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Abstract. This paper proposed a parametric modeling tech-
nique for the microwave structures with a customization mag-
nitude response by combining the RBF neural network and
pole-residue-based transfer functions. The Latin hypercube
sampling method is used for sampling given physical ranges
and obtaining the EM behaviors of the microwave structures.
A pole sorting process and a modified pole-residues split-
ting process are proposed to solve the pole sequence chaos
and order-changing problems which occur in the modeling
process. The pole-residues parameters after the above pre-
processing steps are used as the inputs of the RBF neural
network and the physical parameters are used as the outputs
of RBF network. Then, the known magnitude response of
the microwave structure are used as the prior knowledge to
guide obtaining the goal pole-residues values correspond-
ing to the giving magnitude response specification. After the
training process of the RBF model, the goal pole-residues
are input into the trained RBF network and the goal physical
parameters corresponding to the customization responses is
obtained. Finally, this model technique is illustrated by the
two examples of microwave structures.
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1. Introduction
The EM simulation is time-consuming and computa-

tionally expensive in the parameter sweep and tuning steps.
Parametric modeling of microwave components has been
a research hotspot to accelerate the design and tuning pro-
cess of microwave components and some progress had been
made in [1], [2]. In the parametric modeling of microwave
components, artificial neural networks (ANNs) working as
the useful tools in EM parametric modeling and design opti-
mization has been researched in [3–9].

The popular idea of parametric modeling of microwave
components is using the transfer function to fit the EM re-
sponses under different geometrical variations. The coeffi-
cients of the transfer function(TF) change as the geometrical
variations change, andANN is used to learn the non-linear re-
lationship between the transfer function coefficients and the
geometrical parameters. Some key technical challenges in
this model process have been researched recently. In [10], ra-
tional format of the transfer function proposes the sensitivity-
analysis-based neuro-TF model is used. Compared with the
original rational format neuro-TFmodel, the model proposed
in [10] achieves a high fitting accuracywith less training sam-
ples. In [11], the EM responses are classified into several
categories based on the TF orders, and the data classifica-
tion technology SVM (support vector machine) is used to
classify geometric variables and solve the problem that the
order of transfer function is not uniform. Reference [12]
analyses the advantages of using pole-residue-based transfer
functions compared with using the rational transfer function.
Besides, reference [12] proposes a novel pole-residue track-
ing technique to solve the coefficient discontinuity due to the
transfer function order changing and the EM examples sim-
ulation results prove the effective of this pole-residue track-
ing technique. Based on the [12], reference [13] proposed
a pole-residue-based electromagnetic (EM) sensitivity ana-
lysis neuro-transfer function technique which performs well
in the limited training data. Recently, based on the model-
order reduction (MOR) technique, reference [14] proposed
a novel poles matching technique through Pade via lanczos
and EM sensitivities, and the simulated application examples
proves that this technique could perform well in the large ge-
ometrical variations.

The mainstream way in the above EM behavior para-
metric modeling technique is that the ANN is the open model
with the geometrical parameters as the model input and the
coefficients as the model output.

In this paper, the pole-residues parameters are used as
the input of the RBF neural network and the physical pa-
rameters are used as the output of the RBF neural network.
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The equivalent circuit or the known magnitude response of
the microwave structure are used as the prior knowledge to
guide obtaining the goal pole-residues values. The goal pole-
residues is input into the trained RBF network and we can get
the goal physical parameters directly. Finally, the microwave
components are used as the examples to prove the feasibility
of the proposed technique.

2. Proposed Customization
Parametric Model
We present the parametric modeling technique in [12]

firstly before introducing our technique. For the given physi-
cal parameters ranges, a set of EM responses corresponding
to the different physical parameters are obtained by using sim-
ulation software. Then, the following transfer function (1) is
used to fit the above EM responses by using the vector fitting
technique proposed in [15].

