
RADIOENGINEERING, VOL. 31, NO. 2, JUNE 2022 231

Object Tracking Based Surgical Incision Region Encoding
using Scalable High Efficiency Video Coding for Surgical

Telementoring Applications
Karthik Sairam SANAGAVARAPU, Muralidhar PULLAKANDAM

Dept. of ECE, NIT Warangal, India

karthik_sai_ram@yahoo.com, pmurali@nitw.ac.in

Submitted September 30, 2021 / Accepted April 19, 2022

Abstract. Surgical telementoring is an advanced tele-
medicine concept where the expert surgeon guides the onsite
novice present at the remote location. The efficient tele-
mentoring system requires the wireless transmission of high-
quality surgical video with less bitrate in less time. The bit
rate of the surgical video can be decreased by segmenting
the surgical incision region and removing the background
region. The High Efficiency Video Coding (HEVC) standard
has provided promising results for surgical telementoring
applications. But the Rate-Distortion Optimization (RDO)
search process in HEVC increases the complexity that in
turn increases the encoding time. We propose the method
which involves the segmentation of the surgical incision re-
gion using the Kernelized Correlation Filter (KCF) object
tracking technique. The segmented region is encoded by the
complexity-efficient Scalable HEVC (SHVC) to meet the res-
olution of an end-user device. The complexity of SHVC is
decreased by using the Convolutional Neural Network (CNN)
and Long- and Short- Term Memory (LSTM) to predict the
Coding Tree Unit (CTU) structure. The results show that
the proposed method decreases the bitrate significantly for
segmented surgical video sequences without degradation in
Peak Signal-to-Noise Ratio (PSNR). These results are ob-
tained for the surgical video sequences with slow-moving
objects. Furthermore, the CNN+LSTM approach reduces
the encoding time of standard SHVC by 51% with negligible
Rate-Distortion (RD) performance loss.

Keywords
Surgical telementoring, object tracking, KCF tracker,
region of interest, High Efficiency Video Coding

1. Introduction
Surgical telementoring has acquired heaps of interest,

particularly in rural areas. The problems that arise during the
surgical procedures are complex for the inexperienced sur-
geon to handle. Telementoring is the process of transferring

the knowledge from the experienced surgeon to the novice
who is present at a distant location. However, the limited
bandwidth resources present in the remote areas make the
telementoring system difficult to implement. The efficient
telementoring system requires transmission of Region of In-
terest (ROI) of videowith high quality in a limited bandwidth.
In this paper, the surgical incision region is referred to as
ROI. The High Efficiency Video Coding (HEVC) [1], [2]
helps to compress the video with 50% less bitrate compared
to the H.264 Advanced Video Coding (AVC) [3], [4] stan-
dardwithout loss in video quality [5]. Approximately 5Mbps
bandwidth is required to transmit the high-quality videos for
telementoring applications which is very difficult to achieve
in disaster-affected areas. The Scalable extension of HEVC
(SHVC) [6], [7] can be used in such a case that provides
highly scalable coding efficiency and allows the transmis-
sion of a single video with different resolutions in a sin-
gle bitstream. However, the complexity of SHVC makes
it unsuitable for real-time applications. The complexity is
increased mainly due to the Rate-Distortion Optimization
(RDO) search process.

The RDO search process is shown in Fig. 1. In SHVC,
each frame is divided into Coding Tree Units (CTUs). The
CTU can be recursively divided into Coding Units (CUs) till
it reaches the smallest size. The maximum size of the CU
is 64×64, and the smallest size is 8×8. During the RDO
process, each parent CU is subdivided into four child CUs
based on the condition in (1).

split =
{
1, if 𝐽𝑈 ≥ ∑4

𝑖=1 𝐽
𝑈𝑖

0, otherwise (1)

where 𝑈 is the parent CU, 𝑈𝑖 represents the child CUs and
𝑖 ∈ {1, 2, 3, 4}. If split = 1, the parent CU is divided into four
child CUs which are of the same size. Otherwise, the parent
CU remains the same. The RDO search process involves the
Rate-Distortion (RD) cost 𝐽 calculation starting at the top and
successively moving towards the RDO tree’s bottom. How-
ever, the checking process using (1) is performed in reverse
order (bottom to top). Total 85 CUs need to be checked in
each CTU, which significantly increases the encoding time.
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Fig. 1. Conventional RDO search process to determine
the CU size.

Fig. 2. Surgical video frame with surgical incision and
background region.

SHVC consists of one Base Layer (BL) [8] and more
than one Enhancement Layer (EL). The BL acts as a single
layer HEVC with the lowest quality. The EL is coded using
the reference of lower layers and provides better quality com-
pared to BL. SHVCmakes use of Inter-Layer Texture Predic-
tion (ILTP) [9] and Inter-Layer Motion Prediction (ILMP) to
exploit the correlation between the motion vector and pixel
values of non-identical layers.

The surgical video frame is shown in Fig. 2 consists
of the background region and the surgical incision region.
The surgical telementoring system requires the transmission
of the surgical incision region with high quality. Several
segmentation techniques can be used to identify the incision
region in the video. The Mean Shift (MST) [10] algorithm is
used in themedical image field to identify the surgical region.
However, the machine learning techniques are incapable of
processing the large image data, which results in the seg-
mentation of the ROI with less accuracy. The Convolutional
Neural Network (CNN) helps segment the ROI in computer
vision applications; however, it increases the computational
complexity.

