 1. The parameters of the PP signals.

3.5 Computational Complexity Analysis
In Algorithm 1, the most time-consuming steps are

step 5, step 6, and step 7. In step 5, if the root-
MUSIC method is used, the operations of eigendecompo-
sition and polynomial rooting requires𝑂 ((𝐿2 (𝐿1 +1))3) and
𝑂 ((2𝐿2 (𝐿1 + 1) − 1)3), respectively. In step 6, the most
time-consuming operations are the calculations of (23), (24),
and (26), which cost 𝑂 (𝐾2 (𝐿2 + 𝐾)), 𝑂 (𝐾2 (3𝐿2 + 𝐾)), and
𝑂 (𝐾2 (𝐿2 + 𝐾)), respectively. In step 7, the most time-
consuming operations are the eigendecomposition of 𝐾 2-
by-2 matrices, which requires 𝑂 (8𝐾) in total. The compu-
tational complexity of the proposed method is also reflected
by the algorithm runtime in the simulation part.

4. Simulation Results
In this section, we evaluate the performance of the pro-

posed method by numerical simulations. The layout of the
nested array is set as 𝐿1 = 𝐿2 = 3, which satisfies the opti-
mization rule in (11). Thus, the number of physical sensors
is 𝐿 = 𝐿1 + 𝐿2 = 6. We consider the underdetermined case,
which is more challenging than the overdetermined case. As-
sume there are eight signals, which is larger than the number
of sensors. The DOAs, DOPs, POAs, and PEAs used in all
simualtions are listed in Tab. 1. For performance compari-
son, the method in [20] labeled as ANN, the method in [18]
labeled as SS-MUSIC, and the method in [19] labeled as
Quaternion are chosen. The CRB of the estimation whose
derivation is shown in Appendix C is also included as the per-
formance reference. The simulation are run byMatlab 2021a
on a computer equipped with AMD 3900x CPU and 64GB
RAM. The code of the proposed method will be avaiable at
https://github.com/pyj8711/EfficientJDP upon acceptance of
the paper.

In the first simulation, we show the validity of the pro-
posed method. The SNR is set as 10 dB, and the number
of snapshots is set as 500. The proposed method is trialed
10 times on independent and identically distributed samples.
The estimations of DOAs, DOPs, POAs, and PEAs for eight
signals in ten trials are shown in Fig. 3. It can be found
from Fig. 3 that all the estimated DOAs and polarization
parameters are close to their true values.

In the second simulation, the proposed method and the
other methods are compared with respect to the DOA esti-
mation performance. The performance is evaluated by root-
mean-square error (RMSE) of DOA estimation, which is
defined by

RMSEDOA =

√√√√
1
𝑄

𝑄∑︁
𝑞=1

∥𝛉 − 𝛉̂
(𝑞) ∥22

𝐾
(32)

where 𝛉̂ (𝑞) contains the estimated DOAs in the 𝑞-th Monte
Carlo trial, and 𝑄 is the number of Monte Carlo trials. Here
we set 𝑄 = 500. Firstly, the number of snapshots is fixed at
200, and the SNR varies from –10 dB to 10 dB, the results
of which are shown in Fig. 4. Then, the SNR is fixed at
–5 dB, and the number of snapshots varies from 50 to 500,
the results of which are shown in Fig. 5.

2 4 6 8

Signal number

0

50

100

150
D

O
A

 (
D

eg
re

e)

True DOA

Estimated DOA

(a)

2 4 6 8

Signal number

-1

0

1

D
O

P

True DOP

Estimated DOP

(b)

2 4 6 8

Signal number

-1

0

1

P
O

A
 (

R
ad

ia
n

)

True POA

Estimated POA

(c)

2 4 6 8

Signal number

-1

0

1
P

E
A

 (
R

ad
ia

n
)

True PEA

Estimated PEA

(d)
Fig. 3. The estimated DOAs and polarization parameters of ten

trials: (a) DOA, (b) DOP, (c) POA, (d) PEA.
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Fig. 5. RMSE of DOA estimation under different number of
snapshots.

