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Abstract. A power transform-based clutter map constant 
false alarm rate (CM/PT-CFAR) algorithm is proposed to 
improve the detection performance to the weak target in 
multiple persisting targets situations. In the CM/PT-CFAR 
detector, the radar dataset obtained at each scan is nor-
malized and multiplied by a scale factor, and then fed to 
the power transform operation. The transformed dataset is 
divided into two parts with a numerical value of 1 as the 
boundary. The part exceeding 1 is fed to update the scale 
factor, while the other is used for updating the detection 
threshold. Because transcendental integrals are produced 
in the derivation process, an accurate analytical expression 
of detection probability for CM/PT-CFAR is non-existent. 
Hence a third-order Taylor expansion operation is intro-
duced to approximate the result. The detection perfor-
mance of CM/PT-CFAR under various conditions is evalu-
ated and compared with those of other CM/-CFAR detec-
tors. The advantage of CM/PT-CFAR is the detection for 
weak targets, especially in complex detection situations. 
The proposed algorithm remains a relatively stable compu-
tation load in different cases, which is beneficial for practi-
cal application. 
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1. Introduction 
Constant false alarm rate (CFAR) detection is an im-

portant part of automatic detection in modern radar sys-
tems. The basic framework of CFAR is to maintain the 
preset false alarm probability by estimating the background 
power of the radar scene and multiplying it by a constant 
scale factor to obtain a detection threshold that can adapt to 
various clutter environments [1], [2]. CFAR detectors can 
be divided into two categories according to different back-
ground power estimation methods: spatial processing-based 
CFAR detectors and temporal processing-based CFAR 
detectors [3], [4]. 

For spatial processing-based CFAR detectors, the out-
puts of nearby cells (range/Doppler) are averaged to obtain 
a background estimation which is used for thresholding [5], 
[14]. Common spatial processing-based CFAR detectors, 
such as mean-level CFAR (ML-CFAR) detectors and rank-
ordering CFAR detectors can achieve excellent detection 
performance in a homogeneous environment, but also suf-
fer from performance degradations caused by non-homoge-
neous environments such as multiple targets situations or 
clutter edge environments [6], [7]. These detectors often 
achieve a poor false alarm control capacity at clutter edges 
[8], [9]. 

Temporal processing-based CFAR detectors are based 
on different concepts, where the background estimation is 
obtained by processing the output of multiple scans within 
each resolution cell. The estimation is updated scan-by-
scan and used to compute the detection threshold for the 
map cell at the next scan [2], [10]. This temporal pro-
cessing-based CFAR technique is also known as clutter 
map CFAR (CM-CFAR) for utilizing resolution cells of the 
clutter map. Compared with the spatial processing-based 
CFAR algorithms, CM-CFAR has the advantages of ro-
bustness in the presence of multiple targets and immunity 
to clutter edge environments [11–13]. 

The classic CM-CFAR was first analyzed by Nitzberg 
et al. It utilizes digital exponential weighting of prior scan 
measurements to obtain the background estimation in each 
resolution cell [14]. The derived algorithms of CM-CFAR 
usually deal with the investigated resolution cells by aver-
age or orderly processing. The cell average CM-CFAR 
(CACM-CFAR) detector updates the detection threshold by 
filtering the average of returns within map cells at each 
scan. CACM-CFAR has the advantage of good detection 
performance in a homogeneous environment, but in the 
case of persisting targets in the clutter map it suffers from 
a performance degradation caused by target-masking ef-
fect, where the detection threshold raises with the increased 
number of scans [15]. For the order of statistic CM-CFAR 
(OSCM-CFAR) detector based on a different concept, the 
kth ranked resolution cell is chosen for detection threshold 
updating. OSCM-CFAR performs more robustly in the case 
of persisting targets compared with CACM-CFAR at the 
cost of a small CFAR loss in a homogeneous environment 



RADIOENGINEERING, VOL. 31, NO. 1, APRIL 2022 115 

 