𝐻 (𝑝, 𝑟, 𝑤) =
𝑁k∑︁
𝑖=1

(
𝑟𝑖

j𝑤 − 𝑝i
+

𝑟∗
𝑖

j𝑤 − 𝑝∗
𝑖

)
(1)

Since each complex pole (𝑝) or residue (𝑟) has a conjugate,
the poles which has negative imaginary part and its corre-
sponding residues are removed. The major idea of modeling
the EM behavior in [12] is using neural networks to learn
the relationship between the physical parameters and each
pair of pole and residue value. The physical parameters are
used as the input of the neural network and the pole-residues
are used as the output of the neural network. This modeling
method expresses that different pairs of poles and residues are
mutually independent and ignores the relationship between
the poles and residues. Actually, this mutually relationship
between the transfer function parameters (poles and residues)
could has a significant effect on the EM responses.

To give a more explicit picture, the 3D frequency selec-
tive surface (FSS) shown in Fig. 1 is used as the test subject
to explain the mutual effect between the poles and residues.
As a kind of spatial filter and secondary radiant antenna, the
FSS not only has the performance of the filter but also has
some characteristics of the antenna. The origin simulating
frequency range of the test object is 0.5GHz–7.5GHz. Ac-
cording to the [12], frequency scaling and shifting method
is an effective way to transfer the real poles into complex
poles, so the origin frequency range is scaled and shifted
to 0.9GHz–1.1GHz. After the above frequency scaling and
shifting process, we use the vector fitting technique to process
the EM behavior and obtain the pole-residue values.

Six randomparameter sets listed in Tab. 1 are used as the
testing physical parameter sets. The poles and residues val-
ues of the EM behavior corresponding to these six parameter
sets are obtained by using the vector fitting technique. Then,
a random error with the value of 0.1% is added to the poles

and residues values. For the six test geometrical samples, the
magnitude responses of the pole-residue-based model after
introducing the random error and its corresponding origin
EM responses are shown in Fig. 2.

Although the random errors of the pole-residues only
has 0.1%, this infinitesimal disturbance destroys the mutu-
ally relationship between the poles and residues as shown in
Fig. 2. In this paper, considering this mutual relationship
between the poles and residues, we propose a customization
parametric modeling based on the transfer function and the
RBF neural network. The detail process of the proposed
model is discussed in the following subsection.

Sample 𝑙1 𝑙2 𝑙3 𝑤1 𝑤2 𝑤3 𝑠

1 12.53 10.22 13.37 4.12 0.095 0.82 0.22
2 11.15 9.44 13.01 3.11 0.129 1.267 0.145
3 11.85 9.68 14.82 3.23 0.116 0.766 0.23
4 12.58 9.95 14.67 3.00 0.123 0.936 0.116
5 12.17 9.35 14.89 3.80 0.207 0.958 0.274
6 12.50 10.66 14.56 3.49 0.22 1.38 0.101

Tab. 1. Geometrical parameter sets of the testing object (unit:
mm).

Fig. 1. Structure of the 3D FSS. The seven geometrical param-
eters of the structure are [𝑙1, 𝑙2, 𝑙3, 𝑤1, 𝑤2, 𝑤3, 𝑠], with
𝑝𝑥 = 𝑝𝑦 = 10mm, ℎ = 0.762mm, substrate: FR-4.

(a) Sample 1 (b) Sample 2 (c) Sample 3

(d) Sample 4 (e) Sample 5 (f) Sample 6

Fig. 2. The original EM behavior of the test object and its cor-
responding pole-residue-based model output after intro-
ducing the random error.
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2.1 Sorting Process
In the proposed method, the Latin hypercube sampling

