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Abstract. Conjugate image impedances are used to mini-
mize power reflections in a variety of domains, including am-
plifier design, microwave engineering, wireless power trans-
fer, antenna design and millimeter wave applications. For
a two-port network, they can be described as function of
different parameters including impedance, admittance, hy-
brid, inverse hybrid, chain, scattering and chain scattering
parameters. In this work, a general unified structure for the
conjugate image impedances is provided, valid for each of the
two-port representations. It highlights its close relationship
with the Rollett stability factor and provides insight into the
structure of conjugate image impedances.
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1. Introduction

Conjugate image impedances are used to minimize
power reflections in a variety of domains, including ampli-
fier design [1], microwave engineering [2], stub tuning [2],
wireless power transfer [3], [4], filter design [S], transmis-
sion lines [6], antenna design [7], reciprocal power transfer
systems [8] and millimeter wave applications [9].

They can be calculated as function of the elements of
the impedance matrix Z or the dual admittance matrix Y
of a two-port network. For systems that are described as
function of other parameters such as hybrid (%), inverse hy-
brid (g), chain (a, b), scattering (S) and chain scattering (T')
parameters, one can first convert the two-port matrix to its
impedance representation (e.g., [10], [11]), and then calculate
the conjugate image impedance.

The purpose of the present work is to provide a unified
structure for the conjugate image impedances for the different
matrix representations, and highlight its close relationship
with the Rollett stability factor. The scope of the work is
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mainly academic: in a practical setting, the well-known im-
mittance parameter conversions (e.g., [10], [11]) can be easily
used to attain the conjugate images for each representation.
Notwithstanding our modest ambitions, the motivation of the
present paper is to provide further insight into the structure of
conjugate image impedances, which may offer new ways to
understand how conjugate image impedances could be pro-
vided for multiport networks. Indeed, determination of the
conjugate image impedances has only been feasible so far for
two-port networks only [12]. Moreover, our unified structure
also includes the representation in S and 7 parameters with
complex normalization impedances.

We will first recall the conjugate image impedances on
the bases of an example of wireless power transfer (Sec. 2).
Next, we express the Rollett stability factor as function of
the different network parameters in Sec. 3, which will lead
to a unified expression for the conjugate image immittances
in Sec. 4. Finally, we illustrate the unified equation by some
examples (Sec. 5).

2. Preliminaries

Consider as numerical example the equivalent circuit of
an inductive wireless power transfer system (Fig. 1). The cir-
cuit can be considered as a two-port network with a source Vg
connected to port #1 and a load Z; connected to port #2. In
this example, power is transferred via coupled coils with cou-
pling factor k1, = 10% from the source Vs (with frequency
f = 100kHz) to the load Z;. For the values indicated in
the figure, it can be calculated that the power conversion
coefficient is 23.4% when Z, equals 50 Q.

Two port network

16.89nF k= 10% 10nF 20Q

VST (#) V; TI ISOuH% Qﬂ-{ l TVZ
£=100 kHz

Fig. 1. Equivalent circuit of an inductive wireless power transfer
system as example of a two-port.
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It is well known that, in order to realize a higher
power transfer efficiency, impedance matching can be ap-
plied to minimize power reflections. We name Z.; and Z,
the impedances that realize minimum reflections at port #1
and #2, respectively. These impedances are called the conju-
gate image impedances.

For example, it can be calculated [13] that the con-
jugate image impedance Z., of port #2 is given by Z, =
7.17Q +j33.49Q. Applying this load to the network of
Fig. 1 realizes impedance matching and results in the max-
imum available power conversion coefficient of the given
two-port, which can be calculated to be 56.4%. Indeed, the
impedance matching reduces the reflected power and maxi-
mizes the power transfer from one port to another.

The conjugate image impedances for a two-port network
are defined as (Fig. 2) [1]:

e If we terminate port #2 with a load Z,, the input
impedance as seen into port #1 is Z7,

o If we terminate port #1 with an impedance Z.;, the
impedance as seen into port #2 is Z7,

The superscript * indicates the complex conjugate.