[16]. In [17], the authors proposed a hybrid clutter map/L-
CFAR (CM/L-CFAR) detector, where the returns from 
each resolution cell were preliminarily processed through 
an L-filter before being fed to the background estimation. 
This algorithm preserves immunity to spatial discontinuity 
points such as a clutter map edge environment while en-
hancing robustness in the persisting target case, but suffers 
from a limited CFAR loss in a homogeneous environment. 
A scan-by-scan averaging CFAR (SSA-CFAR) detector 
which selects the maximal resolution cell for updating the 
detection threshold is analyzed in [11]. SSA-CFAR 
achieves robust performance with respect to spatial envi-
ronment conditions, but suffers from a performance degra-
dation caused by self-masking targets. In [18], a switching 
IIR CFAR (SIIR-CFAR) detector that switches between 
two exponential smoothers with different time constants to 
leverage the conflicting requirements of homogeneous and 
nonhomogeneous environments is proposed. It has the 
advantages of maintaining good detection performance in 
homogeneous environments and fast adaption to spatial 
discontinuity points such as clutter edge environments. To 
achieve a reasonable trade-off between the homogeneous 
detection loss and nonhomogeneous detection improve-
ment, the authors proposed a CM-CFAR detector based on 
the maximal resolution cell, which is named CM/MRC-
CFAR in [19]. The core of this algorithm is to multiply the 
maximal resolution cell within each scan by a scale factor 
to construct a comparison threshold and count the number 
of remaining cells that do not exceed this threshold. 
According to the preset tolerance of the target number, the 
appropriate resolution cells are selected to update the detec-
tion threshold. This algorithm has the advantages of a low 
CFAR loss in homogeneous environment and robust detec-
tion performance in persisting targets situations.  

In [20–24], the authors studied the CFAR 
performance in Weibull and lognormal backgrounds. In 
addition, new techniques such as machine learning are 
applied to CFAR detectors in [25–27]. 

To detect the weak targets which enter the radar scene 
successively and persist for several scans, a CM-CFAR 
detector based on power transform (i.e. CM/PT-CFAR) is 
proposed in this paper. In the proposed algorithm, the radar 
dataset is firstly processed by a specific scale transfor-
mation and then divided into two parts, with one part used 
for updating the scale factor, and the other fed to the back-
ground estimation. Then, the power transform is imposed 
to increase the separability between the target echoes and 
clutters. The power transform can prevent the amplification 
of clutter intensity, and keep it under the detection thresh-
old. As such, the false alarms caused by clutters decrease 
and the weak target detection performance can be en-
hanced. The proposed CM/PT-CFAR method can achieve 
a robust detection performance for weak targets, especially 
when multiple persisting targets enter the radar scene 
successively. 

The remainder of this paper is organized as follows. 
The algorithm flowchart of CM/PT-CFAR is presented in 
Sec. 2. The detection probability (Pd) of CM/PT-CFAR is 

derived from a third-order Taylor expansion operation, as 
described in Sec 3. The performance evaluation and pa-
rameter investigation of CM/PT-CFAR in various environ-
ments is presented in Sec. 4. 

2. Description of CM/PT-CFAR 
Process 
The block diagram of the CM/PT-CFAR algorithm is 

shown in Fig. 1. Square-law detected signals are organized 
corresponding to the adjacent M resolution cells. For the 
nth scan, the return signals from M cells are denoted as: 

      1 2, , ,  .Mx n x n x n   Mx  (1) 

It is assumed that the statistics of the return envelope 
are Gaussian for the sum of thermal noise plus clutter plus 
target, and the signal from each resolution cell is statisti-
cally independent on a scan-by-scan basis. The target re-
turn corresponds to a Swerling II target fluctuation model. 
Thus, the probability density function (pdf) of each resolu-
tion cell is: 
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where λ is the sum of the thermal noise and clutter power, 
and σ is the average signal-to-noise ratio (SNR). 

For CM/PT-CFAR, at the nth scan, the data of return 
signal vector  are reordered. Each element in  is 
arranged in a small to large order, and a new order vector 

 is obtained and denoted as: 

 
             1 2, , ,  .Mx n x n x n   Mx  (3) 

It has x(1)(n)  x(2)(n) … x(M)(n), after which ele-
ment x(M)(n) is multiplied by a scale factor γ with 
x(1)(n)/x(M)(n) <   1. An intermediate vector ym= [y1(n), 
y2(n), …,yM(n)] is obtained using the following equation: 
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Obviously, it has y1(n)  y2(n) … yk(n) < 1  yk+1(n) 
 … yM(n), which is an important basis for the following 
process. A vector zm= [z1(n), z2(n), …,zM(n)] is then 
obtained by a power transform as follows: 

      ,   1,2, ,
v

k kz n y n k M      (5) 

where v is a power exponent between 0 and 1. The M 
elements of zm are partitioned into two sets S0 and S1, 
according to the following comparison: 
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The dataset S0 is utilized to update the detection 
threshold, while the dataset of S1 is channeled back into 
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updating the scale factor γ, which is the ratio of root-mean-
square to maximum of S1. 