From Fig. 4 and Fig. 5, it can be found that the accuracy
of the Quaternion method is the worst. This is because the
Quaternion requires the powers of the horizontal and vertical
polarization components of a signal to be equal. However,
this requirement has not been satisfied here. The ANN is bet-
ter than SS-MUSIC and Quaternion. The proposed method
has the highest accuracy under different SNRs and under
different numbers of snapshots.

In the third simulation, the proposed method and the
other methods are compared with respect to the DOP esti-
mation performance. Since the SS-MUSIC method can not
estimate the DOP, it is omitted in this simulation. The perfor-
mance is evaluated by the RMSE of DOP estimation, which
is defined by

RMSEDOP =

√√√√
1
𝑄

𝑄∑︁
𝑞=1

∥𝛒 − 𝛒̂ (𝑞) ∥22
𝐾

(33)

where 𝛒 = [𝜌1, 𝜌2, . . . , 𝜌𝐾 ], and 𝛒̂ (𝑞) contains the estimated
DOps in the 𝑞-th Monte Carlo trial. Here we set 𝑄 = 500.
Firstly, the number of snapshots is fixed at 500, and the SNR
varies from –10 dB to 10 dB, the results of which are shown
in Fig. 6. Then, the SNR is fixed at 5 dB, and the number
of snapshots varies from 50 to 500, the results of which are
shown in Fig. 7. It can be seen that the DOP estimation
accuracy of the proposed method is far better than that of
the Quaternion method. This performance difference comes
from three aspects. Firstly, the proposed method adopts the
tri-polarized configuration, which can completely accumu-
late the power of a signal. Secondly, the noise variance is
estimated in the proposedmethod, which leads to an unbiased
estimation of DOP. Thirdly, the proposed method does not
require the powers of the horizontal and vertical polarization
components of a signal to be equal. However, under low
SNR situation, the proposed method has lower DOP estima-
tion accuracy than the ANN method. This is because, under
low SNR situation, the ANN can estimate the noise variance
more accurately than the proposed method, leading to a more
accurate reconstruction of the coherency matrix.
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Algorithm SNR = −10 dB SNR = 0 dB SNR = 10 dB
Quaternion 1.2e–3 1.1e–3 1.2e–3
ANN 9.2e–3 5.6e–3 5.4e–3
Proposed 6.0e–4 5.9e–4 6.1e–4

Tab. 2. The runtime comparison under different SNRs,
unit: sec.

At last, the proposed method and the other methods
are compared with respect to the computational complexity.
The SS-MUSIC method is omitted in this simulation, since
it does not estimate the DOP. The number of snapshots is
fixed at 200, and the SNR is set as –10 dB, 0 dB, and 10 dB.
The runtime of different methods under different situation is
shown in Tab. 2. We can find the ANN is the slowest method
since it needs iterative calculations. Also, it consumes more
time under low SNR situation than under high SNR situation.
This is because the number of iterations in ANN under low
SNR situation is larger than that under high SNR situation.
The proposed method has the highest speed, and it is about
one order of magnitude faster than the ANN method.
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5. Conclusion
In this paper, we introduce a non-iterative method for

estimating the DOAs and polarizations of multiple PP sig-
nals using the tri-polarized nested array. First, with the sub-
covariance addition, the power of different polarized com-
ponents of a signal can be completely accumulated, which
improves the SNR. Besides, it is proven that the noise vari-
ance estimation without iterations becomes possible in the
underdetermined case, provided the tri-polarized nested ar-
ray is designed with a given optimization rule. The new
proposed method does not require iterative calculations. It
is validated by numerical experiments and compared with
other representative methods. The simulation results show
that the proposed method possesses high efficiency and rela-
tively high accuracy.
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Appendix A: Proof of Theorem 1
Since the signals are uncorrelated, R𝑠 is a block diago-

nal matrix, and each submatrix on the diagnoal is called the
coherencymatrix, which has dimension 2×2. For a PP signal,
its coherency matrix has rank 2. So, R𝑠 has full rank, which
means the covariance matrix R𝑠 is positive definite. Thus,
we can find an invertible matrix Q satisfying R𝑠 = QQH.
Then we have

rank(BR𝑠BH) =rank(BQQHBH)
=rank(BQ)
=rank(B).