The above techniques help to encode the ROI with high
quality and the background region with low quality. As the
background region does not contain any valuable informa-
tion, the pixel values of the background region can be made
zeros, resulting in the decrease of bitrate. The ROI region
in the surgical videos moves slowly, and less abrupt changes
can be observed throughout the video sequence. Hence, the
object tracking technique can be used to track and extract the
ROI in the surgical video.

The main contributions of this paper are as follows:

1. The Kernelized Correlation Filter (KCF) object track-
ing technique is used to track the ROI in the surgical
video sequence.

2. A large database with 397 video sequences is created
to train the CNN.

3. The Long- and Short-Term Memory (LSTM) network
in combination with CNN is designed to reduce the
complexity of SHVC.

The proposed method extracts the ROI from the surgi-
cal video frames using the KCF object tracker and encodes
the ROI using SHVC with less complexity using the deep
learning CNN+LSTM technique. The rest of the paper is pre-
sented as follows. Section 2 explains the background work,
and Section 3 discusses the KCF object tracking technique to
extract the ROI and deep CNN+LSTM network to reduce the
complexity of SHVC. Section 4 analyzes the experimental
results, and Section 5 concludes the work.

2. Background Work
The surgical telementoring system requires the surgi-

cal incision region to be encoded with high quality. Several
authors suggested different algorithms to code the Region of
Interest (ROI) in a video with high quality and the remain-
ing region with low quality. The authors in [11] extracted
the facial features using MST algorithm and encoded them
with high quality. The background region is encoded in
lower quality. In [12], the authors used the 3D morphologi-
cal technique to segment the ROI region in colon computed
tomography (CT). The researchers in [13] used the H.264
encoder to encode the segmented part of echocardiogram
and CT video sequences. The segmentation is done using
the image processing techniques like squared gradient, Sobel
operators, and thresholding techniques. The Nearest Neigh-
bor (NN) classifier is used in [14] to extract the ROI region in
ultrasound videos. The results show that the bitrate is reduced
by an average of 13.52% at the cost of high computational
complexity.

In [15], a new method is proposed that allows the man-
ual selection of the desired region in the video and encodes
the selected area with high quality for surgical telementor-
ing application. In [16], the authors designed a method that
adaptively sets the ROI location and resolution based on the
predefined settings. The desired ROI location is obtained
by removing the background region, and then the inter-layer
prediction operation is performed on the selected ROI region.
This method saves the bitrate by 33.48%. The kernel-based
MST method is used in [17] that requires the user interaction
to select the desired ROI and the related resolution. The
authors encode the selected ROI using the Huffman encod-
ing technique. The authors in [18] use the non-parametric
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segmentation to detect the surgical incision region by con-
sidering the physiological behavior of the visual system and
encodes the ROI with high quality. The authors in [19] de-
veloped a method for surgical telementoring application that
performs image compression, image denoising, and image
segmentation operations on computed tomography images
for the diagnosis of congenital heart disease. The researchers
in [20] reports the augmented reality system that uses the
3D tracking module and the Microsoft HoloLens for train-
ing and the telementoring surgery. The authors in [21] de-
veloped the deep CNN, which is SegNet that uses 26 con-
volutional layers for image segmentation. This method is
computationally expensive.

The authors in [22] use the probability of the human
attention over the frames to allocate coding bits using the
visual saliency map scheme. The experimental findings in-
dicate 43% saving in encoding time and 23% reduction in bi-
trate. In [23], the smartphones are used to capture the wound
image. The wound part is segmented using the mean shift
algorithm, and the red-yellow-black color model analyzes the
wound. Similarly, the authors in [24], and [25] use the mean
shift algorithm to detect the boundary of the foot injury and
for the classification of skin tissue. In [26], the authors use
the CNN approach to segment and analyze the wound region.
The researchers in [27] proposed the CNN method that uses
the convolutions for the extraction of multiple-level features
for Diabetic Foot Ulcer (DFU) classification.

The CNN technique efficiently separates the surgical
incision region from the background region. However, high
computational complexity makes them less suitable for real-
time applications. The background region doesn’t contain
vital information. The encoding of the background region
increases the bit rate. Some of the authors use the HEVC
encoder to encode the surgical videos with high quality. But
the RDO search process in the HEVC increases the complex-
ity that in turn increases the encoding time. We proposed
the efficient surgical telementoring system that encodes the
ROI with high quality in less time using (CNN+LSTM) for
real-time performance.

Fig. 3. Framework of the proposed method for surgical
telementoring application.

3. Proposed Method
In this section, we first analyze the correlation between

the frames for surgical and general video sequences. Then,
the object tracking using the KCF tracker is used to detect
the surgical incision region. Finally, the CNN and LSTM are
trained using the database (refer to Sec. 4) to encode the sur-
gical incision region with less complexity. The framework
of the proposed method is shown in Fig. 3. The operation
of each block in the proposed method is explained in the
following subsections.

3.1 Analysis of Correlation between Frames
This section analyzes the correlation between the frames

for the surgical and general video sequences. The surgical
video sequence "NuGrip Arthroplasty" and the general video
sequence "BasketballPass" with frames at a different distance
are shown in Fig. 5 and Fig. 4. The frames in the surgical
video show that the surgical incision regionmovement is very
small throughout the sequence.

(a) Frame 1 (b) Frame 40

(c) Frame 200

Fig. 4. Example frames of the fast motion Basketball video
sequence.