The number of elements partitioned into S0 is denoted 
as m0, and a statistic q(n) is computed as follows: 
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The sequence q(n) is subsequently fed to a single-pole 
autoregressive (AR) filter with impulse response h(n), 
leading to the estimation of background noise and clutter 
power to the resolution cell at the nth scan. The filter 
output is the background estimate which is denoted as p̂(n), 
it has 

      ˆ *p n q n h n  (8) 

where * denotes convolution and the impulse response h(n) 
is expressed as follows: 

    1  ,  0,  0 1 .
n

h n n        (9) 

For the (n+1)th scan, a target present decision in the 
kth resolution cell is made if 

    1  ,  1 , ,ˆ ,2kz n T p n k M      (10) 

where T is a constant chosen to set the false alarm rate at 
the desired level. 

It is obvious from the entire process that the most no-
table difference between CM/PT-CFAR and traditional 
CFAR algorithms is that the former has additional data 
process steps, corresponding to (4) and (5). The power 
transform described in (5) is commonly used to reduce the 
masking effect of strong scattering points on weak scatter-
ing points in radar target recognition. Analogously, 
CM/PT-CFAR uses a power transform to increase the 
separability between the resolution cells that contain targets 
(target cells for short) and those exclusive of targets (clutter 

cells for short). This operation reduces the target self-mask-
ing effect, and improves the detection performance in situa-
tions where moving targets enter and persist in the clutter 
map cells. 

The theoretical basis of power transform is that ran-
dom variables subject to an arbitrary probability distribu-
tion can approach a Gaussian distribution by proper power 
transformations. Therefore, in the process of target detec-
tion, power transform changes the pdf of the original da-
taset, which has an uncertain impact on the detection accu-
racy. In order to ensure the stable detection performance, 
elements in vector x(m) is normalized and multiplied by a 
scale factor to obtain ym, as described in (4). Elements in ym 
are divided into two parts with a numerical value of 1 as 
the boundary. According to the mathematical characteris-
tics of power transform, elements in vector zm and ym are 
divided on the same basis, thereby averting the negative 
impact caused by power transform on the subsequent steps. 
For vector zm, elements exceeding 1 are fed back to update 
the scale factor γ while the others are used to update the 
detection threshold. 

When a target enters the clutter map and persists over 
a number of scans, the detection threshold increases 
accordingly, causing deterioration of the detection perfor-
mance. Analogously, the persisting strong targets lead to 
an increased detection threshold, which would degrade the 
subsequent detection performance of weak targets. Assume 
that the clutter map contains several strong targets up to the 
nth scan, and a new weak target appears at the next scan. 
CM/PT-CFAR reduces the discrepancies between echo 
intensities of different targets by power transform. This 
algorithm, meanwhile, ensures that the whole clutter map is 
processed in equal proportion before being fed to power 
transform, which avoids the false alarm caused by amplify-
ing the clutter units. Consequently, CM/PT-CFAR has 
better detection performance for weak targets without 
increasing false alarm probability. 

 

Fig. 1. Block diagram of CM/PT-CFAR algorithm. 
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3. Mathematical Model of CM/PT-
CFAR Algorithm 
It is assumed that the returns of each resolution cell 

are independent from cell to cell, and the clutter map re-
mains in a homogeneous clutter environment up to the nth 
scan. From the (n+1)th scan, N (1  N < M) moving targets 
with the same SNR σ enter the clutter map successively 
and persist in the respective resolution cell for L scans. For 
CM/PT-CFAR, the probability of target existence in the kth 
resolution cell at the (n+L+1)th scan is 
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where Ez{} denotes the mathematical expectation of varia-
ble z, fp̂(n+L)(p̂) is the pdf of variable p̂(n+L), and p̂(n+L)(t) is 
the moment generating function (MGF) of p̂(n+L). 

From (11), we can draw the conclusion that the proba-
bility of target existence is determined by the MGF of the 
background estimate. Combining the convolution operation 
of (8) with the properties of the MGF, we obtain 
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where q(n+L–k)(t) is the MGF of variable q(n+L–k). 

