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Abstract. Conjugate image impedances are used to mini-
mize power reflections in a variety of domains, including am-
plifier design, microwave engineering, wireless power trans-
fer, antenna design and millimeter wave applications. For
a two-port network, they can be described as function of
different parameters including impedance, admittance, hy-
brid, inverse hybrid, chain, scattering and chain scattering
parameters. In this work, a general unified structure for the
conjugate image impedances is provided, valid for each of the
two-port representations. It highlights its close relationship
with the Rollett stability factor and provides insight into the
structure of conjugate image impedances.
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1. Introduction
Conjugate image impedances are used to minimize

power reflections in a variety of domains, including ampli-
fier design [1], microwave engineering [2], stub tuning [2],
wireless power transfer [3], [4], filter design [5], transmis-
sion lines [6], antenna design [7], reciprocal power transfer
systems [8] and millimeter wave applications [9].

They can be calculated as function of the elements of
the impedance matrix Z or the dual admittance matrix Y
of a two-port network. For systems that are described as
function of other parameters such as hybrid (ℎ), inverse hy-
brid (𝑔), chain (𝑎, 𝑏), scattering (𝑆) and chain scattering (𝑇)
parameters, one can first convert the two-port matrix to its
impedance representation (e.g., [10], [11]), and then calculate
the conjugate image impedance.

The purpose of the present work is to provide a unified
structure for the conjugate image impedances for the different
matrix representations, and highlight its close relationship
with the Rollett stability factor. The scope of the work is

mainly academic: in a practical setting, the well-known im-
mittance parameter conversions (e.g., [10], [11]) can be easily
used to attain the conjugate images for each representation.
Notwithstanding our modest ambitions, the motivation of the
present paper is to provide further insight into the structure of
conjugate image impedances, which may offer new ways to
understand how conjugate image impedances could be pro-
vided for multiport networks. Indeed, determination of the
conjugate image impedances has only been feasible so far for
two-port networks only [12]. Moreover, our unified structure
also includes the representation in 𝑆 and 𝑇 parameters with
complex normalization impedances.

We will first recall the conjugate image impedances on
the bases of an example of wireless power transfer (Sec. 2).
Next, we express the Rollett stability factor as function of
the different network parameters in Sec. 3, which will lead
to a unified expression for the conjugate image immittances
in Sec. 4. Finally, we illustrate the unified equation by some
examples (Sec. 5).

2. Preliminaries
Consider as numerical example the equivalent circuit of

an inductive wireless power transfer system (Fig. 1). The cir-
cuit can be considered as a two-port network with a source𝑉S
connected to port #1 and a load 𝑍L connected to port #2. In
this example, power is transferred via coupled coils with cou-
pling factor 𝑘L = 10% from the source 𝑉S (with frequency
𝑓 = 100 kHz) to the load 𝑍L. For the values indicated in
the figure, it can be calculated that the power conversion
coefficient is 23.4% when 𝑍L equals 50Ω.
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Fig. 1. Equivalent circuit of an inductive wireless power transfer
system as example of a two-port.
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It is well known that, in order to realize a higher
power transfer efficiency, impedance matching can be ap-
plied to minimize power reflections. We name 𝑍c1 and 𝑍c2
the impedances that realize minimum reflections at port #1
and #2, respectively. These impedances are called the conju-
gate image impedances.

For example, it can be calculated [13] that the con-
jugate image impedance 𝑍c2 of port #2 is given by 𝑍c2 =

7.17Ω + j33.49Ω. Applying this load to the network of
Fig. 1 realizes impedance matching and results in the max-
imum available power conversion coefficient of the given
two-port, which can be calculated to be 56.4%. Indeed, the
impedance matching reduces the reflected power and maxi-
mizes the power transfer from one port to another.

The conjugate image impedances for a two-port network
are defined as (Fig. 2) [1]:

• If we terminate port #2 with a load 𝑍c2, the input
impedance as seen into port #1 is 𝑍∗

c1

• If we terminate port #1 with an impedance 𝑍c1, the
impedance as seen into port #2 is 𝑍∗

c2

The superscript * indicates the complex conjugate.