(a) Frame 1 (b) Frame 40

(c) Frame 200

Fig. 5. Example frames of the surgical NuGrip Arthroplasty
video sequence.
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(a) Correlation coefficient

(b) Mean squared error

Fig. 6. Correlation andmean squared error curves of general and
surgical video sequence at different distance between the
frames. Note that the BasketballPass represents the gen-
eral video sequence and NuGrip Arthroplasty represents
the surgical video sequence.

The conventional object tracking technique is sufficient
to track and extract the surgical region. However, the objects
in the general video sequence move rapidly, which requires
deep learning segmentation techniques to detect the bound-
ary of ROI. The deep learning techniques segment the ROI
more accurately at the cost of high computational complexity.
Figure 6 shows the correlation coefficient and Mean Squared
Error (MSE) curves of BasketballPass and NuGrip Arthro-
plasty video sequences. The figures show that the correlation
coefficient is high for NuGrip Arthroplasty compared to the
BasketballPass sequence. The high correlation coefficient
is observed due to the small movement of ROI in a surgi-
cal video sequence with the background region remaining
almost constant. The correlation coefficient and MSE are
inversely proportional to each other. The NUGrip Artho-
plasty produces less MSE due to the high similarity between
the frames.

3.2 ROI Tracking using KCF Tracker
The analysis in Sec. 3.1 shows that the object move-

ment is very small, and the background region remains al-
most constant throughout the sequence. Hence, the object
tracking techniques can be used to track the ROI effectively
with less computational complexity. We use the Kernelized
Correlation Filter (KCF) tracker to track the ROI throughout
the video sequence. The KCF tracker has the advantage of
high efficiency.

The flowchart of the object tracking algorithm using
the KCF tracker shown in Fig. 7 is discussed in the following
steps.

Step 1: Take the surgical video as an input.

Step 2: Read the first frame and select the ROI using the
rectangular bounding box as shown in Fig. 2.

Step 3: Initialize the KCF tracker.

Step 4: Read the next frame of the surgical video
sequence.

Step 5: Create themaskwith the size of the surgical frame
and make all the pixel values of the mask zero.

Step 6: Check whether the ROI is tracked by the KCF
tracker using the bounding box coordinates. If tracked,
go to Step 7. Otherwise, treat the mask as output and
go to Step 9.

Step 7: Identify the tracked bounding box coordinates and
change the pixel values in the bounding box coordi-
nates of the mask to 255.

Step 8: Find the output by applying AND operation be-
tween mask and frame.

Step 9: Write the output to the video.

Step 10: If the frame count reaches the last frame of the
surgical video sequence, Stop the operation. Other-
wise, move to Step 4.

KCF Tracker
We base our methodology on KCF [28], which displays

amazingly real-time performance and accuracy comparative
with the new top-performing trackers. The purpose of the
correlation filter is to estimate an optimal filter to produce the
desired response for the image input. The desired response is
of Gaussian shape at the ROI location. The samples for train-
ing are obtained by cyclically shifting the whole area around
the object. During testing, the position where the maximum
filter response is obtained represents the target location. The
KCF tracker has the advantage of high computational effi-
ciency, obtained by utilizing a Discrete Fourier Transform
(DFT). The "kernel trick" is also deployed to improve the
performance of the KCF tracker further. The KCF tracker is
summarized below.

Consider the cyclic shift matrix X with the dimen-
sion of 𝑀 × 𝑁 . 𝑀 and 𝑁 represent the total number
of rows and columns of the matrix. Each row represents
the one-dimensional data. Let the data in the first row is
x = [𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛−1, 𝑥𝑛] and the data in the remaining
rows represents the cyclic shifted data of previous row. The
cyclic shifted data of the first row is [𝑥𝑛, 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛−1].
All the cyclic shifted rows together form a cyclic shift matrix.
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During training, the tracker learns an optimal filter 𝑤
that can be found by minimizing the regression error as

min
𝑤

∑︁
𝑗

(
𝑤𝜓(𝑥 𝑗 ) − 𝑦 𝑗

)2 + 𝜆∥𝑤∥2 (2)

where 𝜓(𝑥 𝑗 ) is training samples, 𝑦 𝑗 is regression labels and
𝜆 ≥ 0 represents the regularization parameter.

As the circulant matrix can be diagonalized with the
help of a Discrete Fourier Transfer (DFT) matrix, 𝑤 in (2)
can be calculated quickly using the Fourier domain operation
as

�̂� =
𝑥 ⊙ �̂�

𝑥 ⊙ 𝑥∗ + 𝜆
(3)

where ⊙→ element-wise product, * and ˆindicates conjugate
and DFT operation.

In KCF tracker, the ’Kernel trick’ is applied to improve
the performance of the filter in the non-linear regression.
Now the 𝑤 becomes

𝑤 =
∑︁
𝑗

𝛼 𝑗𝜓(𝑥 𝑗 ) (4)

where 𝛼 = dual parameter of 𝑤. For the circulant matrix, the
solution of the regression �̂� can be obtained as shown in (5).

�̂� =
�̂�

�̂� 𝑥𝑥 + 𝜆
(5)

where 𝑘 𝑥𝑥 is the first row of the kernel matrix, ˆ represents
the DFT operation.