The conjugate image impedances are intrinsic proper-
ties of the two-port network and are only dependent on the
two-port network itself. They are independent on the con-
nected impedances to the ports. The value of Z;; and Z, as
function of the elements z;; = r;; +jx;; (i, j = 1,2) of the
impedance matrix Z of the two-port network can be easily
determined by expressing the conditions for Fig. 2 into a sys-
tem of equations. The input impedance Z;, at port #1 when
Z» is connected to port #2 is:

212221
— (1)
22072

The impedance Z,y at port #2 when Z.| is connected to
port #1 is:

Zin =211 —

212221
Zowt =202 — ———. (2)
211 Ze1
Solving the above system in Z;; and Z.; when Z;, = Z7;

and Zyy = Z, results in the solution for the conjugate image
impedances as function of the elements of the impedance
matrix Z:

Zer =r11(0r +30x) = jx11, 3)

Zo =rn(0, +j0y) — jxn 4

with auxiliary variables:

r12X21 +121X12
Oy = —F———, )
2riiry

>
~
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Fig. 2. Definition of the conjugate image impedances Z|
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Fig. 3. Immittance representations of a two-port network:
impedance (z), admittance (y), hybrid (k) and inverse
hybrid (g) parameters.

For the wireless power transfer example of Fig. 1, the
impedance matrix Z can be calculated as:

| 5Q j10.88 Q
Z= j10.88Q 2Q-j33.49Q|" @

Applying (3) and (4) results in the conjugate image
impedances Z;; = 17.91Q and Z,, = 7.17Q + j33.49Q
that realize impedance matching at their respective ports.
Obviously, we can also express these values as conju-
gate image admittances Y, = 1/Z;; = 55.8mS and
Yo =1/Zy, =6.1mS —j28.6 mS. In the remainder of this
work, we will apply the notation I';; and Iy, for the con-
jugate image immittances, which are either impedances or
admittances, depending on the context.

Each network representation has some specific advan-
tages over the others, depending on the application. For ex-
ample, consider the four immittance representations of Fig. 3.
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If a voltage source is present at the input port, either the
impedance parameters z or the hybrid parameters / are con-
venient. If besides the voltage source, a parallel load is
present, the hybrid parameters 4 can be best suited. In this
work, all four immittance parameters will be indicated by the
symbol

Yij = pij +10ij. (®)

For example, in the case of impedance parameters, we obtain
vij = Zij = rij +Jx;j. Depending on the representation, the
immittance vy;; has the unit of Q or S.

In appendix A, we recall the definitions of the differ-
ent two-port matrix representations, in particular because
different definitions can be found in literature, in particu-
lar with regard to S parameters with complex normalization
impedances.

3. Rollett Stability Factor

Before continuing, it is useful to recall the dimension-
less Rollett stability factor k, which is for the immittance
parameters defined as [14], [15]:

_ 2pupn = R(yi2ya)

k
Y1221l

€))

The Rollett stability factor is applied in the study of amplifier
circuits. It characterizes the stability condition of transistors,
and its input and output adaptation, attenuation, losses and
phase in an amplifier circuit.

Itis invariant for the four different immittances. In other
words, the same value of k is obtained, no matter which im-
mittance representation is chosen. E.g., for a given two-port
network with impedance elements z;; = r;; + jx;; and cor-
responding admittance elements y;; = g;; +jb;;, one can
write:

i = 2riira — R(zi2z21) _ 281182 R (yi12y21)
|z12221] [y12y21] '

(10)

Since the Rollett stability factor k will appear in the
expression for the conjugate image immittances, it is useful
to express its value as a function of the other representations.
As function of the chain parameters a and b, its expression
can be determined from [15], [16]. We find:

. R(anay)+R(ajan)  R(bnbj) +R(b]bxn)
h |Aa| - |Ab]

Y

with |Aa| the modulus of the determinant of the matrix a, con-
sisting of elements a;;(i, j = 1,2). Notice that the Rollett
stability factor is invariant for the @ and b parameters.

k

2p11022=R(y12721)
[Y12721]
R(apay)+R(aj,a2)

a parameters |Aa|

R(b12b5)+R (b}, b22)
b parameters TAD]

Immittance

1-[811 >~ [S2[*+|AS[?
2[S12521]

T varameter |01 2+ T = | T2 |2 =T 2
parameters AT

S parameters

Tab. 1. The Rollett stability factor k as function of the two-port
parameters. For the S and T parameters, the normaliza-
tion impedances equal Zy; = Zy, = 1 Q.

