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Abstract. For bistatic inverse synthetic aperture radar (Bi-
ISAR), the non-uniform motion state of maneuvering target 
and the time-varying bistatic angle make the traditional 
imaging method of moving target face the problem of 
translation compensation, and the traditional translation 
compensation method is not suitable for the return wave in 
the case of sparse aperture. In this paper, a compensation 
imaging method combining two-dimension joint linearized 
Bregman iteration and image contrast search is proposed. 
The translation compensation problem can be transformed 
into two-dimension joint compressed sensing sparse recon-
struction and moving target motion parameter estimation. 
The proposed algorithm makes use of the gain of echo two-
dimension compression, greatly improves the accuracy of 
translation compensation and the quality of target image 
and has stronger robustness to noise. The processing re-
sults of simulation data verify the effectiveness and superi-
ority of the algorithm. 
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1. Introduction 
Inverse synthetic aperture radar (ISAR) can generate 

fine two-dimension reflectivity images of the observed 
target and plays an important role in target tracking and 
recognition. Compared with traditional monostatic ISAR 
imaging, bistatic ISAR (Bi-ISAR) (or multistatic ISAR) 
imaging adopts the transmitter-receiver separation mode, 
which enhances the flexibility of the system and improves 
the probability of imaging. It has attracted the attention of 
many scholars [1] and has become a hot topic in the 
research of modern radar technology. 

At present, many sparse aperture imaging algorithms 
with high operation efficiency and excellent imaging qual-
ity have been proposed, including linear prediction [2], [3], 
modern spectrum estimation [4–6], and sparse signal re-
construction [7–12]. Among the three methods, sparse 

signal reconstruction based on compressed sensing theory 
[13] has the best imaging effect and the fastest speed and 
has attracted extensive attention. However, the models 
established with previous methods to solve the imaging 
problem are based on the assumption that the translation 
compensation has been completed. Translation compensa-
tion for the echo in the case of sparse aperture was ignored. 
The time variation of the maneuvering component and 
bistatic angle of the maneuvering target will lead to the 
time variation of the target Doppler frequency, and the 
traditional translation compensation method is not suitable 
for the echo in the case of sparse aperture. Therefore, it is 
necessary to find a simple and efficient algorithm with 
ideal imaging performance to solve the above problems. 

In this paper, a method combining two-dimension 
joint linearized Bregman iteration (2D-JLBI) and image 
contrast (IC) search is proposed. The quadratic polynomial 
is used to fit the trajectory of the maneuvering target. The 
Bi-ISAR sparse aperture maneuvering target echo signal 
model with translation error term is established. The phase 
compensation term is established with the rough motion 
information obtained by narrowband velocity measure-
ment. The image is reconstructed by the 2D-JLBI algo-
rithm, and the compensation term is updated based on the 
translation trajectory parameters corresponding to the IC 
search optimal image. In this way, high-quality images can 
be obtained.  

2. Relative Work 
At present, sparse aperture signal reconstruction by 

compressed sensing technology can be divided into two 
categories. The first is the processing of the range direction 
and azimuth direction separately. Although this method has 
fast speed and excellent performance, it destroys the cou-
pling of range and azimuth dimension and degrades the 
imaging performance [14]. The second is the processing of 
range azimuth coupling. The reconstruction of the two-
dimension coupled echo matrix is mainly conducted with 
the following methods. The first is row by row and column 
by column processing. Because the row by row and col-
umn processing method not only includes a large number 
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of redundant calculations, the calculation efficiency is low, 
but also destroys the correlation between row and column 
data, and the reconstruction effect is not as good as block 
processing, so few people use this calculation method in 
recent years [15]. The second is vectorization processing. 
A two-dimensional pattern-coupled sparse Bayesian learn-
ing (2D-PCSBL) algorithm for ISAR imaging is proposed 
in [16]. It utilizes a parameter to characterize the pattern 
relevance between a coefficient and its four neighboring 
coefficients of the adjacent rows and columns in the two-
dimensional data matrix. The model used can provide 
flexibility to model any block-sparse structure signals and 
has a good performance for ISAR imaging. However, the 
memory storage space and the computational complexity 
are high due to the vectorized solution. When the imaging 
scene is highly complex, the amount of calculation is large 
and the real-time performance is poor. The third is block 
processing, and this is a processing method of re-fusion 
imaging after block by block processing. In order to reduce 
the high computational complexity and memory storage 
space caused by the whole matrix vectorization, the obser-
vation scene of [17] is segmented into multiple sub-scenes 
and each sub-scene data is reconstructed by the MB-
PCSBL method respectively. And then the whole fusion 
image is obtained through the stitching of the sub-scenes 
fusion imaging results. This method can indeed shorten the 
calculation time, but it also sacrifices part of the imaging 
performance. The fourth method combines two-dimension 
sparse reconstruction algorithms for reconstruction, such as 
the two-dimension fast iterative shrinkage-thresholding 
algorithm (2D-FISTA) and two-dimension smooth l0 norm 
reconstruction algorithm (2D-SL0). However, these two 
algorithms have poor performance under the condition of 
low SNR [18]. 