After training, the detection operation is applied on the
image patch 𝑧 in the upcoming framewithin a𝑀×𝑁 window.
Then the response is obtained as :

𝑓 (𝑧) = DFT−1 ( �̂� 𝑥𝑧 ⊙ �̂�) (6)

where �̂� 𝑥𝑧 is kernel correlation. Hence, the location of the
target can be determined in each frame based on the maxi-
mum response ( 𝑓 (𝑧)max). Finally, to maintain the appearance
of the target, the linear interpolation is used to update the sam-
ple template 𝑥 and the dual coefficients �̂� with 𝜂 as a fixed
learning rate is given in (7) and (8):

𝑥𝑡 = 𝑥𝑡−1 (1 − 𝜂) + 𝜂𝑥𝑡 , (7)
𝛼𝑡 = �̂�𝑡−1 (1 − 𝜂) + 𝜂𝛼𝑡 . (8)

The KCF tracker works efficiently when the surgical
video sequence contains slow-moving objects and a smaller
number of scale changes.

Fig. 7. Flowchart of ROI tracking using the KCF tracker.

3.3 FFmpeg
After object tracking, FFmpeg helps to convert the out-

put video to the YUV video sequence. FFmpeg is the leading
multimedia framework, able to encode, decode and transcode
videos with different formats. FFmpeg can be obtained from
the website https://www.ffmpeg.org/. In FFmpeg, the video
sequence from ’mp4’ format to ’yuv’ format can be converted
by using the command below:

ffmpeg -i input.mp4 -c:v rawvideo -pixel_format

yuv420p output.yuv

3.4 Hierarchical CNN and LSTM Structures
for CU Size Prediction

The analysis in Sec. 3.1 shows that the correlation be-
tween the frames decreases with the distance. The CNN can
use only the spatial correlation to determine the CU size.
However, the LSTM can predict the CU size accurately using
the temporal correlation between the frames. In this section,
we will train the CNN using the residual CTU data. The fea-
tures obtained after the first Fully Connected Layer (FCL) of
CNN are input to the LSTM. The LSTM process the features
using the LSTM gate and two FCLs to predict the CTU struc-
ture. The CNN and LSTM structures are explained below.
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Fig. 8. Convolutional Neural Network (CNN) structure to extract the features from Coding Tree Unit.

CNN Structure

The CNN structure using the deep learning approach
is shown in Fig. 8. The CNN consists of a Mean removal
layer, a Downsampling layer, three convolution layers, and
two fully connected layers. Each layer is discussed below.

1. Preprocessing Layer
The preprocessing layer is the combination of themean
removal layer and the downsampling layer. This layer
preprocesses the CTU to reduce the input sample varia-
tions. Themean removal layer removes the mean value
in every CU to match the structures at the branches B1,
B2, andB3, respectively. This helps to reduce the input
sample variations of the CTU. The CU of size 64×64
remains the same at B3 and reduces to 32×32 and
16×16 at B2 and B1 using the downsampling process.

2. Convolution Layer
After downsampling, the preprocessed data is passed
through the three convolution layers. The convolution
layer at layer 3 uses 4×4 kernel with 16 filters to con-
volvewith subsampled data at three branches. The low-
level features obtained from layer 3 are passed through
the convolution layers at layer 4 and layer 5 to extract
high-level features. In layer 4 and layer 5, 2×2 kernel
with 24 and 32 filters are used for convolution with the
output data of layer 3 at B1, B2, and B3 branches. In
the convolution layers, the non-overlapping operations
are performed by considering the width of the kernel
as a stride length.

3. Concatenating Layer
In this layer, the output features of layers 4 and 5 at
three branches are concatenated to form a single vec-
tor 𝑏. The output features are a combination of local
and global features.

4. Fully Connected Layer (FCL)
The CNN structure consists of two FCLs at layer 7 and
layer 8. The vector 𝑏 is given as an input to FCL at
three branches in layer 7. The FCL at layer 8 predicts

the output based on the features of layer 7. In this
paper, the accuracy of prediction is improved by us-
ing the LSTM, which takes the output features of FCL
present in layer 7 of the CNN as input.

LSTM Structure

The LSTM structure shown in Fig. 9 learns the cor-
relation between frames to predict the CTU structure. The
output FCL features of CNN 𝑓1−𝐿 (𝑡) (𝑎) at layer 7 are given
as an input to the LSTM cell. The LSTM cell consists of
input gate 𝑖𝐿 (𝑡), output gate 𝑜𝐿 (𝑡) and forget gate 𝑔𝐿 (𝑡). The
three gates are trained by using (9), (10), and (11).

𝑖𝐿 (𝑡) = 𝜎(𝑊i · [ 𝑓1−𝐿 (𝑡), 𝑓 ′1−𝐿 (𝑡 − 1)] + 𝑏i), (9)
𝑜𝐿 (𝑡) = 𝜎(𝑊o · [ 𝑓1−𝐿 (𝑡), 𝑓 ′1−𝐿 (𝑡 − 1)] + 𝑏o), (10)
𝑔𝐿 (𝑡) = 𝜎(𝑊f · [ 𝑓1−𝐿 (𝑡), 𝑓 ′1−𝐿 (𝑡 − 1)] + 𝑏f) (11)

where 𝜎(·) is sigmoid function, 𝑊i,𝑊o,𝑊f are three gates
trainable parameters and 𝑏i, 𝑏o, 𝑏f are biases. The output
𝑓 ′1−𝐿 (𝑡) of the LSTM cell is calculated by using (12).