(A1)

Since B·,𝑘 = a(𝜃𝑘) ⊗ C𝑘 , and exchanging rows or columns
does not change the matrix rank, we have

rank(B) =rank
( [
−A

D

] )
=rank(A) + rank(D)

(A2)

where A ∈ C𝐿×𝐾 = [a(𝜃1), a(𝜃2), . . . , a(𝜃𝐾 )] and D·,𝑘 =

[sin 𝜃𝑘 ,− cos 𝜃𝑘]T ⊗ a(𝜃𝑘).

Because the nested array is a non-uniform array, A is
a Vandermonde matrix with deleted rows. So, if 𝐾 < 𝐿,
rank(A) ≤ 𝐾 , and if 𝐾 ≥ 𝐿, rank(A) ≤ 𝐿. Similarly, for D,
if 𝐾 < 2𝐿, rank(D) ≤ 𝐾 , and if 𝐾 ≥ 2𝐿, rank(D) ≤ 2𝐿. So,
combing the rank properties of A and D, we have

rank(B)


≤ 2𝐾, if 𝐾 < 𝐿

≤ 𝐿 + 𝐾, if 𝐿 ≤ 𝐾 < 2𝐿
≤ 3𝐿, if 𝐾 ≥ 2𝐿

, (A3)

Therefor, according to (A1), BR𝑠BH has the rank property
shown in (9).

Appendix B: Proof of (30)
Substituting (5) and (6) into (29), we have
𝜉𝑘,1 cos(𝛼) cos(𝛽) − j𝜉𝑘,1 sin(𝛼) sin(𝛽)
− 𝜉𝑘,2 sin(𝛼) cos(𝛽) − j𝜉𝑘,2 cos(𝛼) sin(𝛽) = 0.

(B1)

Then, substituting

cos𝛼 =
ej𝛼 + e−j𝛼
2

, sin𝛼 =
ej𝛼 − e−j𝛼
2j

(B2)

into (B1) and using some mathematical simplification, we
have
(j𝜉𝑘,2+𝜉𝑘,1) (1− tan 𝛽)ej2𝛼 = (j𝜉𝑘,2−𝜉𝑘,1) (1+ tan 𝛽). (B3)

If 𝛽 ≠ −𝜋/4, dividing both sides of (B3) by 1 + tan 𝛽,
we have

tan(𝜋/4 − 𝛽)ej2𝛼 =
j𝜉𝑘,2 − 𝜉𝑘,1
j𝜉𝑘,2 + 𝜉𝑘,1

. (B4)

If 𝛽 = −𝜋/4, j𝜉𝑘,2 + 𝜉𝑘,1 = 0 can be obtained from (B3).
According to (B4), j𝜉𝑘,2 + 𝜉𝑘,1 = 0 can also lead to 𝛽 = −𝜋/4
since 𝛽 ∈ [−𝜋/4, 𝜋/4]. Thus, (B4) holds for any 𝛽. Eventu-
ally (30) can be inferred from (B4).

Appendix C: CRB Derivation
The CRB of tri-polarization configuration for PP sig-

nals that is valid under overdetermined and underdetermined
cases has not been analyzed in the literature. Here, we fol-
low [17] to derive this new CRB. The Fisher information
matrix (FIM) is expressed as

FIM = 𝑁

(
𝜕r
𝜕𝛀

)H
(R−T ⊗ R−1)

(
𝜕r
𝜕𝛀

)
(C1)

where r = vec(R)
= (B∗ ⊗ B)vec(R𝑠) + 𝜎2𝑛vec(I3𝐿)

=

𝐾∑︁
𝑘=1

V(θ𝑘)vec(R𝑠𝑘 ) + 𝜎2𝑛vec(I3𝐿)
(C2)

and V(θ𝑘) = [a(𝜃𝑘) ⊗ C𝑘]∗ ⊗ [a(𝜃𝑘) ⊗ C𝑘]. 𝛀 containing
all the unknown parameters is defined by