The conjugate image impedances are intrinsic proper-
ties of the two-port network and are only dependent on the
two-port network itself. They are independent on the con-
nected impedances to the ports. The value of 𝑍c1 and 𝑍c2 as
function of the elements 𝑧𝑖 𝑗 = 𝑟𝑖 𝑗 + j𝑥𝑖 𝑗 (𝑖, 𝑗 = 1, 2) of the
impedance matrix Z of the two-port network can be easily
determined by expressing the conditions for Fig. 2 into a sys-
tem of equations. The input impedance 𝑍in at port #1 when
𝑍c2 is connected to port #2 is:

𝑍in = 𝑧11 −
𝑧12𝑧21
𝑧22𝑍c2

. (1)

The impedance 𝑍out at port #2 when 𝑍c1 is connected to
port #1 is:

𝑍out = 𝑧22 −
𝑧12𝑧21
𝑧11𝑍c1

. (2)

Solving the above system in 𝑍c1 and 𝑍c2 when 𝑍in = 𝑍∗
c1

and 𝑍out = 𝑍∗
c2 results in the solution for the conjugate image

impedances as function of the elements of the impedance
matrix Z:

𝑍c1 = 𝑟11 (𝜃𝑟 + j𝜃𝑥) − j𝑥11, (3)

𝑍c2 = 𝑟22 (𝜃𝑟 + j𝜃𝑥) − j𝑥22 (4)

with auxiliary variables:

𝜃𝑥 =
𝑟12𝑥21 + 𝑟21𝑥12
2𝑟11𝑟22

, (5)

𝜃𝑟 =

√︂
1 − 𝜃2𝑥 +

𝑥12𝑥21 − 𝑟12𝑟21
𝑟11𝑟22

. (6)
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Fig. 2. Definition of the conjugate image impedances 𝑍c1
and 𝑍c2.
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Fig. 3. Immittance representations of a two-port network:
impedance (𝑧), admittance (𝑦), hybrid (ℎ) and inverse
hybrid (𝑔) parameters.

For the wireless power transfer example of Fig. 1, the
impedance matrix Z can be calculated as:

Z =

[
5Ω j10.88Ω

j10.88Ω 2Ω − j33.49Ω

]
. (7)

Applying (3) and (4) results in the conjugate image
impedances 𝑍c1 = 17.91Ω and 𝑍c2 = 7.17Ω + j33.49Ω
that realize impedance matching at their respective ports.
Obviously, we can also express these values as conju-
gate image admittances 𝑌c1 = 1/𝑍c1 = 55.8mS and
𝑌c2 = 1/𝑍c2 = 6.1mS −j28.6mS. In the remainder of this
work, we will apply the notation Γc1 and Γc2 for the con-
jugate image immittances, which are either impedances or
admittances, depending on the context.

Each network representation has some specific advan-
tages over the others, depending on the application. For ex-
ample, consider the four immittance representations of Fig. 3.
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If a voltage source is present at the input port, either the
impedance parameters 𝑧 or the hybrid parameters ℎ are con-
venient. If besides the voltage source, a parallel load is
present, the hybrid parameters ℎ can be best suited. In this
work, all four immittance parameters will be indicated by the
symbol

𝛾𝑖 𝑗 = 𝜌𝑖 𝑗 + j𝜎𝑖 𝑗 . (8)

For example, in the case of impedance parameters, we obtain
𝛾𝑖 𝑗 = 𝑧𝑖 𝑗 = 𝑟𝑖 𝑗 + j𝑥𝑖 𝑗 . Depending on the representation, the
immittance 𝛾𝑖 𝑗 has the unit of Ω or S.

In appendix A, we recall the definitions of the differ-
ent two-port matrix representations, in particular because
different definitions can be found in literature, in particu-
lar with regard to 𝑆 parameters with complex normalization
impedances.

3. Rollett Stability Factor
Before continuing, it is useful to recall the dimension-

less Rollett stability factor 𝑘 , which is for the immittance
parameters defined as [14], [15]:

𝑘 =
2𝜌11𝜌22 −ℜ(𝛾12𝛾21)

|𝛾12𝛾21 |
. (9)

The Rollett stability factor is applied in the study of amplifier
circuits. It characterizes the stability condition of transistors,
and its input and output adaptation, attenuation, losses and
phase in an amplifier circuit.