𝑓 ′1−𝐿 (𝑡) = 𝑜𝐿 (𝑡) ⊙ 𝑐𝐿 (𝑡). (12)

The output of the LSTM is updated using three gates at
frame 𝑡 is given as

𝑐𝐿 (𝑡) = 𝑖𝐿 (𝑡) ⊙ tanh(𝑊c ⊙ [ 𝑓1−𝐿 (𝑡), 𝑓 ′1−𝐿 (𝑡 − 1)]+
𝑏c + 𝑔𝐿 (𝑡) ⊙ 𝑐𝐿 (𝑡 − 1) (13)

where𝑊c, 𝑏c are parameters and biases of 𝑐𝐿 (𝑡), and ⊙ rep-
resents element-wise multiplication. 𝑓1−𝐿 (𝑡), 𝑓 ′1−𝐿 (𝑡 − 1) →
CNN feature, LSTM cell feature output of last frame.

𝑓 11−𝐿 (𝑡) (𝑏) and 𝑓 11−𝐿 (𝑡) (𝑐) represents the output of
LSTM cell and first FCL with 𝑏 and 𝑐 features. 𝐿 repre-
sents the levels in LSTM. There are three levels in LSTM,
and the three levels 𝐿 = {1, 2, 3} corresponds to branches
B1, B2, and B3 of CNN. The initial values of 𝑎, 𝑏, and 𝑐

features are 64, 64, and 48, respectively, at 𝐿 = 1. The output
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𝑦1 (𝑈, 𝑡) can be 0 or 1, which is obtained based on the features
of the second FCL. The termination mechanism is employed
to reduce the complexity of SHVC.

If 𝑦1 (𝑈, 𝑡) = 0 at 𝐿 = 1, the processing of FCLs at
𝐿 = 2, 3 can be skipped out, which reduces the complexity.
Otherwise, move to level 2 and obtain 2𝑏 and 2𝑐 output fea-
tures of LSTM cell and first FCL. If the output 𝑦1 (𝑈, 𝑡) = 0
at 𝐿 = 2, skip the prediction operation. Otherwise, incre-
ment the level and repeat the operation at level 3. If the level
reaches 4, terminate the prediction operation.

The output CU size at different levels when the
𝑦1 (𝑈, 𝑡) = 0 is given below:

• at 𝐿 = 1, the CU size is 64×64,
• at 𝐿 = 2, the dimension of CU is 32×32,
• at 𝐿 = 3, the CU size is 16×16.

The cross-entropy is used as a loss function to train
the parameters. The LSTM cell at each level is trained by
optimizing the loss as

𝐿 =
1
𝑅𝑇

𝑅∑︁
𝑟=1

𝑇∑︁
𝑡=1

𝐿r (𝑡). (14)

The parameters are trained by considering 𝑅 training samples
and 𝑇 frames. Finally, the LSTM can predict the CU size by
using the trained LSTM cells.

Fig. 9. Flowchart of LSTM structure to predict the CU size.

4. Experimental Results
This section presents the experimental findings to ana-

lyze the performance of the proposed method. The surgical
telementoring system requires the wireless transmission of
high-quality video with less bit rate. However, it is extremely
difficult to encode the entire frame with high quality and less
bit rate. We use the KCF tracker to track the ROI in the
frames of the video, extract it and encode it with SHVC by
maintaining high quality and less bitrate.

Configuration of Experiment:
The scalable HEVC reference software SHM-12.1 [29]

is used to simulate the proposed method. The experiment is
performed on Intel Core i7 CPU using experimental param-
eters shown in Tab. 1. The complexity of the CNN+LSTM
approach is tested using eighteen Joint Collaborative Team
on Video Coding (JCT-VC) sequences that belongs to five
different classes, which are shown in Tab. 2. The proposed
method is analyzed in terms of bit rate (𝐵𝑅) saving, time sav-
ing (𝑇𝑆) and change in peak signal-to-noise ratio (ΔPSNR),
which can be calculated using (15), (16) and (17).

𝐵𝑅Saving [%] =
𝐵𝑅orig − 𝐵𝑅prop

𝐵𝑅orig
× 100, (15)

𝑇𝑆 [%] =
𝑇orig − 𝑇prop

𝑇orig
× 100, (16)

ΔPSNR [dB] = PSNRorig − PSNRprop. (17)

The PSNR and BR can be measured using (18) and (19).

PSNR = 10 log10
(2bitdepth − 1)2 ×𝑊 × 𝐻∑

𝑖 (𝑂𝑖 − 𝐷𝑖)2
(18)

where bitdepth is each pixel bit depth,𝑊 is width,𝐻 is height,
𝑂𝑖 is reference frame pixel value, 𝐷𝑖 is decoded frame pixel
value, 𝑖 is pixel address.

𝐵𝑅 [kbps] = 𝑊 × 𝐻 × 𝑇F
bpp × fps × 1000 (19)

where bpp represents bits per pixel, fps represents frames per
second,𝑊 is frame width, 𝐻 is frame height, and 𝑇F is total
number of frames. Bitrate is measured in kbps.

In addition, the average saving in bitrate (BD-BR) and
average PSNR gain (BD-PSNR) [30], [31] quantifies the RD
performance loss.