𝛀 = [𝛉T, 𝛔T𝑢 , 𝛔T𝑐 , 𝛂T, 𝛃T, 𝜎2𝑛]T, (C3)

where 𝛔𝑢 = [𝜎21,𝑢, . . . , 𝜎
2
𝐾,𝑢

]T, 𝛔𝑐 = [𝜎21,𝑐, . . . , 𝜎
2
𝐾,𝑐

]T,
𝛂 = [𝛼1, . . . , 𝛼𝐾 ]T, and 𝛃 = [𝛽1, . . . , 𝛽𝐾 ]T. Then, 𝜕r/𝜕𝛀
can be written as
𝜕r
𝜕𝛀

=

[
𝜕r
𝜕𝜃1

, . . . ,
𝜕r
𝜕𝜃𝐾

,
𝜕r
𝜕𝜎21,𝑢

, . . . ,
𝜕r

𝜕𝜎2
𝐾,𝑢

,
𝜕r
𝜕𝜎21,𝑐

, . . . ,

𝜕r
𝜕𝜎2

𝐾,𝑐

,
𝜕r
𝜕𝛼1

, . . . ,
𝜕r
𝜕𝛼𝐾

,
𝜕r
𝜕𝛽1

, . . . ,
𝜕r
𝜕𝛽𝐾

,
𝜕r
𝜕𝜎2𝑛

]
.

(C4)
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According to (C2), we have
𝜕r
𝜕𝜃𝑘

=

[
𝜕 (a(𝜃𝑘) ⊗ C𝑘)∗

𝜕𝜃𝑘
⊗ (a(𝜃𝑘) ⊗ C𝑘)

+(a(𝜃𝑘) ⊗ C𝑘)∗ ⊗
𝜕 (a(𝜃𝑘) ⊗ C𝑘)

𝜕𝜃𝑘

]
vec(R𝑠),

(C5)

𝜕r
𝜕𝜎2

𝑘,𝑢

= V(𝜃𝑘) [1/2, 0, 0, 1/2]T, (C6)

𝜕r
𝜕𝜎2

𝑘,𝑐

= V(𝜃𝑘)vec
(
G(𝛼𝑘)w(𝛽𝑘)wH (𝛽𝑘)GH (𝛼𝑘)

)
, (C7)

𝜕r
𝜕𝛼𝑘

=𝜎2𝑘,𝑐V(𝜃𝑘) (
[
𝜕G∗ (𝛼𝑘)
𝜕𝛼𝑘

⊗ G(𝛼𝑘)

+G∗ (𝛼𝑘) ⊗
𝜕G(𝛼𝑘)
𝜕𝛼𝑘

]
vec

(
w(𝛽𝑘)wH (𝛽𝑘)

)
,

(C8)

𝜕r
𝜕𝛽𝑘

=𝜎2𝑘,𝑐V(𝜃𝑘) [G∗ (𝛼𝑘) ⊗ G(𝛼𝑘)]

vec
(
𝜕w(𝛽𝑘)
𝜕𝛽𝑘

wH + w
𝜕wH (𝛽𝑘)
𝜕𝛽𝑘

)
,

(C9)

and
𝜕r
𝜕𝜎2𝑛

= vec(I3𝑀 ) (C10)

where 𝜕 (a(𝜃𝑘) ⊗ C𝑘)/𝜕𝜃𝑘 , 𝜕G(𝛼𝑘)/𝜕𝛼𝑘 and 𝜕w(𝛽𝑘)/𝜕𝛽𝑘
can be easily derived, respectively. Then, substituting (C4)–
(C10) into (C1), we can achieve the FIM. Therefore, the CRB
of the DOA estimation for the 𝑘-th PP signal can be obtained
by

CRB(𝜃𝑘) = [FIM−1]𝑘,𝑘 , 𝑘 = 1, 2, . . . , 𝐾. (C11)