In order to further expand this formula, two MGFs 
qH(t) and qI(t) are introduced. qH(t) denotes the MGF 
of q(l) when the resolution cell is in a homogeneous envi-
ronment at the lth scan, while qI(t) denotes the MGF of 
q(l) when targets enter the resolution cell at the lth scan. 
Because the clutter map remains homogeneous up to the 
nth scan and then turns into a target-entering scenario from 
the (n+1)th to (n+L)th scan, Equation (12) can be rewritten 
as follows: 
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Before deriving the expressions of qH(t) and qI(t), 
several preprocess measures are taken. To simplify the 
expression, vector zm obtained at the lth scan is rewritten as 
z = [z1,z2,…,zm], where N elements from target cells are 
denoted as zt1,zt2,…,ztN and M–N elements from clutter 
cells are denoted as zc1,zc2,…,zcM–N. For simplification, we 
set zt1  zt2 … ztN and zc1  zc2 … zcM–N. The joint pdf 
of N target returns and M–N clutter echoes can be derived 
as follows: 
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where 
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and 

  
 

 1/
1 /

/
C e

v
v v

zz
f z

v





 . (16) 

The two functions above are power-transformed pdfs 
corresponding to the target cells and clutter cells, respec-
tively. The derivation process is presented in Appendix A. 

According to the previous preprocess measures, the 
situations that ztN  zcM–N and ztN < zcM–N are mutually 
exclusive events, thus qI(t) can be rewritten as: 
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where 

  0 0max 0,  , N m M N    (18) 

  1 0min , 1  ,N m N   (19) 

  2 0max 0, 1  ,N m M N     (20) 

  3 0min ,  .N m N  (21) 

The sub-item I(t|m0, l, ztN  zcM–N) represents the 
MGF of q(l) under the condition that l target returns are 
partitioned into dataset S0 and the maximum value of target 
returns exceeds the maximum value of clutter echoes. N0 
and N1 are the possibly smallest and largest numbers of 
target returns in this situation, respectively. In contrast, 
I(t|m0, l, ztN < zcM–N) represents the MGF of q(l) when l 
target returns are partitioned into dataset S0 and the maxi-
mum value of clutter echoes exceeds the maximum value 
of the target returns. N2 and N3 are the possibly smallest 
and largest numbers of target returns in this situation, 
respectively. 

The MGF qH(t) can be rewritten in a similar struc-
ture. Note that since qH(t) corresponds to a homogeneous 
environment, we can set targets number N and SNR  in 
the expression of qI(t) to 0, so as to simplify the deriva-
tion of qH(t). 

The detailed derivation of Pd is too cumbersome to be 
presented in this section. Thus, we show a flowchart of 
derivation process in Fig. 2. See Appendix B for the spe-
cific process. Note that transcendental integrals are pro-
duced in the derivation, thus a third-order Taylor expansion 
operation is used to approximate the accurate analytical 
expression. 



118 B. XU, Y. CHEN, H. GU, ET AL., RESEARCH ON A NOVEL CLUTTER MAP CONSTANT FALSE ALARM RATE DETECTOR … 

 

 
Fig. 2. Flowchart of the derivation process. 

4. Experimental Results and Analysis 
To evaluate the detection performance of the pro-

posed algorithm, the effects of CM/PT-CFAR are com-
pared with those of other CFAR algorithms. In addition, 
the key factor which influences the property of CM/PT-
CFAR is studied. Before we carry out the experiments, the 
parameter set of CM/PT-CFAR is designed through a case 
study. 

4.1 Parameter Design through a Case Study 

According to the expression of detection probability 
Pd (see Appendix B), when the size of map cell M and the 
weight coefficient α of h(n) are given, the detection perfor-
mance of CM/PT-CFAR depends on two parameters v and 
T. Assume that M = 8 and the desired false-alarm probabil-
ity PF = 1  10–5. For the single-pole AR filter, since 
a smaller α corresponds to a longer data window to esti-
mate the clutter power [14], [21], a weight coefficient is 
taken in the following experiment. The parameter design 
method proposed in [19] is used, which achieves a reasona-
ble trade-off between the homogeneous detection loss and 
performance improvement in nonhomogeneous case. The 
design procedure includes the following steps: 

Step 1: For each value of v  [0.03, 1], based on (B8) 
(see Appendix B) on condition that L, N, and  are set to 0, 
the corresponding threshold factor T is obtained and shown 
in Tab. 1. 

Step 2: For each set of (v,T) in Tab. 1, compute the 
corresponding Pd of a target in a homogeneous environ-
ment by (B8), with L = 0, N = 0, and  = 100. The detec-
tion curve is shown in Fig. 3. 