Configuration encoder_lowdelay_P_scalable
Codec version SHM-12.1

Number of layers in SHVC 2
QP 22, 27, 32, 37

CU size (Max) 64×64
CU depth (Max) 4

Search range and GOP Size 64 and 8

Tab. 1. Experimental conditions to simulate the proposed
method in SHM-12.1.
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Database for Training CNN+LSTM:
The database contains 397 video files. Out of which,

300 ultrasound video files of (112×112) size are taken from
StanfordUniversity [32], 18 sequences from the JCT-VC stan-
dard test set, and 79 video sequences of different resolutions
from Xiph.org [33]. The video sequences of the database
belongs to different video resolutions: SIF (352×240),
CIF (352×288) , 240p (416×240), 480p (832×480), 720p
(1280×720), 1080p and WQXGA (2560×1600). The above
sequences are randomly divided into validation (42 se-
quences), testing (30 sequences), and training (325 se-
quences). The above sequences are encoded at four QPs
by HEVC reference software to generate the CU depth data.
Besides, 19,607,566 samples were collected for the LDP
configuration.

Training Settings:
In this paper, the CNN is trained using the database for

inter-mode. During the training process, the hyperparame-
ters were used to tune the validation datasets of the database.
The batch size for training is 32, and the momentum of the
gradient descent algorithm is set to 0.8 for training the CNN.
In addition, the learning rate is set to 0.01, and there are a to-
tal of 1,000,000 iterations. Similarly, to train the LSTM, the
training batch size is 32, and the momentum of the gradient
descent algorithm is set to 0.9. The total number of iterations
is 200,000, and the initial learning rate is set to 0.01 to train
the LSTM.

Test Settings:
The bi-threshold scheme is chosen by following [34]

to set the upper and lower threshold levels. In addition,
the threshold is set by assuming that the upper and lower
thresholds are symmetrical, i.e., the upper threshold is equal
to (1-lower threshold). The bi-threshold decision scheme is
used at three different CU depth levels. At level 1, the upper
and lower thresholds are 0.6 and 0.4, respectively. Similarly,
0.7 and 0.3 for level 2 and 0.8 and 0.2 for level 3 are chosen
as the upper and lower thresholds. The CU splits if the output
probability is greater than the lower threshold and less than
the upper threshold value. The bi-threshold scheme is chosen
such that the RD performance increases and the complexity
of the SHVC decrease.

Evaluation on Training Performance and Prediction
Accuracy:

The training and validation loss for CNN and LSTM
alongside the iterations are shown in Fig. 10. The training
loss is calculated using (14) at each iteration. The figure
shows that the loss converges after 3 × 104 iteration. The av-
erage accuracy of 88%, 83%, and 78% were obtained for CU
partitions at levels 𝐿 = {1, 2, 3} while training the LSTM.

Analysis of Experimental Results:
Table 2 presents the simulation results of SHVC using

hierarchical CNN+LSTM (SHM+DL) approach and com-
pared with the state-of-the-art methods: [6] and [35]. The
results are generated by treating the SHM-12.1 as an anchor.
The findings show that 51% of saving in encoding time (TS)

can be observed with a 3.76% rise in BD-BR and 0.18 dB
loss in quality. [6] and [35] approaches save the coding time
by 44% and 38%, which is less compared to the proposed
method. The proposed method outperforms the [6] in terms
of both TS andRD-performance. However, the [35] approach
provides better RD-performance than the CNN+LSTM ap-
proach at the cost of more encoding time. The CNN+LSTM
approach helps to reduce the complexity of SHVC by pre-
dicting the CU size using a deep learning approach. The
complexity reduction, in turn, reduces the encoding time,
which is highly required for the real-time surgical telemen-
toring system.

Figure 11 shows the BasketballDrive original frame,
reconstructed frame, and reconstructed frame with CU par-
titions. From Fig. 11(c), we can observe that many CTUs
are present in the frame with no partitions. The CTU with
zero CU partitions represents the output 𝑦1 (𝑈, 𝑡) is zero at
𝐿 = 1. If the output is zero, the early termination process is
invoked, and the prediction operation can be skipped out at
other levels, which saves the encoding time. The CTU with
four CU partitions represents the output 𝑦1 (𝑈, 𝑡) is zero at
𝐿 = 2. If the prediction is performed at level 3, then the
output CTU contains more than four CU partitions.

(a) CNN (b) LSTM

Fig. 10. Training and validation loss at levels 1, 2 and 3.

(a) Original frame (b) Reconstructed frame

(c) Reconstructed frame with CU partitions

Fig. 11. BasketballDrive video sequence.
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Proposed(SHM+DL) [6] [35]
Class Size Video

Sequence BD-PSNR BD-BR TS
[%]

BD-PSNR BD-BR TS
[%]

BD-PSNR BD-BR TS
[%]

PeopleOnStreet –0.18 2.09 47 –0.30 6.86 42 –0.11 2.97 40A 2560×1600
Traffic –0.10 1.55 48 –0.24 8.66 45 –0.15 3.64 41
Kimono –0.04 0.72 41 –0.13 4.54 45 –0.09 1.18 35
ParkScene –0.05 1.35 33 –0.23 7.77 44 –0.11 3.72 42
Cactus –0.16 2.87 43 –0.14 7.76 45 –0.06 3.27 41

BasketballDrive –0.04 0.68 46 –0.09 5.89 44 –0.05 1.21 34
B 1920×1080

BQTerrace –0.16 2.17 50 –0.12 5.81 46 –0.03 0.85 33
BQMall –0.19 4.94 39 –0.26 6.68 43 –0.18 4.54 39