To sum up, previous algorithms have various short-
comings. The contributions of this paper are as follows: 

 The translation compensation is transformed into 
compressed sensing two-dimension joint sparse re-
construction and maneuvering target motion parame-
ter estimation, which not only makes full use of the 
gain of echo two-dimension compression but also re-
duces vectorization calculation and row by row and 
column processing. 

 Through the combination of 2D-JLBI and IC search, 
compensation and high-quality imaging can be com-
pleted under different aperture missing conditions and 
high aperture missing rates.  

 Compared with other two-dimension joint sparse re-
construction algorithms, the algorithm proposed in 
this paper contributes to the highest image quality, 
which is manifested in the maximum contrast, the 
lowest entropy, and stronger robustness to noise.  

3. Modeling of Bi-ISAR Sparse 
Aperture Maneuvering Target Echo 
Signal 
The Bi-ISAR imaging geometric model is shown in 

Fig. 1 [1]. Tr is the transmitting station, Re is the receiving 
station, L is the radar baseline length, and E is the equiva-
lent monostatic radar position. It is supposed that the target 
is maneuvering in space, with the velocity of v and the 
acceleration of a. At the imaging start time t0, the target 
centroid is O and the bistatic angle is β0. With the target 
centroid as the origin and the bisector y of the bistatic angle 
as the axis, a right-hand coordinate system xOy is estab-
lished. In this coordinate system, the coordinate of the 
scattering point P is (xp, yp), the length of OP is d and the 
included angle with the x axis is α0. At the time tp, the tar-
get centroid translates to the Op point. The coordinate sys-
tem x’Oy’ is obtained after the translation of the coordinate 
system xOy, where Op located. The bisector of the bistatic 
angle is the v axis, and the right-hand coordinate system 
uOpv is established. In this coordinate system, the coordi-
nate of scattering point P is recorded as Pm(xpm

, ypm
), the 

included angle between OpP and u axis is αm, and the angle 
of equivalent monostatic radar is θm. 

It is assumed that Bi-ISAR transmits LFM signal, and 
its mathematical expression is as follows: 

 2
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where A represents the backscattering amplitude, rect() 
represents rectangular window function and  
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u , t represents full time, PRT 

represents pulse repetition time, tm = m PRT represents 
slow time, ̂t = t – m PRT represents fast time and 
m = [1:M], M is the total number of pulses, Tp is the pulse 
width, fc is the carrier frequency, and μ is the chirp rate, 
where μ = B/Tp. 

The obtained target echo signal is down-converted to 
fundamental frequency echo, as shown below:  
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where K is the number of scattering points, σk is the back-
scattering coefficient corresponding to the K-th scattering 
point, a() represents the complex envelope of the signal, 
Rk(tm) represents the sum of the distance from the K-th 
scattering point to the transceiver at a slow time tm (echo 
signal analysis adopts the “go-stop” hypothesis [19]), and c 
is the propagation speed of the electro-magnetic wave. 
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Fig. 1. Bi-ISAR imaging geometric model. 
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where RT(tm) represents the instantaneous distance from the 
rotation center of the maneuvering target to the transceiver 
at tm, βm corresponds to the bistatic angle at tm, 

 
2

coscossin2 m
mkmk θyθx   represents the distance change 

caused by target rotation. 