Step 3: For each set of (v,T) in Tab. 1, compute the 
corresponding Pd of a target in multiple persisting targets 
situations by (B8), with L = 30, N = 2, and  = 100. The 
detection curve is shown in Fig. 3. 

Step 4: Figure 3 also presents the simulation results 
by the Monte Carlo method, corresponding to the curves in 
step 2 and step 3. The curves computed by (B8) coincide 
well with the simulation results. This indicates that it is 
feasible to use a third-order Taylor expression to approxi-
mate the accurate analytical expression. On the curve of 
L = 30 and N = 2, when v increases from 0.03 to 0.2385, 
the corresponding Pd increases sharply from 0 to 84.47%. 

v 0.03 0.0442 0.0625 0.0884 0.125 

T 4.786 4.786 4.788 4.793 4.793 

v 0.1768 0.1895 0.2031 0.2176 0.2385 

T 4.871 4.871 4.875 4.875 4.991 

v 0.25 0.2679 0.2872 0.3078 0.3299 

T 4.991 5.015 5.102 5.481 5.842 

v 0.3536 0.5 0.7071 1  

T 6.239 8.157 12.301 16.965  

Tab. 1. Threshold factor T versus power exponent v, for 
PF = 10–5, M = 8 and  = 0.125. 

 
(a) 

 
(b) 

Fig. 3.  Detection performance of CM/PT-CFAR for different 
values of v: (a) logarithmic form of v is taken as the X-
axis; (b) partial curves for observation. 
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As v continues to increase from 0.25 to 1, the Pd rapidly 
decreases from 84.13% to 49.66%. Meanwhile, on the 
curve of L = 0 and N = 0, the Pd first shows a period of 
rapid growth, and then maintains a slow rate of increase. 
As v exceeds 0.2385, the Pd slightly increases from 88.54% 
to 92.11%. Considering the two situations above, we fi-
nally select v = 0.2385 because it provides a suitable trade-
off between the homogeneous detection loss and perfor-
mance improvement in nonhomogeneous case. 

In summary, the parameter set for CM/PT-CFAR at 
PF = 1  10–5 is (M = 8, α = 0.125, v = 0.2385, T = 4.991). 
A specific analysis of how the power exponent v influences 
the detection probability is discussed in Sec. 4.4. 

4.2 Detection Performance Evaluation 

In this section, the detection performances of CM/PT-
CFAR in two types of situations is evaluated and compared 
with those of CACM-CFAR, OSCM-CFAR, CM/L-CFAR 
and CM/MRC-CFAR. The parameters of CM/PT-CFAR 
are set in the previous section. For CM/MRC-CFAR, the 
parameters are set according to [19]. To ensure that both 
OSCM-CFAR and CM/L-CFAR can tolerate up to two 
targets at each scan, the sixth-ranked resolution cell at each 
scan is used to update the detection threshold for OSCM-
CFAR and the censoring depth of CM/L-CFAR at each 
scan is set to two. The detection probabilities of all the 
CM-CFAR detectors are obtained by the Monte Carlo 
method. 

4.2.1 Homogeneous Clutter Environment 

The detection probability curves of all the CFAR 
algorithms above are presented in Fig. 4. It is observed that 
in a homogeneous clutter environment, CACM-CFAR 
achieves the highest detection probability in the entire SNR 
range. CM/PT-CFAR performs better than OSCM-CFAR 
and CM/L-CFAR. Because CM/PT-CFAR does not use all 
the resolution cells to update the detection threshold, the 
performance of CM/PT-CFAR is slightly lower than those 
of CACM-CFAR and CM/MRC-CFAR. 

 
(a) 

 
(b) 

Fig. 4. Detection performance of various CFAR algorithms in 
a homogeneous clutter environment: (a) global view; 
(b) partial curves for observation. 

4.2.2 Multiple Persisting Targets Situation 

The performances of various CFAR algorithms in the 
situation that one target enters the clutter map and persists 
in  a certain  resolution cell for  L = 10  scans are  shown  in 

 
(a) 

 
(b) 

Fig. 5. Detection performance of various CFAR algorithms in 
the situation of one target persisting for ten scans: 
(a) global view; (b) partial curves for observation. 
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Fig. 5. When the SNR increases from 0 to 10 dB, the detec-
tion probability of CM/PT-CFAR is higher than that of 
CM/L-CFAR, and slightly lower than that of OSCM-CFAR. 
In the SNR range beyond 11 dB, the detection performance 
of CM/PT-CFAR tends to exceed that of OSCM-CFAR 
and remains similar to that of CM/MRC-CFAR. Note that 
CACM-CFAR achieves poor performance in persisting 
targets situation and only gives a maximum 33.65% detec-
tion probability at SNR = 30 dB. 