method is used to sample the physical parameters. Using the
Latin hypercube sampling method results in the imaginary
of different pole for microwave component has approximate
imaginary part, and the pole-sorting way in [12] based on the
value of the pole imaginary part may loses its effectiveness.
The pole distribution pattern of the 3D FSS is used to ex-
plain this phenomenon. 175 sets of physical parameters used
to simulate EM behavior are generated randomly within the
range listed in Tab. 3. The orders 𝑁k of the transfer function
for the simulated EM behaviors are from 8 to 9. The samples
size of 𝑁k = 8 is 90, and the samples size of 𝑁k = 9 is 85.
The poles distribution under different order 𝑁k are shown
in Fig. 3. We take poles distribution pattern for 𝑁k = 9 as
an example to explain this chaos of poles sequence. The
approximate distributions for each pole are marked in Fig. 3.
According to Fig. 3, the sequences of the imaginary parts in
P2 and P9, P6 and P7 occur chaos. In order to align the order
of poles, a new pole-sorting way is proposed.

The proposed pole-sortingway is similar to theK-means
clustering method. The pole-residues samples with the ef-
fective order 𝑁max are sorted firstly. For the samples with the
effective order 𝑁max, the sample closest to the center geomet-
rical point of the Latin hypercube sampling range is defined
as 𝑥0. The poles sequence of the 𝑥0 is sorted in an ascending
sequence according to the values of their complex modulus
value parts firstly, while the sequence of residues are sorted
with their corresponding poles. Assuming the flatten pole
matrix of the sample 𝑥0 is

F𝑥0 =

[
𝑝
𝑥0
r1 , 𝑝

𝑥0
i1 ; · · · ; 𝑝

𝑥0
r𝑛 , 𝑝

𝑥0
i𝑛 ; · · · ; 𝑝

𝑥0
r𝑁max , 𝑝

𝑥0
i𝑁max

]
(2)

where 𝑛 is the index of the poles, 𝑝𝑥0
r𝑛 is the real part of the

𝑛th pole in 𝑥0 and 𝑝0i𝑛 the imaginary part of the 𝑛th pole in
𝑥0. The flatten pole matrix of the 𝑥0 is defined as the center
of clustering and this cluster center contains 𝑁max poles.

The sample 𝑥1 is any one of the samples with the effec-
tive order of 𝑁max. The out-of-order flatten poles matrix of 𝑥1
is F𝑥1 = [𝑝𝑥1

r1 , 𝑝
𝑥1
i1 ; · · · ; 𝑝

𝑥1
r𝑁1 , 𝑝

𝑥1
i𝑁1

]. We take out the param-
eter data of the𝑚th pole from F1, i.e., F1 (𝑚, :) = [𝑝𝑥1

r𝑚, 𝑝
𝑥1
i𝑚].

The next step is to find this 𝑚th pole corresponds to which
pole in the center of clustering. The indicator to measure the
difference between the two poles is defined as:

𝐺𝑚 (𝑛) = | | (F𝑥0 (𝑛, :) − F𝑥1 (𝑚, :)) | |2 (3)

where F𝑥0 (𝑛, :) is the parameter of 𝑛th pole in 𝑥0.
The correct index of the 𝑚th pole in the sample 𝑥1 is
𝑀 = arg min

𝑛∈1,2, · · · ,𝑁max
𝐺𝑚 (𝑛). The above process is per-

formed iteratively for 𝑁max times until the indexes of 𝑁 poles
in sample 𝑥1 are determined. In the above sorting process,
two poles of the sample 𝑥1 may been divided into a same
index, as shown in Fig. 4. In the samples with same order,

(a) 𝑁k = 8 (b) 𝑁k = 9

Fig. 3. The poles distribution patterns.

Fig. 4. Disorder phenomenon in pole sorting process.

the correct pole correspondence between samples is one-
to-one. In this case, the 𝑏th pole in sample 𝑥0 misses the
corresponding pole in F𝑥0 , and 𝑎th pole in F𝑥0 has two corre-
sponding pole in F𝑥1 . In this situation, the smaller one of the
𝐺𝑐 (𝑎) and 𝐺𝑐 (𝑏) is assigned to the index 𝑝𝑥0

𝑎 and the other
pole is assigned to the pole 𝑝

𝑥0
𝑏
. After the above pole se-

quence sorting process, the residues sequence is sorted with
their corresponding poles. The sample 𝑥2 is another samples
with the effective order 𝑁max and the pole-residue sequence
of the sample 𝑥2 is sorted through above steps similarly. The
pole sequence of the samples with the effective order 𝑁max−1
are sorted similarly.