Sr(f, tm) can be obtained by transforming s( ̂t, tm) from 
fast time domain to baseband frequency domain, 
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where A(f) is the Fourier transform of  ˆ ,k m
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By performing matched filtering on (5) and ignoring the 
imaging independent term, it can be obtained that the 
signal in azimuth time and distance frequency domain is: 
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Generally speaking, Bi-ISAR imaging accumulation 
time should be short. During this time, it can be considered 
that the target rotates uniformly during the observation and 
the rotation angle is small. The following approximation 

can be made: 2
m2

1
sin tωωtθ amm  , 1cos mθ . In addition, 

it is assumed that the bistatic angle β(tm) is constant β 
during the imaging. 

Therefore, the backscattered signal of (5) can be 
written as: 

     

 

c

2

'
c

1

exp j2

1
t

2exp j4 cos .
2k

T m
r m

K k m k a m k

k

R t
S f,t π f f

c

x ωt x y
σ π f f

c

 


 
    

 
     

   
  

  



 (6) 

After the discretization of (6), equation (7) is obtained 

       

 

r c
1 1

2
r c

exp j2

4 1
exp j cos .

2 2n

QP
T m

p q
p q

p n p a q

R t
s n, p π f f σ x , y

c

π
x ωt x ω t y f f

c


 

 
    

 
         


 (7) 

P, Q represent the index of the discrete backscattering 
point. Next, each phase term in (7) is analyzed as follows: 
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target translation component on echo envelope. In the sec-

ond phase term, 
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 are negligible in small angle 

imaging. Therefore, equation (7) can be expressed as fol-
lows: 
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Among the parameters in (8),  = a/ only depends 
on the target rotation parameters and is the same for all 
scattering points. fp = [1:N]  fd, where N is sampling 
points, fd is the Doppler resolution. In this paper, the 
method of Li et al. [7] was used to estimate the parameter 
. The echo was integrated with the fast time, and the two-
dimension echo signal was transformed into a column of 
azimuth signals. And then  was reconstructed using the 
smoothing norm l0. The proximity between  and a/ was 
judged by entropy, and the value with the smallest entropy 
was taken as the  estimation  ̂.  

It can be seen from (8) that there is a Fourier trans-
form pair relationship between the range coordinate and 
the range frequency of the target, and there is a matching 
Fourier transform pair relationship between the azimuth 
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coordinate and the azimuth dimension time with parameter 
. Considering the random sparsity of the azimuth, the 
target maneuver, and the observation noise, the relationship 
between the echo signal, translation error and the imaging 
scene can be expressed in the form of matrix [20]:   

   o S E AXB N     (9) 

where ⊙  represents Hadamard product, and S  CN  R 
represents echo signal matrix in range frequency and azi-
muth time domain; E  CN  R represents the envelope walk 
and phase shift caused by the translational component of 

the target to the echo, and    c rE exp j2 T
n,r

R n
π f f

c

 
   

 
. 

In the case of azimuth random sparsity, A  CN  M repre-
sents the matching Fourier transform matrix with parameter 
 in the azimuth dimension; B  CR  R represents the Fou-
rier transform matrix in the distance dimension; X  CM  R 
represents the discrete imaging scene; No  CN  R repre-
sents observation noise. N, M and R respectively represent 
the number of azimuthal sampling pulses, the number of 
scene azimuthal units and the number of echo range dimen-
sion samples. 

Due to the maneuverability of the target, the transla-
tion error term of the target usually has a high-order term 
varying with slow time. In order to establish the compensa-
tion term, this paper uses quadratic polynomial to fit the 
motion trajectory of the target along the baseline direction 
of the bistatic radar. It is assumed that the target has the 
following motion state:  
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With this model and the sparsity of the Bi-ISAR 
imaging scene, the translation error correction problem of 
the Bi-ISAR target is transformed into an optimization 
problem as follows: 

     2

1F
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X,a
X,a S Ε a AXB X  (11) 

where F represents the norm of Frobenius matrix, 1 

represents the l1 norm of the matrix, a is the vector com-
posed of motion trajectory fitting polynomial coefficients, 
and λ represents the regularization parameter of sparse term, 
which is used to control the estimation accuracy. 