BasketballDrill –0.24 6.37 53 –0.32 8.23 44 –0.07 1.31 33
RaceHorses –0.21 4.96 54 –0.25 5.48 43 –0.10 2.32 37

C 832×480

PartyScene –0.33 5.71 52 –0.27 5.29 44 –0.17 3.32 38
BasketballPass –0.41 5.76 67 –0.34 6.54 42 –0.23 4.54 39
BlowingBubbles –0.17 4.84 73 –0.30 6.85 42 –0.16 3.64 36
RacingHorses –0.37 4.99 63 –0.44 7.63 41 –0.22 3.92 35

D 416×240

BQSquare –0.25 5.38 63 –0.26 5.99 43 –0.09 1.08 30
FourPeople –0.15 4.80 40 –0.17 7.02 45 –0.12 4.82 44

KristenAndSara –0.13 4.87 50 –0.15 6.68 44 –0.17 7.58 45E 1280×720
Johnny –0.23 3.78 56 –0.14 8.19 45 –0.06 2.49 39

Average –0.18 3.76 51 –0.23 6.77 44 –0.12 3.13 38

Tab. 2. Comparison of deep learning SHVC and state-of-the-art methods in terms of BD-BR, BD-PSNR and encoding time saving.

Video SFF PFROI PROI
Size BR PSNR Enc. time Size BR PSNR Enc. time Size BR PSNR Enc. time

Z-Plasty [37]

1280×720

5335.61 47.46 33480.15

1280×720

1489.99 56.99 8015.82 280×254 1333.52 48.22 1694.59
Digital nerve [38] 6754.70 46.25 34496.92 481.04 62.22 4933.73 128×116 410.42 46.96 343.85
Flexor [39] 11257.54 44.73 40585.82 3493.40 51.70 13786.04 410×458 3121.35 45.08 7257.96
Finger [40] 7692.73 45.60 38648.90 703.30 60.33 5483.99 148×118 547.90 45.78 425.39

Flexor Tendom [41] 3321.21 47.83 31556.20 1345.57 56.51 7641.21 416×196 1131.67 48.53 1498.82
Volar wrist [42] 48983.94 45.39 67907.25 6736.62 56.74 13099.15 410×300 782.22 48.05 1642.18
Arthroplasty [43] 5291.82 48.30 31542.49 997.25 59.01 6276.50 264×154 907.21 48.90 1017.26

Tendon saw injury [44] 74974.65 44.61 77555.37 21481.50 51.32 24137.70 526×574 3370.66 47.09 7495.33
Subcuticular [45] 121738.53 43.04 77670.56 19603.82 52.03 22111.30 454×456 3810.55 45.74 5425.51

Tab. 3. Experimental results of Default SHM 12.1 and proposed method for surgical video sequences.

(a) (b) (c) (d) (e)

Fig. 12. ROI extraction process using object tracking involves. (a) Original frame, (b) ROI selction in original frame, (c) Mask, (d) Output frame
with tracked ROI, (e) Output ROI cropped frame.

Table 3 shows the experimental results of the full-frame
coding using SHVC (SFF), proposed Frame with only ROI
coding using SHVC (PFROI), and proposed ROI coding us-
ing SHVC (PROI). The PFROI coding is done by selecting
and tracking the ROI using the KCF tracker, making the pix-
els other than ROI zero, and coding using SHVC. The PROI
coding is performed by tracking the ROI from the surgical

video using the KCF tracker, cropping the ROI, and coding
the ROI using SHVC. Figure 12 shows the Full frame, mask,
Frame with ROI, and cropped ROI. During the simulation
process, only one layer is chosen in SHVC, which acts as
a single layer HEVC to encode surgical videos. Based on the
analysis present in [36], we choose 𝑄𝑃 = 20 for simplicity
to encode surgical videos with high quality.
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Video Prop SegNet S-CNN MST Prop SegNet S-CNN MST
Pixel accuracy fIOU

Z-Plasty 97.40 96.7 98.6 94.3 98.21 98.1 97.5 92.0
Digital Nerve 98.21 97.4 98.3 96.4 97.48 97.6 97.3 94.4
Flexor 97.85 96.9 97.1 93.0 96.78 95.4 94.4 86.3
Finger 97.18 98.0 98.2 94.4 98.55 97.7 98.3 94.3

Flexor Tendom 96.42 96.3 98.1 86.9 96.80 94.3 96.5 84.1
Volar Wrist 96.68 96.8 97.4 93.2 97.27 95.4 96.3 91.2
Arthroplasty 97.97 97.3 98.6 95.1 96.23 97.4 97.0 93.6

Tendon Saw Injury 98.57 97.3 98.4 94.6 96.96 97.0 97.5 92.4
Subcuticular 96.85 98.0 97.3 95.1 97.93 98.3 96.9 92.9

Average 97.45 97.18 98.0 93.66 97.35 96.80 96.85 91.14

Tab. 4. Comparison of proposed method and state-of-the-art methods segmentation accuracy for surgical videos.