In the situation of two targets persisting in the same 
resolution cell for L = 30 scans, the detection probability 
curves of CM/PT-CFAR, CM/MRC-CFAR, CM/L-CFAR 
and OSCM-CFAR are given in Fig. 6. Since CACM-CFAR 
is unable to detect targets effectively in this situation, its 
detection performance is not evaluated here. Obviously, 
CM/PT-CFAR achieves a higher detection probability than 
other CFAR algorithms when the SNR increases from 6 to 
21 dB. In other words, the performance of CM/PT-CFAR 
is more robust than those of other CFAR algorithms. 

For a more complex situation, two targets with dif-
ferent SNRs enter the clutter map successively and persist 
in different resolution cells. Figure 7 presents the perfor-
mance of various CFAR algorithms to the weak target with 

 
(a) 

 
(b) 

Fig. 6. Detection performance of various CFAR algorithms in 
the situation of two targets persisting for thirty scans: 
(a) global view; (b) partial curves for observation. 

 
Fig. 7. Detection performance of various CFAR algorithms to 

weak persisting target. 

a lower SNR. Assume that the weak target enters clutter 
map ΔL = 10 scans later than the strong target, and the 
SNR of the weak target is half that of the strong target. 
CM/PT-CFAR shows obvious robustness for weak target 
detection when multiple targets enter the clutter map in 
sequence. The detection probability of CM/PT-CFAR to 
the weak target is higher than those of other CFAR algo-
rithms in the SNR range from 12 to 23 dB. 

4.2.3 Detection Performance versus Target 
Persisting Scans 

The detection performance of various CFAR algo-
rithms with respect to the number of persistence scans is 
presented in Fig. 8. On the curves of one persisting target 
with SNR = 20 dB, CM/MRC-CFAR achieves the highest 
detection probability, while CM/PT-CFAR performs better 
than CM/L-CFAR and OSCM-CFAR. In the case of a high 
SNR, CM/PT-CFAR obtains a relatively larger scale factor 
γ, which leads to fewer resolution cells used for updating 
the detection threshold than those of CM/MRC-CFAR. 
Thus, the detection probability of CM/PT-CFAR is lower 
than that of CM/MRC-CFAR. On the curves of two persist-
ing targets with SNR = 15 dB, because the scale factor γ 
maintains slight fluctuation when SNR changes, CM/PT-
CFAR utilizes more resolution cells to update the detection 
threshold than other CFAR algorithms. Therefore, the per-
formance of CM/PT-CFAR shows more robust in this 
situation. 

4.3 Synthetical Experiment 

The previous sections mainly investigate the detection 
performance evaluation under the influence of various 
parameters (such as targets number, persisting scans) in 
different environments (homogeneous or nonhomogene-
ous). In this section, we focus on the detection performance 
for weak targets in complex situations, which is the original 
intention that CM/PT-CFAR algorithm was proposed. Four 
CM-CFAR detectors including CM/PT-CFAR, CM/MRC-
CFAR, CM/L-CFAR, and OSCM-CFAR are tested under 
uniform conditions to sufficiently present their performance 
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(a) 

 
(b) 

Fig. 8. Detection performance of various CFAR algorithms as 
number of targets persisting scans changes: (a) one 
target with SNR = 20 dB; (b) two targets with 
SNR = 15 dB. 

 

Hardware configuration 
CPU: Intel Xeon E5-2697 v4 

@2.30GHz 
RAM: 192GB available 

General parameters for 
four detectors 

Clutter map size: M = 16 
Desired PF = 1  10–6 
Fixed SNR:  = 20dB 

Parameter set of 
CM/PT-CFAR 

Weight coefficient:  = 0.125 
Power exponent: v = 0.2154 
Threshold factor: T = 8.875 

Parameter set of 
CM/MRC-CFAR 

Weight coefficient:α = 0.125 
Scaling factor: γ = 0.33 

Threshold factor: T = 17.503 
Target number tolerance: MT = 3 

Parameter set of 
CM/L-CFAR 

Censoring depth: r = 4 

Parameter set of 
OSCM-CFAR 

Cell number for updating: 9th 

Tab. 2.  Parameter sets of four CFAR detectors and the 
hardware configuration. 

comparison. Parameters of these detectors are redesigned 
and shown in Tab. 2. For CM/PT-CFAR, the design pro-
cess is completely consistent with that in Sec. 4.1. As for 

another three detectors, the respective parameters are ob-
tained according to [16], [17], and [19], which are not de-
scribed in detail. In addition, the hardware configuration 
information is given in Tab. 2. 