2.2 Modified Pole-Residues Splitting Process
Reference [12] proposes that the order-changing phe-

nomenon is caused by that a new pole splitting from the one
of the primary poles for the geometrical parameters chang-
ing. Detail discussion of this pole splitting phenomenon is
discussed in [12]. To prevent repetition, it is not described in
this paper. In [12], a novel pole-residue tracking technique
for order-changing problem in the case of DOE sampling
method is proposed. The Pole-Residue distribution pattern
of the Latin hypercube sampling method is different with the
one of theDOE samplingmethod. Based on the Pole-Residue
splitting technique in the [12], a modified Pole-Residue split-
ting technique for the Latin hypercube sampling method is
proposed in this paper.

We split the samples with 𝑁k = 𝑁min firstly. Let us
pick a sample (𝑥k) from 𝑁k = 𝑁min randomly. This sample
has two parameters including physical parameters and pole
parameters (𝐹k). Slight changes in physical parameters be-
tween samples lead to slight changes in pole parameters, and
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we use this relationship to confirm which pole of 𝑥k should
be selected to be spilt. From the samples with effective or-
der of 𝑁min + 1, we can easily find the sample 𝑥L which has
the minimum Euclidean distance of physical parameter to 𝑥k.
We split the poles of the 𝑥k separately, and 𝑁min times of
trials are performed. In the 𝑚th trial, the 𝑚th pole of the 𝑥k
is select to be split and the flatten pole matrix of sample 𝑥k
after split process is

F𝑥k =



𝑝
𝑥k
r1 𝑝

𝑥k
i1

...

𝑝
𝑥k
r𝑚 𝑝

𝑥k
i𝑚

𝑝
𝑥k
r𝑚 𝑝

𝑥k
i𝑚

...

𝑝
𝑥k
r𝑁min 𝑝

𝑥k
i𝑁min


. (4)

The flatten poles matrix of sample 𝑥L is

F𝑥L =


𝑝
𝑥L
r1 𝑝

𝑥L
i1

...

𝑝
𝑥L
r(𝑁min+1) 𝑝

𝑥L
i(𝑁min+1)

 . (5)

The expression to measure the pole-residue difference
between the sample 𝑥k and sample 𝑥L is defined as follows:

𝐷𝑚 =

𝑁min+1,2∑︁
𝑖=1, 𝑗=1

(F𝑥k − F𝑥L )2𝑖, 𝑗 . (6)

The above process is performed for 𝑁min times. Accord-
ing to the [12], the poles and residue should keep continuous
for the slight variation of the geometrical parameters chang-
ing and the correct pole splitting way should result in the
minimum pole-residue difference. Therefore, the 𝑀th pole
corresponding to the minimum value of 𝐷𝑚 is used to be the
splitting pole, and

𝑀 = arg min
𝑚=1, · · · ,𝑁min

(𝐷𝑚). (7)

After finishing this process of all the samples with
𝑁 = 𝑁min , the minimum order of the entire samples in-
creases to 𝑁min + 1. The pole-residue splitting process per-
forms iteratively until the minimum effective order is equal
to the maximum effective order 𝑁max. All the samples would
have the same orders 𝑁max after the above process.

2.3 RBF Neural Network Training Process
After above process, the neural network model to learn

the relationship between the poles-residues vector and the
physical parameters is discussed in this section. Before con-
structing the neural network to fit this relationship, let us
discuss how to obtain the goal pole-residues parameters cor-
responding to the customization response.