4. Algorithm Solving 
Next, the optimization problem of (11) is solved by 

alternately updating the imaging scene X and the polyno-
mial coefficient a. 

4.1 Imaging Scene Updating 

The first step of the algorithm is to update the imag-

ing scene X, namely, equation (11), without considering 
the influence of translational polynomial parameters. The 
corresponding optimization problem is in the following 
form: 
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According to literature [20], during “residual back 
substitution”, the stagnation step of each iteration is esti-
mated by the “kicking” method. The weight parameter η is 
adjusted, the weight between the residual and the measured 
value is controlled, and the condition number of the per-
ception matrix is reduced. The algorithm is improved in the 
above three ways to greatly reduce the number of itera-
tions. The iterative format of the improved 2D-JLBI algo-
rithm (12) is given as follows: 
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R(k) represents the residual of each iteration; X(k + 1) is the 
result of each iteration; V(k + 1) is the intermediate variable; 
X(0) = V(0) =0; A* = AH(AAH)–1; B* = (BHB)–1 BH. The 
parameter selection method of the algorithm is described in 
the study of Zhu et al. [21] and will not be detailed here. 

Then the above methods are used to optimize the 
imaging scene. The flow chart of the algorithm is shown in 
Tab. 1. 
 

Input: Matrices A, B and   ˆ *t   Y s E a , Maximum number of 

iterations kmax, parameter μ  
Initialization: 

Select appropriate parameters  δ and η, initialize X(0) = V(0) = 0. 
Cyclic iterative solution: 
For k =0: kmax

 

1. Update residual R(k); 
2. Update intermediate variables V(k + 1); 
3. Update imaging scene  X(k + 1); 
4. Update Y(k + 1); 
5. Judge whether the algorithm converges. If it converges, it will 

jump out of the loop. 
End 

Output: final scene estimate X̂(k + 1) = X(k)
. 

Tab. 1. 2D-JLBI reconstructed image process. 

4.2 Polynomial Coefficient Updating 

It can be seen from the previous section that the qual-
ity of the reconstructed image mainly depends on the con-
struction of the phase compensation term, and the accuracy 
of the phase compensation term depends on the estimation 
of translational trajectory parameters. In other words, the 
accuracy of translational trajectory parameters directly 
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affects the final imaging effect, and image optimization can 
finally be transformed into maneuvering target motion 
parameter estimation. The second step of the algorithm is 
to update the translation polynomial coefficient a. When 
the imaging scene has been optimized, the form of the 
optimization problem corresponding to (11) is transformed 
as follows: 

       2
1 1

F
ˆ arg mint t

a
a     a S E AX B . (14) 

The analytical solution for this optimization problem 
cannot be obtained. In this section, the estimated value â of 
translational trajectory parameters is updated based on IC 
search.  

In order to accurately measure the imaging quality, IC 
search is introduced, which is defined as the ratio of the 
standard deviation of image amplitude ISAR(t̂, fd) to the 
average value:  

 
   

 

d d
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where ISAR(t̂, fd) is the complex amplitude of the image 
and A()is the mean operation. In the established scattering 
point model, the larger the IC, the larger the amplitude 
value at the k-th scattering point than the image mean, and 
the higher the image quality and the focusing degree. 
When IC is small, the amplitude value at the k-th scattering 
point is close to the image mean, and the image is blurred 
and the focusing degree is low. Therefore, IC can be used 
to evaluate the imaging quality. 

In order to obtain accurate motion information of the 
maneuvering target and establish the compensation term, 
the rough target speed information is obtained and taken as 
the initial value. Bi-ISAR usually alternatively uses wide-
band and narrow-band signals as the transmission signal. 
While transmitting the wide-band signal to determine the 
nature of the target, improve the information perception 
and identify the classified target, the radar is also transmit-
ting the narrow-band signal. The range information of the 
target is obtained by transmitting the narrow-band signal, 
and the preliminary estimation of the speed of the target 
can be obtained by the curve fitting of the range infor-
mation. However, due to the poor range resolution of the 
narrow-band signal, the accuracy of the obtained velocity 
information is not very high, and it is necessary to further 
accurately estimate the velocity parameters. In this paper, 
the parameters of the motion trajectory are updated and the 
reconstructed image is obtained. It is assumed that the 
rough velocity information obtained by the narrowband 
signal is a0, and the specific updating process is shown in 
Tab. 2. 