To compare the robustness of four detectors in com-
plex environments, we simulate three different detection 
cases: (a) two targets with same signal-to-clutter ratio 
(SCR) of 10 dB enter the clutter map at the same time and 
persist for 20 scans, detect any one target; (b) a strong 
target (SCR = 10 dB) and a weak target (SCR = 0 dB) enter 
the clutter map at the same time and persist for 20 scans, 
detect the weak target; (c) a strong target (SCR = 10 dB) 
enters and persists in the clutter map, 20 scans later a weak 
target enters the clutter map, detect the weak target. In each 
of the three simulation cases, the receiver operating charac-
teristic (ROC) curve is generated by Monte Carlo method 
to present the detection performance, as shown in Fig. 9. In 
addition, the time consumption is also recorded in Tab. 3. 
 

 Case (a) Case (b) Case (c) 

CM/PT-CFAR 238.266275s 241.568137s 240.157264s 

CM/MRC-CFAR 187.651723s 237.264711s 262.556831s 

CM/L-CFAR 241.368547s 253.573365s 247.338572s 

OSCM-CFAR 302.685421s 331.258293s 327.772805s 

Tab. 3.  Time consumption of simulations. 

 
(a) 

 
(b) 
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(c) 

Fig. 9. The receiver operating characteristic (ROC) curves of 
different detectors in the three cases: (a) two identical 
targets enter the map concurrently; (b) a strong target 
with a weak target enter the map concurrently; 
(c) a strong target with a weak target enter the map 
successively. 

For each detection case, the Monte Carlo experiment 
is implemented 100 000 times to calculate the false-alarm 
probability and detection probability, yielding the ROC 
curves. As shown in Fig. 9, CM/PT-CFAR achieves higher 
Pd than other CFAR detectors with the same PF, whatever 
the case. Note that from cases (a) to (c), the corresponding 
detection situations get worse gradually, the ROC curve of 
CM/PT-CFAR shows more robustness than those of other 
detectors. 

From Tab. 3 we can find that the time consumption of 
CM/PT-CFAR is relatively stable in three cases, while the 
time consumption of CM/MRC-CFAR has a significant 
fluctuation. This is because CM/PT-CFAR always takes 
partial elements of the radar dataset to update the detection 
threshold. In contrast, CM/MRC-CFAR’s update strategy is 
affected by the intensity of target cells, and might use ele-
ments of the entire dataset in certain cases, leading to 
an increased computation. Ranking information is required 
for OSCM-CFAR algorithm, which results in an added 
computation load and more time consumptions. 

4.4 Effect of Power Exponent v on CM/PT-
CFAR Performance 

For CM/PT-CFAR algorithm, the power exponent v is 
a key factor that adjusts the differences between echo 
intensity of the resolution cells. As the case shown in 
Sec. 4.1, it has a significant impact on the detection perfor-
mance. In this section, the performance of CM/PT-CFAR 
conditioned on v is investigated, and the detection probabil-
ity curves in two different situations are presented. The 
parameter set (M, PF, α) is same as that in Sec. 4.1. To 
facilitate the calculation, v is chosen from set (1/2, 1/3, 1/4, 
1/5, 1/6). 

As shown in Fig. 10, in a homogeneous environment, 
when v increases from 1/6 to 1/2, the detection perfor-
mance of CM/PT-CFAR improves significantly. Because 

the difference between the transformed target echo and 
clutter intensity increases with increasing power exponent v, 
it is more suitable to select a larger power exponent in the 
homogeneous environment. 