For the microwave structure with the known equivalent
circuit model or norm magnitude response liking the gener-
alized Chebyshev equal-ripple response, the goal magnitude
response can been obtained through the equivalent circuit

simulation or normal magnitude response equation. Based
on the goal magnitude response, the simulate anneal (SA)
optimization algorithm is used to obtain the pole-residues
values corresponding to the goal magnitude response. We
first transform the original simulated pole-residues data after
the above pole sorting and splitting process into a vector and
the flatten poles-residues vector is:

T𝑘 =

[
𝑝𝑘r1, 𝑝

𝑘
i1, · · · , 𝑝

𝑘
r𝑁max , 𝑝

𝑘
i𝑁max ,

𝑟𝑘𝑟1, 𝑟
𝑘
𝑖1, · · · , 𝑟

𝑘
𝑟𝑁max

, 𝑟𝑘𝑖𝑁max

]
(8)

where 𝑘 is the index of the samples. These flatten vectors are
chosen as the start pole-residues parameters of the SA op-
timize process to obtain the goal pole-residues parameters,
and the loss function is defined as:

[𝑝goal, 𝑟goal] = argmin
𝑤max∑︁
𝑤min

(
abs(𝐻 (𝑝, 𝑟, 𝑤) − 𝑆goal (𝑤))

)2
,

𝐻 (𝑝, 𝑟, 𝑤) =
2∗𝑁max∑︁
1

𝑟𝑖

j𝑤 − 𝑝i

(9)

where 𝑆goal is the goal magnitude response. After above
processes, the goal pole-residues vector is obtained. Be-
fore using the processed pole-residue vector T𝑘 as the neural
network input, we notice that some poles of the samples are
mixed. For example, the P5 and P6 shown in Fig. 3 splits from
a same pole. After the pole splitting process, the distributions
of the P5 and P6 have a same region. This region mixture
of poles results in the difficulty to figure out the correct se-
quence of P5 and P6 in the goal pole-residue vector. To avoid
this disorder phenomenon of goal pole-residues vector, the
parameters of the mixture poles (𝑟mixture, 𝑝mixture) and corre-
sponding residues are transfer into the parameters in rational
transfer function format through the following equation:

𝑁s∑
𝑖=1

𝑎𝑖 (𝑠)𝑖

1 +
2∗𝑁s∑
𝑖=1

𝑏𝑖 (𝑠)𝑖
=

𝑁s∑︁
1

𝑟mixture
𝑖

𝑠 − 𝑝mixturei
(10)

where 𝑠 = j𝑤 and 𝑁s is the number of the mixture poles. The
modified pole-residues vector of 𝑘th sample is

T𝑘 =
[
𝑝𝑘r1, 𝑝

𝑘
i1, 𝑟

𝑘
r1, 𝑟

𝑘
i1, · · · , 𝑟

𝑘
r𝑁max−𝑁s , 𝑟

𝑘
i𝑁max−𝑁s ,

𝑎r1, 𝑎i1, 𝑏r1, 𝑏𝑖1, · · · , 𝑏r𝑁s , 𝑏i𝑁s
]
. (11)

Then, the RBF networks is used as the fitting tool with
the goal pole-residues coefficients as the model input and the
geometrical parameters as the model output.
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The RBF networks use gaussian kernel function as the
activation functions, while the BP networks use the sig-
moid/ReLu/tanh function as the activation functions. Com-
pared with the BP neutral network, the RBF network has fast
convergence rate and the better generalization ability. Be-
sides, Poggio and Girosi has proven that the RBF network is
the best approximation of a continuous function.

The structure of the RBF neural network used in our
paper is shown in Fig. 5. The 𝑥 is the input of the neural net-
work and 𝑦 is the output of the neural network. 𝑅1, · · · , 𝑅h
represents the hidden layers. The activation function we used
is the Gaussian function.