The Rollett stability factor k for the S and 7' parame-
ters can also be derived from the series of steps described
in [15], [16]. We obtain:

_ 1= [S11]% = [S2[? + |AS|?

k b
2|812821]

12)

I = 1T + Tl = |Tial? = 1T
2[AT] :

13)

for normalization impedances Zy; = Zgpy = 1€, valid for
both definitions of S and 7" parameters. We refer to [6,17,18]
for converting to other (complex) normalization impedances.

We emphasize that the Rollett stability factor k is in-
herently a characteristic of the two-port network, and has the
same value, no matter the chosen representation matrix. This
also implies that the value of k is independent on the chosen
normalization impedances of the S or T parameters. Table 1
gives an overview of k expressed as function of the different
two-port representations.

4. Conjugate Immittances

In this section, we first express the conjugate image
immittances as function of the different two-port representa-
tions. This will allow for a unified expression.

4.1 As Function of the Immittance Parameters

The conjugate immittances I;; and I'c, which realize
conjugate match at the ports can be expressed in terms of the
Rollett stability factor [14], [19]:

_yya+lyoyal(k+Vk2 - 1)

Iy
¢ 2p22

Vil (14)

_yya +lynyal(k+ V2 - 1)

1)
¢ 2p11

v22. (15)

It can be shown that they correspond to the values of (3) and
(4) in the impedance representation.
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4.2 As Function of the Chain Parameters

By expressing (14) and (15) as function of the
impedance parameters z, and applying the parameter con-
version [10], [11]:

[zu zu] _ [011 Aa] (16)
21 22| axy |1 ax
we obtain:
F1:7a12+|ya12|(k+ VK2 — 1) oyl (17
¢ 2R (Ya22) “r
F2:7’a12+|7u12|(k+ Vk2 - 1) e (18)
¢ 2R (Ya11) “
with
a
Yanl = —, (19)
as
a
Ya22 = ﬁ, 20)
asi
Aa
Ya12 = —-- (21
s

This results in expressions for the conjugate image immit-
tances I'c; and Iy, written entirely in a parameters. In
other words, one can directly determine [';; and I'c, from the
a parameter representation, without first converting to, e.g.
an impedance representation z. Notice that also k can be
calculated from the a parameters as indicated in Tab. 1.

Analogous, by expressing (14) and (15) as function of
the impedance parameters z, and applying the parameter con-
version [10], [11]:

211 212 1 by 1
- 2
[ZZI 222] by [Ab bll] (22)
we obtain:
I, = Yp12 + |yp12(k + VK2 — 1) . 23)
¢ 2R (vp22) '
Yo12 + lypi12l(k + Vk2 - 1)
T = - 24
2 2R (yur1) Yb22 (24)
with
b
Ybi1 = _b_zz’ (25)
21
b
Yb22 = _b_“’ (26)
21
Ab
Yb12 = bT (27)

21

4.3 As Function of the S and T Parameters

The impedance parameters z expressed as function of
the S parameters with complex reference impedances Zy;
and Zy, for port #1 and #2, respectively, are given by (see
Appendix B):

Z
2= 221+ 81 - S — AS), (28)
ns
Z
2p =222 2, (29)
ns pi
Z
221 = Zﬂﬂsﬂ, (30)
ns p»
Z
zZ2=n—°§(1—sl.+szz—AS) 31)

with AS the determinant of S and

ng =1-511 —S»n +AS. (32)
These expressions are substituted into (14) and (15) in
order to obtain the conjugate image immittances as function

of the S parameters:

_ ysi2+lysio|(k+ Vk2 - 1)