When two targets with different SNRs enter the clut-
ter map successively and persist in different resolution cells, 
the detection performance of CM/PT-CFAR is shown in 
Fig. 11. Assume that a weak target with half the SNR of the 
strong target enters the clutter map 10 scans later than the 
other one. On the curves of v = 1/2 to 1/4, the decrease of 
power exponent leads to the reduction of difference be-
tween the transformed targets echoes. Therefore, the mask-
ing effect of the strong target on the weak target is weak-
ened, and the detection performance to the weak target is 
improved. Note that on the curve of v = 1/4, CM/PT-CFAR 
achieves a robust detection performance when the SNR is 
lower than 19 dB. For SNR at a higher level, because the 
target echo intensity greatly differs from the clutter inten-
sity, CM/PT-CFAR will engender a negative effect on the 
resolution between the target and clutter. Therefore, the 
upper limit of detection probability is slightly reduced and 
maintains at approximately 94.9%. On the curves of  
v = 1/5 and v = 1/6, the detection performance is significantly 

 
Fig. 10. Detection performance of CM/PT-CFAR with 

different values of v in a homogeneous environment. 

 
Fig. 11. Detection performance of CM/PT-CFAR with 

different values of v in two persisting targets situation. 
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deteriorated. This is because the power transform with 
a power exponent that is too small greatly reduces the 
difference between the target echo and clutter intensity. 

5. Conclusions 
CM/PT-CFAR utilizes a power transform operation to 

increase the separability between the target cells and the 
clutter cells, so as to reduce the masking effect caused by 
persisting targets and improve the detection performance 
for targets in the clutter map, especially for weak targets. 
For CM/PT-CFAR algorithm, a third-order Taylor expan-
sion operation is used to approximate the closed-form of 
the detection probability. The detection performances of 
CM/PT-CFAR in different environments are investigated 
and compared with those of other CM-CFAR detectors. 
The results show that the proposed algorithm exhibits a low 
CFAR loss in a homogeneous clutter environment and 
achieves a robust detection performance for weak targets in 
the case of multiple persisting targets entering the radar 
scene. The power exponent has a significant impact on the 
detection performance of CM/PT-CFAR. A larger power 
exponent is more appropriate in the homogeneous environ-
ment, while the proper reduction of power exponent can 
increase the robustness of target detection in nonhomoge-
neous situations. It should be point out that the optimal 
power exponent is determined by enumeration method at 
present, which brings extra computation. Seeking for 
a better approach to the optimal parameter is authors’ next 
work. 
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Appendix A: 

The derivation of the pdf of random variable Z is 
essentially to solve the distribution of a random variable 
function. Variable X in the original radar data vector x has 
the pdf as follows: 
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The scale transformation operation is realized by 
mapping elements of vector x into vector y through a linear 
function Y = αX, where α is a positive constant. Obviously, 
variable Y has the same form of pdf as variable X: 
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Variable Z is the random variable function of variable 
Y, and it has Z = Yv, 0 < v  1. The distribution function 
FZ(z) of Z is obtained as follows: 
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and the pdf of Z is the derivative of FZ(z): 
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Appendix B: 

According to (14), the expression of 
 0Φ | , ,I N M Nt m l zt zc   can be derived as follows: 

 0Φ | , ,                            I N M Nt m l zt zc    
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Note that (B1) is a transcendental integral whose 
analytic expression cannot be accurately obtained. This is 
because the pdf as an integrand is turned into a non-
elementary function by the power transform. Here, a third-
order Taylor expansion operation is applied to (15) and 
(16), leading to the following expression: 

 

 
 

 
 

 
 

 
 

 

1 2 3 4

2 3 42 3 4

4

1 1 2 1 6 1

,

T

v v v v

v v v v

v

v

f z

z z z z

v v v v

o z

       

   





  
   

   
 

 (B2) 

           
1 2 3 4

4

2 3 42 6

v v v v
vv v v v

v
C

z z z z
f z o z

v v v v   

   
       

 
. (B3) 

Combined with (B2) and (B3), Equation (B1) can be 
rewritten in the following approximate form: 
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where  
    1 0 1  ,r v i M N m l v j        

    2 1 1 1r v u N l v w       . 

In addition, (a,b) denotes the incomplete gamma 
function of variables a and b. 

Using a similar approach, we can derive the 
approximate expression of  0Φ | , ,I N M Nt m l zt zc   as 

follows: 
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where 
    3 1  ,r v i N l v j      

    4 0 1 1 1 .r v u M N m l v w          

Substituting (B4) and (B5) into (17), the expression of 
qI(t) is obtained as follows: 
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The derivation of qH(t) is similar to that of qI(t). 
Note that since the clutter map is in a homogeneous 
environment, we set N = 0 and  = 0, thus obtaining the 
following expression: 
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where 

    '
1 1 1  ,r v w v N m      
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Substituting (B6), (B7), and (13) into (11), the 
expression of Pd is obtained as follows: 
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