With the combination of Tab. 1 and Tab. 2, the flow 
of the overall algorithm is obtained, as shown in Fig. 2. 
 

Input: Initial value of motion parameter a0. 
Initialization: 

Select the appropriate search range θ and step α to initialize the 
contrast matrix ψ = 0. 
Solve based on IC search: 
For 

1. Taking the initial value a0 as the center and θ  as the search 
range, the search starting point a̅0 = a0 – θ/2 is obtained; 

2. Generate compensation matrix E(a̅0 ); 
3. Update imaging scene X; 
4. Calculate the contrast of scene X and store it in ψ; 
5. Update a = a + α. 
6. Whether a is within the search scope, if not, jump out of the 

loop. 
End 

7. Index P  corresponding to the maximum value of ψ in the 
calculation. 

8. Output the image X̂  corresponding to â corresponding to P . 
Output: Motion parameter update value â;Image estimate X̂.

Tab. 2. The updating process of the motion parameter a.  

5. Simulation Results 
The simulation experiment environment in this paper 

is Windows 10 64-bit operating system, Matlab R2018b 
software platform. The main parameters of the computer 
used in the simulation are as follows: the processor is Intel 
Core i7-6700HQ, the main frequency is 2.60 GHz and the 
memory is 16.0 GB. In this section, the performance of the 
proposed algorithm is verified from the aspects of aperture 
missing and echo SNR by experimental simulation. In 
order to explain the advantages of the algorithm, target to 
background ratio (TBR) and image entropy En are used as 
the measurement standards. They are shown in (16).  
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where T and B respectively represent signals in the target 
area and signals outside the target area, A represents target 
image, and  
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TBR is the ratio of signal intensity in the target region 
to signal intensity outside the target region and it can effec-
tively characterize the SNR of imaging and evaluate the 
estimation accuracy and noise suppression performance of 
imaging. The larger the value, the better is the accuracy 
and the performance. Image entropy En is used to reflect 
the average amount of information in the image, and can 
evaluate the overall quality of the target image. The 
brighter the value, the better is the quality. The simulation 
scene of the Bi-ISAR sparse aperture maneuvering target is 
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Fig. 2. Bi-ISAR sparse aperture maneuvering target translation compensation imaging algorithm flow. 
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Fig. 3. Simulation experiment environment. 
 

Parameters Value Parameters Value 
Carrier Frequency 10 GHz Pulse Repetition Time 0.02 s 

Bandwidth 50 MHz Pulse Width 50 Hz 
Sampling Rate 6.25 GHz Range Resolution 0.2838 m 
Imaging Time 6 s Azimuth Resolution 0.4634 m 

Tab. 3. Simulation experiment parameters. 

shown in Fig. 3(a), the target scattering point model is 
shown in Fig. 3(b), the full aperture Range-Doppler imag-
ing results are shown in Fig. 3(c), and parameter settings 
for the simulation are shown in Tab. 3. It is assumed that 
the baseline length of the two bases is 500 km, and the 
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target is accelerating uniformly from the median range of 
the transceiver radar to the receiving radar at an altitude of 
300 km at a speed of v0 = 3000 m/s and a0 = 100 m/s2. The 
median range of the transceiver radar was taken as the 
imaging starting point, and 300 pulses were intercepted as 
imaging data. The cumulative angle of the observation time 
was 2.0°, and the variation range of the double base angle 
was (79.49°, 79.61°), which met the condition that the 
target rotation angle was small during the observation.  