I - s 33
cl 2R (7522) Ysii (33)
ysi2 +lysizl(k + VK2 - 1)
leo = - 34
2 2R (y511) Ys22 (34)
with
Z
ysii =n—osl(1+511—522—AS), (35)
Zyo
7522=E(1—511+522—AS), (36)
Z01Z,
ysi2 =4 01202512521. (37
g

Analogous, the impedance parameters z can be ex-
pressed as function of the 7" parameters with complex ref-
erence impedances Zy; and Zy, (see Appendix B):

Z
1 = %(Tn + T2+ To1 + 1), (38)
T
Z
1 =222 P2z, (39)
nT pi
Z
=228 L (40)
nr p2

Zy
= E(TH —Tio - T +T) 41)
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with AT the determinant of T and

ny = =Ty =T + 11 + 1. (42)

The conjugate image immittances as function of the T
parameters are found by substitution of the above equations
into (14) and (15):

_ yra+lyriof(k + Vk2 — 1)

T - s 43
cl 2R (y722) Y111 (43)
yriz + lyrial(k + Vk2 - 1)
I = - Y122 (44)
¢ 2R (yr11) r
with
Zo
YTI1 = n_(Tll +Tio+To1 + 1), (45)
T
Zyz
Y122 = E(Tu —Tio =T + ), (46)
Z01Z
yri2 = 47552 AT. (47)
Nt

4.4 Unified Expression

In the previous sections, the expression for the conju-
gate image immittances were derived for the different two
port representations. These expressions can be summarized
into the following unified equations, valid for all the given
two-port representations:

Equations (48) and (49) provide a general structure for
the conjugate image immittances of two-port networks, valid
for the immittance representations z, y, A, g, the chain repre-
sentations a and b, and the S and T parameters with different
complex normalization impedances for each port. They are
dependent on the Rollett stability factor k. As far as we can
tell, this general structure has not yet been presented.

Since the Rollett stability factor k is always real, the first
term of I';; and I, is always real for reciprocal systems. As
aresult, the imaginary part of the conjugate image immittance
I'; for reciprocal systems equals ¥;;, which corresponds to
the self immittance of the corresponding port.

It is worthwhile noting that the unified approach in-
troduces additional divisions due to the transformation into
auxiliary parameters compared to e.g. (3) and (4). For cal-
culations requiring very high precision or extreme outlier
values, attention should be paid to the applied computational
precision.

5. Numerical Examples

Consider the numerical wireless power transfer exam-
ple from the introduction (Fig. 1). We calculate the conjugate
image immittances for different representations from the uni-
fied expression.

5.1 Impedance Representation: z Parameters

The impedance matrix Z is given by (7). From (10), the
Rollett stability factor follows:

r, =Yt 12l (k + Vk2 — 1) o 48) _20-R[GI088)] . (50)
¢ 2R (¥22) ~IGlossyy T
r Y+ ynl(k+ V2 -1) 49
2= 2R (411) Yz (49) " From Tab. 2, we find
The parameters y;; are given in Tab. 2 for each repre- iz =211 =508, D
sentation. As alre.afly mentioned, Tab. 1 gives an.overview Yo, =220 =2.0Q-i33.49Q, (52)
of the Rollett stability factor k expressed as function of the
different two-port representations. V12,7 = 212221 = —118.37 Q2 (53)
Y11 Y22 Y12
Immittance Y11 Y22 Y1221
a parameters Z—; % j—g’l
b b
b parameters —rﬁf _T;: %
S parameters i—osl(l+511 - Sy — AS) %(1*511+5227AS) 420]2202512S21
s
Tparameters %(T]] +T12 +T21 +T22) %(T]] —T12 —T21 +T22) 4LZZMAT
T

withng=1-S;; —=Sp+ASandnt =-T1| - T+ Th) + T

Tab. 2. The parameters ;; for different two-port representations.
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Substitution of the numerical values into (48) and (49)
results into the same values as found in the introduction:

_ (j10.88)> +1(j10.88)|(k + VA2 = 1)

I—‘cl,z = 4 5
=1791Q, (54)
: 2 : 2 2 _
- (110.88)% + |(j10.88)2|(k + VK2 — 1) 243349