The input of the RBF neutral network is the modified
pole-residues vector T𝑘 shown in (11) and the desire output
of the RBF neutral network is the corresponding physical
parameters. After the neural network training process, the
goal pole-residue vector is input to the trained RBF neural
network and the goal physical parameter is obtained.

The flowchart of the overall parametric model process
of the microwave structure with customization magnitude
response is shown in Fig. 6.

Fig. 5. The structure of the RBF neural network.

Fig. 6. The flowchart of the overall modeling process.

3. Experimental Verification
Examples

3.1 Customization Modeling of a Three-Pole
H-plane Filter

The waveguide filter shown in Fig. 7 with a third-order
Chebyshev response is used as the example to validate the
above modeling technique. The CST Studio Suite 2019 soft-
ware is used to perform the full-wave simulation and generate
the dataset for modeling process. The origin simulating fre-
quency range of the test object is 11GHz–14GHz.

150 EM behavior samples are generated by using the
Latin hypercube samplingmethodwith the parameters ranges
as defined in Tab. 2. The minimum orders 𝑁k of transfer
functions stay unchanged at order five for all samples. The
above dataset is randomly divided into two parts: 80 samples
as a training set and 70 samples as a test set. The node
number of the hidden layer of the RBF is set as 30.

After the training process, the average error of the test-
ing samples is 1.4%. The difference between the proposed
model output and the true value of the test set is shown in
Fig. 8. According to the Fig. 8, the output of our proposed
model is consistent well with the actual data. Moreover, the
DOE method is compared with the Latin hypercube sam-
pling method here. The geometrical variable steps of the
DOE method are listed in Tab. 2, and the samples obtained
by the Latin hypercube sampling method is used as the test
set. After the training process, the testing errors of the DOE
method is 9.5%. Thus, the Latin hypercube sampling method
is better than the DOE method for the proposed modeling
method.

Geometrical variables 𝑎 𝑙1 𝑙2 𝑡 𝑤1 𝑤2

Range Min 17 12.5 13.5 1.5 8.5 5.15
Max 21 14.5 16 2.5 9.5 6.15

DOE method step 0.29 0.14 0.18 0.06 0.07 0.07

Tab. 2. Definition of training and testing data (unit: mm).

Fig. 7. Structure of the three-pole H-plane filter for EM sim-
ulation and parametric modeling. The six geometrical
parameters of the filter are 𝑥 = [𝑎, 𝑙1, 𝑙2, 𝑡 , 𝑤1, 𝑤2 ],
with 𝑙0 = 13.7mm.
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(a) Parameter 𝑎

(b) Parameter 𝑙1

(c) Parameter 𝑙2

(d) Parameter 𝑡

(e) Parameter 𝑤1

Fig. 8. The comparison between the model output and the true
value of the physical parameters.

(a) Specification 1 (b) Specification 2

(c) Specification 3

Fig. 9. The calculated goal magnitude responses and the
full-wave simulated response corresponding to
the specifications.

Three norm Chebyshev magnitude responses shown in
Fig. 9 are used as the testing dataset to validate the effec-
tiveness of the customization modeling. The goal magnitude
responses are obtained by the Filter Designer 3D kit in the
CST software, and the specification settings of the three goal
reflection coefficients are:

Specification 1:
FreqRange = 11.97GHz–12.53GHz, 𝑅𝐿 = −10 dB;

Specification 2:
FreqRange = 12.44GHz–13.02GHz, 𝑅𝐿 = −10 dB;

Specification 3:
FreqRange = 12.79GHz–13.39GHz, 𝑅𝐿 = −15 dB;

where 𝑅𝐿 represents return loss. The physical parameters
obtained by the proposed model corresponding to the above
specifications are

Specification 1: 𝑎 = 20.2764, 𝑙1 = 12.754, 𝑙2 = 14.0912,
𝑡 = 1.4855, 𝑤1 = 8.9672, 𝑤2 = 6.034;

Specification 2: 𝑎 = 17.897, 𝑙1 = 12.832, 𝑙2 = 14.1708,
𝑡 = 1.6340, 𝑤1 = 8.7945, 𝑤2 = 6.086;

Specification 3: 𝑎 = 17.1062, 𝑙1 = 12.4069, 𝑙2 = 13.5834,
𝑡 = 1.6589, 𝑤1 = 9.0992, 𝑤2 = 6.483.