5.1 Performance Verification of the 
Algorithm in Different Cases of Aperture 
Missing 

In the case of sparse aperture, by changing the miss-
ing aperture, the imaging results of the algorithm proposed 

in this paper, 2D-SL0 search algorithm based on contrast 
search and 2D-FISTA search algorithm based on contrast 
search, are compared to verify the effectiveness and superi-
ority of the algorithm in this study. This comparison was 
conducted when the SNR is 10 dB, the echo signal is ran-
domly missing (random sparse aperture) and block missing 
(block sparse aperture), and the missing rate is different. 
Figure 4 lists the imaging results when the signal is 50% 
random missing, 50% block missing, 75% random missing 
and 75% block missing, respectively. Figures 4(a)–4(c) 
show the imaging results of the three algorithms when the 
signal is 50% random missing; Figures 4(d)–4(f) show the 
imaging results when the signal is 75% random missing; 
Figures 4(g)–4(i) show the imaging results under the con-
dition of the signal is 50% block missing. Figures 4(j)–4(l) 
show the results when the signal is 75% block missing. The 
imaging indicators are shown in Tab. 4. 

 
(a) 2D-JLBI algorithm imaging results.        (b) 2D-FISTA algorithm imaging results.      (c) 2D-SL0 algorithm imaging results. 
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(d) 2D-JLBI algorithm imaging results.        (e) 2D-FISTA algorithm imaging results.      (f) 2D-SL0 algorithm imaging results. 
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(g) 2D-JLBI algorithm imaging results.        (h) 2D-FISTA algorithm imaging results.      (i) 2D-SL0 algorithm imaging results. 
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(j) 2D-JLBI algorithm imaging results.        (k) 2D-FISTA algorithm imaging results.      (l) 2D-SL0 algorithm imaging results. 

Fig. 4. Imaging results of three algorithms under different aperture missing conditions. 
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  50% random missing 75% random missing 50% block missing 75% block missing

Image Entropy 

2D-JLBI 4.5139 8.5268 6.2066 12.2537 

2D-FISTA 8.0082 11.1453 7.7779 13.7174 

2D-SL0 11.0669 15.6461 13.6040 18.2587 

TBR 

2D-JLBI 40.0454 25.9917 11.1038 8.1794 

2D-FISTA 17.7582 8.5203 9.4103 6.4295 

2D-SL0 5.8646 3.6388 4.1963 2.1167 

Tab. 4. Comparison of algorithm imaging indexes under different aperture missing conditions. 

2D-JLBI 50%,random sparse,SNR=20dB results
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(a) 2D-JLBI algorithm imaging results.        (b) 2D-FISTA algorithm imaging results.       (c) 2D-SL0 algorithm imaging results. 

 
(d) 2D-JLBI algorithm imaging results.        (e) 2D-FISTA algorithm imaging results.      (f) 2D-SL0 algorithm imaging results. 
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(g) 2D-JLBI algorithm imaging results.        (h) 2D-FISTA algorithm imaging results.      (i) 2D-SL0 algorithm imaging results. 
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(j) 2D-JLBI algorithm imaging results.        (k) 2D-FISTA algorithm imaging results.      (l) 2D-SL0 algorithm imaging results. 

Fig. 5. Imaging results of three algorithms under different SNR conditions. 



270 H. S. ZHU, W. H. HU, B. F. GUO, ET AL., BISTATIC ISAR SPARSE APERTURE MANEUVERING TARGET TRANSLATIONAL … 

 

 SNR 20dB 10dB 5dB 0dB 

Image Entropy 

2D-JLBI 4.4144 4.5139 5.1207 7.6618 

2D-FISTA 7.1084 8.0082 13.3525 20.2645 

2D-SL0 10.8522 11.0669 15.2654 40.3256 

TBR 

2D-JLBI 43.6584 40.0454 36.4667 31.6584 

2D-FISTA 23.2455 17.7582 10.5463 2.0299 

2D-SL0 5.5605 5.8646 4.1654. 0.2342 

Tab. 5. Comparison of algorithm imaging indexes under different SNR conditions.  