10
=7.17Q+j33.49Q. (55)

5.2 Hybrid Representation: 4 Parameters

If we suppose that the above wireless power transfer
example was given via an h parameter representation, the
two-port matrix would be given by:

hiy hia| _ [5.21Q2+j3.52Q
hy1 hp| | 0.32-j0.019

-0.32+j0.019
0.0018 S +j0.030S| -
(56)

The Rollett stability factor, calculated from the above h
parameters, can be found in Tab. 1 and equals 1.17, the same

value as the one calculated via the impedance parameters.
From Tab. 2, we find

Ui =h11 =521Q+j3.52Q, (57)
Y22.n = hao =0.0018S +j0.030 S, (58)
Yio,n = hi2hy1 = —0.10 +j0.013. 59

Substituting these numerical values into the unified expres-
sions for the conjugate image immittances (48) and (49) result
into an impedance at port #1 and an admittance at port #2:

Tein=1791Q, (60)
Tep = 6.1mS — j29mS. ©1)

Obviously, I'c;.p =Tc1; and oy = 1/Tca ;.

5.3 Chain Representation: a Parameters

If the wireless power transfer example would be rep-
resented by the a parameters, the two-port matrix would be
given by:

-15.39Q —-j11.80Q

apn arz| _ —j0.46
[ } = [ ~3.08 - j0.18 ©2)

az; dax —j0.092 S

The Rollett stability factor, calculated from the above a
parameters, is given by (11) and again equals 1.17. The auxil-
iary parameters ¢;; can also be easily determined from Tab. 2
and equal the values found for the impedance representation.
Substitution into (48) and (49) results in the same conjugate
impedances.

5.4 S Parameters

Consider the S matrix of the wireless power trans-
fer configuration with e.g., normalization impedances
Zo1 = 50 Q for port #1 and Zy, = 5 Q —j20 Q for port #2:

—-0.47 +j0.080

St Sp| [ -0.81+j0.071
[ }‘[ 0.24-j0.057 |- ©

So1 S —0.0087 +j0.11

From Tab. 2, we find, with ng = 1.38 + j0.104, the
same auxiliary parameters ¢;; (and thus also conjugate im-
age impedances) as for the impedance representation.

6. Conclusion

In order to minimize power reflections, conjugate im-
age immittances [';; and ', can be connected to the ports of
a two-port network. However, a network can be character-
ized by different representations. In this work, we expressed
the conjugate image immittances I;; and I, as a unified
equation, given by (48) and (49), and valid for the immit-
tance representations z, y, h, g, the chain representations
a and b, and the S and T parameters with different complex
normalization impedances for each port. The Rollett stability
factor k and auxiliary parameters ;; for each representation
are listed in Tabs. 1 and 2. In this way, we have provided
a general structure for the conjugate image immittances of
two-port networks.
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Appendix A: Definitions of Two-port
Representations

In this appendix, we recall the different two-port ma-
trix representations, in particular because different definitions
can be found in literature. If other definitions are used, it is
straightforward to adjust our results.

Immittance parameters: Taken into account the volt-
ages and currents as defined in Fig. 3, the four immittance
parameters are defined as:

* Impedance parameters z

Vi zin zi2| |h
= . . Al
[Vz] [121 zzz] [12] A
* Admittance parameters y
ol _ [y oyl W
= . . A2
[12‘ V21 y2| | V2 (A2)
* Hybrid parameters &
Vi _ [ hia| 1]
= . . A3
|| |har hap| |V (A3)
* Inverse hybrid parameters g
(1] e gr2] [V
= . . A4
V2| 821 82| |12 a4

Chain parameters: We will apply the following def-
initions for the chain parameters (sometimes also referred
to as transmission or ABCD parameters). These parameters
simplify a.o. the cascading of two-ports.