It is invariant for the four different immittances. In other
words, the same value of 𝑘 is obtained, no matter which im-
mittance representation is chosen. E.g., for a given two-port
network with impedance elements 𝑧𝑖 𝑗 = 𝑟𝑖 𝑗 + j𝑥𝑖 𝑗 and cor-
responding admittance elements 𝑦𝑖 𝑗 = 𝑔𝑖 𝑗 + j𝑏𝑖 𝑗 , one can
write:

𝑘 =
2𝑟11𝑟22 −ℜ(𝑧12𝑧21)

|𝑧12𝑧21 |
=
2𝑔11𝑔22 −ℜ(𝑦12𝑦21)

|𝑦12𝑦21 |
. (10)

Since the Rollett stability factor 𝑘 will appear in the
expression for the conjugate image immittances, it is useful
to express its value as a function of the other representations.
As function of the chain parameters 𝑎 and 𝑏, its expression
can be determined from [15], [16]. We find:

𝑘 =
ℜ(𝑎12𝑎∗21) + ℜ(𝑎∗11𝑎22)

|Δa| =
ℜ(𝑏12𝑏∗21) + ℜ(𝑏∗11𝑏22)

|Δb|
(11)

with |Δa| themodulus of the determinant of thematrix a, con-
sisting of elements 𝑎𝑖 𝑗 (𝑖, 𝑗 = 1, 2). Notice that the Rollett
stability factor is invariant for the 𝑎 and 𝑏 parameters.

𝑘

Immittance
2𝜌11𝜌22−ℜ(𝛾12𝛾21)

|𝛾12𝛾21 |

𝑎 parameters
ℜ(𝑎12𝑎∗21)+ℜ(𝑎∗11𝑎22)

|Δa|

𝑏 parameters
ℜ(𝑏12𝑏∗21)+ℜ(𝑏∗11𝑏22)

|Δb|

𝑆 parameters
1−|𝑆11 |2−|𝑆22 |2+|ΔS|2

2|𝑆12𝑆21 |

𝑇 parameters
|𝑇11 |2+|𝑇22 |2−|𝑇12 |2−|𝑇21 |2

2|ΔT|

Tab. 1. The Rollett stability factor 𝑘 as function of the two-port
parameters. For the 𝑆 and 𝑇 parameters, the normaliza-
tion impedances equal 𝑍01 = 𝑍02 = 1Ω.

The Rollett stability factor 𝑘 for the 𝑆 and 𝑇 parame-
ters can also be derived from the series of steps described
in [15], [16]. We obtain:

𝑘 =
1 − |𝑆11 |2 − |𝑆22 |2 + |ΔS|2

2|𝑆12𝑆21 |
, (12)

𝑘 =
|𝑇11 |2 + |𝑇22 |2 − |𝑇12 |2 − |𝑇21 |2

2|ΔT| , (13)

for normalization impedances 𝑍01 = 𝑍02 = 1Ω, valid for
both definitions of 𝑆 and 𝑇 parameters. We refer to [6,17,18]
for converting to other (complex) normalization impedances.

We emphasize that the Rollett stability factor 𝑘 is in-
herently a characteristic of the two-port network, and has the
same value, no matter the chosen representation matrix. This
also implies that the value of 𝑘 is independent on the chosen
normalization impedances of the 𝑆 or 𝑇 parameters. Table 1
gives an overview of 𝑘 expressed as function of the different
two-port representations.

4. Conjugate Immittances
In this section, we first express the conjugate image

immittances as function of the different two-port representa-
tions. This will allow for a unified expression.

4.1 As Function of the Immittance Parameters
The conjugate immittances Γc1 and Γc2 which realize

conjugate match at the ports can be expressed in terms of the
Rollett stability factor [14], [19]:

Γc1 =
𝛾12𝛾21 + |𝛾12𝛾21 | (𝑘 +

√
𝑘2 − 1)

2𝜌22
− 𝛾11, (14)

Γc2 =
𝛾12𝛾21 + |𝛾12𝛾21 | (𝑘 +

√
𝑘2 − 1)

2𝜌11
− 𝛾22. (15)

It can be shown that they correspond to the values of (3) and
(4) in the impedance representation.
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4.2 As Function of the Chain Parameters
By expressing (14) and (15) as function of the

impedance parameters 𝑧, and applying the parameter con-
version [10], [11]:[

𝑧11 𝑧12
𝑧21 𝑧22

]
=
1
𝑎21

[
𝑎11 Δa
1 𝑎22

]
(16)

we obtain:

Γc1 =
𝛾𝑎12 + |𝛾𝑎12 | (𝑘 +

√
𝑘2 − 1)

2ℜ(𝛾𝑎22)
− 𝛾𝑎11, (17)

Γc2 =
𝛾𝑎12 + |𝛾𝑎12 | (𝑘 +

√
𝑘2 − 1)