By using the above physical parameter sets as the initial
values, the tuning process is used to obtain accurate physical
parameters corresponding to the goal magnitude specifica-
tions. After several minute tuning process, the exact physical
parameters corresponding to the three goal magnitude spec-
ifications are

Specification 1: 𝑎 = 20.1932, 𝑙1 = 12.896, 𝑙2 = 13.9285,
𝑡 = 1.4067, 𝑤1 = 8.8956, 𝑤2 = 6.1501;

Specification 2: 𝑎 = 17.7603, 𝑙1 = 12.9339, 𝑙2 = 14.0273,
𝑡 = 1.54426, 𝑤1 = 8.69834, 𝑤2 = 6.2;

Specification 3: 𝑎 = 17.1344, 𝑙1 = 12.2755, 𝑙2 = 13.5,
𝑡 = 1.5641, 𝑤1 = 8.94045, 𝑤2 = 6.38053.

The full-wave simulation results corresponding to the above
the three goal physical parameters are show in Fig. 9. The
results of the model proposed in [12] are shown in Fig. 9
as well.

The model proposed in [12] is a forward model, and the
parameters of pole-residues transfer function has the strong
sensitivity for the geometrical variable changing [1]. There-
fore, the robustness of the forward model is not good in
parametric modeling of microwave structures. For our pro-
posed model, the three physical parameters corresponding
to the three specifications obtain by the proposed model are
consistent well with the exact three physical parameters ob-
tained by the full-wave simulation. Although the goal values
of some parameters including 𝑤2 and 𝑡 are out of the scope
listed in Tab. 2, the parameters of the model output are ba-
sically nearby its exact physical parameters and this proves
the proper generalization ability of our proposed parametric
modeling technique.
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3.2 Customization Modeling of the 3D
Frequency Selective Surface
The 3D frequency selective surface (FSS) shown in

Fig. 1 with wide geometrical ranges is used as the sec-
ond example to validate the proposed parametrical modeling
method. The equivalent circuit structure of the 3D FSS is
shown in Fig. 10.

175 sets of physical parameters used to simulate EM
behavior are generated randomly within the range listed in
Tab. 3. Based on the EM behaviors, the pole-residues vector
dataset is obtained by using the proposed model procedure.
Then, the whole dataset is randomly divided into two parts:
85 samples as a training set and 65 samples as a test set. The
node number of the hidden layer of the RBF is set as 35.
After the training process, the average error of the testing
samples is 4.8%.

Based on the equivalent circuit simulation, three goal
magnitudes shown in Fig. 11 are obtained and used as the test
objects. The specifications and the equivalent circuit param-
eters corresponding to the three goal magnitudes are listed
in Tab. 4.

Based on the equivalent circuit magnitude response
shown in Fig. 11(a), the physical parameters obtained by
the proposed model are 𝑙1 = 12.5999, 𝑙2 = 9.73254,
𝑙3 = 14.2472, 𝑤1 = 3.80239, 𝑤2 = 0.286227, 𝑤3 = 1.03839,
𝑠 = 0.0791056 and the full-wave simulation result corre-
sponding to this physical parameters is shown in Fig. 11(a).
As we can seen, the magnitude response corresponding to
the model output physical parameters is basically consistent
with the goal magnitude response as shown in Fig. 11(a).
The proposed model can provide a reliable output in spite of
giving a rough goal magnitude response.