* a parameters

\4 an an| [V
= . . A5
»11] [6121 azz] [—12_ (A5)
* b parameters
[V, bu bia| (Wi}
= . . A6
»-12] [b21 bzz] [11_ (46)

S and T parameters: Whereas the immittance and
chain parameters are only dependent on the characteristics
of the two-port itself, the S (scattering) and T (chain scat-
tering or scattering transfer) parameters are dependent on
chosen normalization impedances Zj; and Zp. Common
practical values are equal normalization impedances (resis-
tances) of 1Q, 50Q or 75Q. However, different normal-
ization impedances can be chosen for each port. Moreover,
these normalization impedances can be complex values (with
positive real parts) [6], [10].

Two distinct definitions are found in literature for the S
and T parameters with complex reference impedances. They
are incompatible with each other, and each serve a different
purpose, depending on the application. We refer to [6,20-23]
for an in depth overview.
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The first definition relates the S and 7' parameters to the
normalized wave amplitudes of the voltage waves a; and b;
at each port (i = 1,2):

a; = pi(Vi + Zo: 1), (A7)
bi = pi(Vi = Zoil;) (AB)

with \/%T
pe= YN Z0) (A9)

2| Zy|

The other definition relates to the power waves ap; and by, ;
by (i =1,2):

ap,i = pp.i(Vi + Zoi1;), (A10)
bp,i = pp.i(Vi = Zy;1;) (A11)

with 1
(A12)

VR G

In this work, equations (A7) and (A8) are used for the §
and T parameters, since this definition is essential for certain
applications, which is not the case for (A10) and (A11) [21].

The S and T matrices express the relations between the
wave-based parameters:
* § parameters

by _ (St Siaf |ai
by Sa1 S22| T |az]”
e T parameters

bi| _ T Ti| (a2
ai Iy T |b2]”
Note that sometimes the 7 parameters are defined as
a; = Ti1by + Tipas and by = Tr1by + Trray. In this case,

adaptation of our results is straightforward: one can simply
interchange 77, for T»,, and T7; for T»;.

(A13)

(Al4)

Appendix B: S and 7 Parameter
Transformation

Transformation from one representation to another can
easily be performed by matrix calculations. We recall the
procedure set-up in [11], and apply it to transform S and T
parameters to z parameters. We explicitly perform the deriva-
tion, since many sources (e.g., [11], [20]) assume the same
reference impedance for each port, whereas we generalize to
different reference impedances for each port.

In general, a representation R converts the input U to

the output O

0 =RU, (B1)

e.g., equation (A13) for S parameters. We wish to perform
a transformation to another representation R”™ with input UV
and output OV:

oVN =RMUV, (B2)

e.g., equation (A1) for z parameters. This transformation can
be described by an (at this point unknown) transformation
matrix P connecting the stacked input and output matrices

oV| [Py Pp| |O

UV |7 [Py Pxn| |U
where we have divided the matrix P into submatrices P;;.
Solving for OV results into:

(B3)

OY = (PR +Pp)(PyR+Py)"'UN  (B4)
and thus from (B2)
RY = (P;1R+Ppp)(PyR+Pyp) . (B5)

If we know the transformation matrix P, this expres-
sion allows us to transform any representation to another.
Expression (B3) can be written as

P, P,|"' [O] [O
P21 P22 ’ UN “|U

and equals for the S parameters, based on (A7) and (AS8):

(B6)

r1 0 —piZy 0 Vi by
0 p2 0 -p2Zo2| |V2 by

. = . B7
pt 0 piZp 0 I ai (B7)
0 p2 0 P2Zo I as

Inverting the first matrix results into the transformation
matrix Pg_,, for the conversion from S to z parameters:

TR
PS—>z—§ 1 162 1 s (B8)
17(1) 1 L PlgOI L

P2Zp2 P2Zo2

Applying this transformation matrix Pg_,, into (BS) results
into (28), (29), (30) and (31) that express the z parameters as
function of the S parameters for different complex normal-
ization impedances.

Note that the derivation for S to z parameters reduces
to the results from [11], [20] for equal reference impedances.

Analogous, we obtain for the T parameters

1 1
(5 & 0 0
PT—>Z=§ 1 1 %2 ’8 (B9)
P1Zor  pi1Zo | |
0 0 P2Zn  p2Zom

resulting into (38), (39), (40) and (41).