Video PROI MST SegNet S-CNN
BRSaving

[%]
PSNR BRSaving

[%] PSNR BRSaving
[%] PSNR BRSaving

[%] PSNR

Z–Plasty 75 0.76 90.05 –7.89 70.18 –0.12 74.86 –0.05
Digital nerve 93.92 0.71 96.61 –15.91 77.41 –0.09 76.53 –0.06
Flexor 72.27 0.35 88.41 –10.54 65.32 –0.16 63.70 –0.01
Finger 92.87 0.18 88.15 –10.99 79.36 –0.13 82.84 –0.11

Flexor Tendom 75.92 0.70 89.78 –8.65 71.15 –0.08 75.02 –0.04
Volar wrist 98.40 2.66 95.26 –10.98 76.93 –0.14 80.02 –0.04
Arthroplasty 82.85 1.60 95.93 –14.83 74.83 –0.07 74.71 –0.05

Tendon saw injury 95.50 2.48 93.78 –7.14 82.04 –0.10 86.05 –0.02
Subcuticular 96.87 2.70 98.40 –16.56 76.31 –0.19 80.55 –0.02

Average 87.06 1.34 92.93 –11.49 74.83 –0.12 77.14 –0.04

Tab. 5. Comparison of the proposed method and state-of-the-art methods in terms of bit rate saving and PSNR for surgical videos.

Table 4 presents the segmented accuracy results of the
proposed method, SegNet, S-CNN, and the MST techniques.
The segmented accuracy is calculated using pixel accuracy,
and frequency weighted IoU (fIoU). The pixel accuracy and
fIoU can be measured using (20) and (21).

Pixel accuracy =
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(20)

where 𝑇𝑃 → true positive, 𝑇𝑁 → true negative, 𝐹𝑃 → false
positive and 𝐹𝑁 → false negative.

fIoU =

(∑︁
𝑘

𝑇𝑘

)−1 ( ∑
𝑛 𝑇𝑛𝑝𝑛𝑛

𝑇𝑛 +
∑

𝑚 𝑝𝑛𝑚 − 𝑝𝑛𝑛

)
(21)

where 𝑝𝑛𝑛 is the number of correctly identified pixels, 𝑝𝑛𝑚
is the number of pixels rejected incorrectly for class 𝑚 and
𝑇𝑛 is the total number of pixels in class 𝑛.

From Tab. 4, the results show that the proposed ap-
proach achieved higher pixel accuracy compared to the Seg-
Net and MST techniques. Even though the pixel accuracy
is slightly less than the S-CNN, the proposed method can
obtain higher fIoU than the S-CNN and other two state-of-
the-art methods. We have also used the Mean Opinion Score
(MOS) as a metric to evaluate the quality of the video for
subjective quality assessment. The MOS is the average score
of the expert on video quality. The score can be 1 to 5.
’1’ represents the lowest video quality, and ’5’ represents
the highest. In this assessment, we have taken five surgical

videos, and then each video is encoded by the SHVC. The
output of the SHVC is a bitstream. The output video is re-
constructed from the bitstream, and the input video is used
as a reference. There are ten expert viewers, and each expert
has given a score by observing the reference and output video
sequences. The video sequences with average MOS scores
are given in Tab. 6. From Tab. 6, all the MOS values are in
the range of 3.8 to 4.4, indicating that the proposed method
encodes the surgical video sequences with good quality. The
MOS confidence lower and upper intervals for Z-Plasty, Dig-
ital Nerve, Flexor, Flexor Tendon, and Tendon saw injury
video sequences are (3.64, 4.76), (3.64, 4.76), (3.42, 4.58),
(3.24, 4.36) and (3.9, 4.9) respectively.

In Tab. 5, the PROI approach is compared with the
state-of-the-art methods [10], [21] and [36], which uses the
MST, SegNet and S-CNN surgical ROI segmentation tech-
niques for surgical telementoring systems. The results indi-
cate that the proposed method achieves 87% less bit rate with
1.34 dB improvement in PSNR using PROI. This improve-
ment is achieved for surgical video sequences with slow-
moving objects.

Video
sequence Z-Plasty Digital

Nerve Flexor Flexor
Tendom

Tendon
Saw Injury

Average
MOS 4.2 4.2 4.0 3.8 4.4

Tab. 6. Average mean opinion scores for the subjective quality
assessment of surgical video sequences.
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The MST technique achieves high BR savings of
92.93% which is high compared to our proposed technique.
However, 11.49 dB of PSNR loss is observed, making it less
suitable for telementoring applications. The authors in [36]
use the HEVC for encoding the ROI region. The HEVC uses
the RDO search process that increases the complexity. The
complexity increases the coding time, which makes it unsuit-
able for real-time telementoring applications. The SegNet
approach saved the bitrate by 75%, which is less compared to
the remaining approaches. In addition, SegNet uses 26 con-
volutional layers in the CNN model that increases the com-
putational complexity. We use the CNN+LSTM approach to
reduce the complexity, which decreases approximately 53%
of encoding time required to encode using SHVC.

5. Conclusions
This paper proposed an efficient surgical telementor-

ing system that transmits the surgical incision region at high
quality with less bit rate. The surgical video consists of
the surgical incision region and the background region. The
background region can be removed to reduce the bit rate.
The Kernelized Correlation Filter (KCF) tracker tracks the
surgical incision region, crop, and writes to the video se-
quence. The resultant video is encoded using the SHVC
video coder. SHVC uses the CNN+LSTM approach to pre-
dict the CTU structure in less time. On average, the Deep
learningCNN+LSTMmethod helps in reducing the encoding
time by 51%with a 3.76% rise in BD-BR and 0.18 dB loss in
BD-PSNR compared to SHM-12.1 standard. Furthermore,
the proposed method encodes the ROI surgical video using
SHM software that saves the bit rate by 87% with a 1.34 dB
improvement in video quality (PSNR).
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