The physical parameter sets corresponding to the two
other goal magnitude response obtained by the proposed
model are 𝑙1 = 12.0872, 𝑙2 = 9.3691, 𝑙3 = 13.6867,
𝑤1 = 3.5817, 𝑤2 = 0.2539, 𝑤3 = 1.326, 𝑠 = 0.1124 and
𝑙1 = 13.8617, 𝑙2 = 10.9856, 𝑙3 = 15.6605, 𝑤1 = 3.80047,
𝑤2 = 0.392006, 𝑤3 = 1.432, 𝑠 = 0.060 respectively. These
two parameters sets are used as the initial points of the tuning
process and the exact physical parameters corresponding to
the Specification 2 and Specification 3 are obtained after the
full-wave tuning process. After the above process, the ex-
act physical parameters corresponding to the Specification 2
and Specification 3 are 𝑙1 = 12.01, 𝑙2 = 9.30, 𝑙3 = 13.988,
𝑤1 = 3.749,𝑤2 = 0.2401,𝑤3 = 1.398, 𝑠 = 0.1 and 𝑙1 = 14.2,
𝑙2 = 11.1174, 𝑙3 = 15.8458, 𝑤1 = 4.08633, 𝑤2 = 0.395847,
𝑤3 = 1.55, 𝑠 = 0.065 respectively, and the full-wave sim-
ulation results corresponding to these two exact parameter
sets are shown in Fig. 11(b) and Fig. 11(c). The model out-
put physical parameters corresponding the Specification 2
agree well with the exact physical parameters obtained by the
full-wave simulation. For the Specification 3, the exact goal
physical parameters beyond the range listed in Tab. 3 greatly,
but the proposed model could provides a reliable initial point
which is nearby the goal parameters.

Fig. 10. The equivalent circuit structure corresponding to the
second example.

(a) Specification 1 (b) Specification 2

(c) Specification 3

Fig. 11. The goal magnitude responses and the full-wave simu-
lation response corresponding to the specifications.

Geometrical variables 𝑙1 𝑙2 𝑙3 𝑤1 𝑤2 𝑤3 𝑠

Range Min 10.5 9 12.5 3 0.08 0.5 0.08
Max 13 11 15 4.5 0.38 1.5 0.28

Tab. 3. Definition of training and testing data for the second
example (unit:mm).

Case 1 2 3

Specification 𝐵𝑊 [GHz] 2.09–7.10 2.36–7.05 1.76–6.35
𝑅𝐿 [dB] –13 –15 –15

EQC
parameters

𝑍1 [Ω] 197.8 213.4 241.2
𝑍e [Ω] 165.5 213.4 258.4
𝑍o [Ω] 44.1 44.5 62.8
𝑍3 [Ω] 110.6 119.1 152.898
𝑙1 [mm] 11.15 11.0 12.8
𝑙2 [mm] 11.2 10.95 12.7
𝑙3 [mm] 11.4 10.97 12.5

Fig. 4. The three goal magnitude response specifications and its
corresponding equivalent circuit (EQC) parameters.

4. Conclusion
In this paper, a novel parametricmodeling ofmicrowave

structure with customization responses by combining RBF
neural network and Pole-Residue-Based transfer functions is
proposed. For the design specification of microwave struc-
ture, our proposedmodel uses the insensitivity of the pole and
residues to the geometrical variables and directly obtains the
satisfying values of geometrical variables. The pole-resides
vector is used as the input of the RBF network and the corre-
sponding physical parameters values are used as the output
of the network. The goal pole-residues corresponding to the
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customization responses are obtained based on the the SA
algorithm. After the training process of the RBF network,
the goal pole-residues vector is inputted into the trained RBF
network and the goal physical parameters is obtained directly.
Two microwave structures in the cases of the narrower and
wider sampling parameter ranges are used as the examples to
prove the feasibility of the proposed model. The experimen-
tal verification results show that our proposedmodel provides
a way to determine the target physical parameters quickly for
the microwave structure with customization responses.
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