Figure 4 shows that when the missing rate is 50%, 
whether random or block missing, the algorithm proposed 
in this paper can complete compensation and reconstruc-
tion of images perfectly. The 2D-FISTA algorithm and 2D-
SL0 algorithm can restore an outline of the general target, 
but there are many false scattering points and the defocus-
ing phenomenon is serious, and the noise suppression ef-
fect is poor. It is indicated that the reconstruction perfor-
mance of the proposed algorithm is better than that of the 
other two algorithms at the same data missing rate, espe-
cially when the missing rate reaches 75%. Under this situa-
tion, the imaging quality of the other two algorithms de-
creases rapidly, and the defocus of scattering points be-
comes serious, with more false scattering points and worse 
anti-noise performance. In the random missing case, scat-
tering points in the imaging results of the 2D-SL0 algo-
rithm are almost drowned by noise. In the block missing 
case, the defocusing of the latter two algorithms is very 
serious, but the algorithm in this paper can complete com-
pensation and high-quality imaging, indicating that the 
algorithm in this paper can still achieve high-quality imag-
ing even with a lot of missing data. It can also be seen from 
Tab. 4 that under the same data missing condition, the 
image entropy value generated by the algorithm in this 
paper is the smallest, and its TBR value is the largest, fol-
lowed by that of the 2D-FISTA algorithm and the 2D-SL0 
algorithm. The smaller the data missing rate, the better the 
reconstruction effect. In the case of the same data miss rate, 
the image compensation and recovery effect when the data 
are random missing is better than when the data are block 
missing because the coherence between data is damaged 
more seriously if the data are block missing [22].To sum 
up, the algorithm in this paper is superior to the other two 
algorithms. 

5.2 Algorithm Performance Verification 
under Different SNR Conditions 

Considering that the sparse aperture is 50% randomly 
missing, the algorithm proposed in this paper is compared 
with the other two algorithms under different SNR condi-
tions to illustrate its stronger robustness. Radar parameter 
settings are the same as above, and the experimental results 
are shown in Fig. 5. 

Figures 5(a)–5(c) show the imaging results of three 
algorithms when SNR is 20 dB; Figures 5(d)–5(f) show the 
imaging results when SNR is 10 dB; Figures 5(g)–5(i) 
show the imaging results when SNR is 5 dB; Figures 5(j)–(l) 
show the results when SNR is 0 dB. The imaging indica-
tors are shown in Tab. 5. As can be seen from Fig. 5, when 
SNR is high, 2D-JBLI and 2D-FISTA algorithms can 
achieve better compensation and imaging, while the 2D-
SL0 algorithm is more seriously affected by noise. The 
imaging results of the algorithm proposed in this paper are 
less affected by SNR. With the decrease of SNR, 2D-
FISTA and 2D-SL0 algorithms are seriously affected by 
noise and have poor noise suppression effects. They can no 
longer distinguish scattering points and noise. When SNR 
is 0 dB, the scattering points in the image reconstructed by 
them are submerged by noise, and the real scattering points 
and false scattering points cannot be distinguished. Table 5 
shows that with the decrease of SNR, the entropy and TBR 
values of the imaging results of the proposed algorithm are 
superior to those of the other two algorithms, indicating 
that the proposed algorithm has stronger robustness, better 
noise tolerance and stronger noise suppression and it can 
complete translational compensation under the condition of 
sparse aperture. 

6. Conclusion 
Aiming at overcoming the difficulty in translational 

compensation for maneuvering targets under the condition 
of Bi-ISAR sparse aperture, this paper proposes a compen-
sation and imaging method by combining 2D-JLBI recon-
struction algorithm and IC search. The proposed method 
performs translational compensation and imaging for 
sparse aperture echo by establishing the compensation term 
of initial velocity information to carry out joint sparse 
reconstruction. The image with the highest quality is 
screened out through IC search, and the velocity infor-
mation is further accurately estimated so as to obtain the 
optimal image circulatively. The 2D-JLBI joint sparse 
reconstruction method avoids the high complexity of tradi-
tional reconstruction vectorization operation and decreased 
coupling of range and azimuth direction in row by column 
processing. The method based on image maximum contrast 
search also ensures the accuracy of translational compensa-
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tion. The simulation results show that the proposed method 
can still complete the compensation even when many 
sparse aperture data are missing. Compared with the other 
two algorithms, it has a stronger tolerance to noise and 
stronger robustness and can help to obtain higher-quality 
images. 
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