2ℜ(𝛾𝑎11)
− 𝛾𝑎22 (18)

with

𝛾𝑎11 =
𝑎11
𝑎21

, (19)

𝛾𝑎22 =
𝑎22
𝑎21

, (20)

𝛾𝑎12 =
Δa
𝑎221

. (21)

This results in expressions for the conjugate image immit-
tances Γc1 and Γc2, written entirely in 𝑎 parameters. In
other words, one can directly determine Γc1 and Γc2 from the
𝑎 parameter representation, without first converting to, e.g.
an impedance representation 𝑧. Notice that also 𝑘 can be
calculated from the 𝑎 parameters as indicated in Tab. 1.

Analogous, by expressing (14) and (15) as function of
the impedance parameters 𝑧, and applying the parameter con-
version [10], [11]:[

𝑧11 𝑧12
𝑧21 𝑧22

]
= − 1

𝑏21

[
𝑏22 1
Δb 𝑏11

]
(22)

we obtain:

Γc1 =
𝛾𝑏12 + |𝛾𝑏12 | (𝑘 +

√
𝑘2 − 1)

2ℜ(𝛾𝑏22)
− 𝛾𝑏11, (23)

Γc2 =
𝛾𝑏12 + |𝛾𝑏12 | (𝑘 +

√
𝑘2 − 1)

2ℜ(𝛾𝑏11)
− 𝛾𝑏22 (24)

with

𝛾𝑏11 = −𝑏22
𝑏21

, (25)

𝛾𝑏22 = −𝑏11
𝑏21

, (26)

𝛾𝑏12 =
Δb
𝑏221

. (27)

4.3 As Function of the S and T Parameters
The impedance parameters 𝑧 expressed as function of

the 𝑆 parameters with complex reference impedances 𝑍01
and 𝑍02 for port #1 and #2, respectively, are given by (see
Appendix B):

𝑧11 =
𝑍01
𝑛S

(1 + 𝑆11 − 𝑆22 − ΔS), (28)

𝑧12 = 2
𝑍02
𝑛S

𝑝2
𝑝1

𝑆12, (29)

𝑧21 = 2
𝑍01
𝑛S

𝑝1
𝑝2

𝑆21, (30)

𝑧22 =
𝑍02
𝑛S

(1 − 𝑆11 + 𝑆22 − ΔS) (31)

with ΔS the determinant of S and

𝑛S = 1 − 𝑆11 − 𝑆22 + ΔS. (32)

These expressions are substituted into (14) and (15) in
order to obtain the conjugate image immittances as function
of the 𝑆 parameters:

Γc1 =
𝛾𝑆12 + |𝛾𝑆12 | (𝑘 +

√
𝑘2 − 1)

2ℜ(𝛾𝑆22)
− 𝛾𝑆11, (33)

Γc2 =
𝛾𝑆12 + |𝛾𝑆12 | (𝑘 +

√
𝑘2 − 1)

2ℜ(𝛾𝑆11)
− 𝛾𝑆22 (34)

with

𝛾𝑆11 =
𝑍01
𝑛S

(1 + 𝑆11 − 𝑆22 − ΔS), (35)

𝛾𝑆22 =
𝑍02
𝑛S

(1 − 𝑆11 + 𝑆22 − ΔS), (36)

𝛾𝑆12 = 4
𝑍01𝑍02

𝑛2
𝑆

𝑆12𝑆21. (37)

Analogous, the impedance parameters 𝑧 can be ex-
pressed as function of the 𝑇 parameters with complex ref-
erence impedances 𝑍01 and 𝑍02 (see Appendix B):

𝑧11 =
𝑍01
𝑛T

(𝑇11 + 𝑇12 + 𝑇21 + 𝑇22), (38)

𝑧12 = 2
𝑍02
𝑛T

𝑝2
𝑝1

ΔT, (39)

𝑧21 = 2
𝑍01
𝑛T

𝑝1
𝑝2

, (40)

𝑧22 =
𝑍02
𝑛T

(𝑇11 − 𝑇12 − 𝑇21 + 𝑇22) (41)
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with ΔT the determinant of T and

𝑛T = −𝑇11 − 𝑇12 + 𝑇21 + 𝑇22. (42)

The conjugate image immittances as function of the 𝑇
parameters are found by substitution of the above equations
into (14) and (15):

Γc1 =
𝛾𝑇12 + |𝛾𝑇12 | (𝑘 +

√
𝑘2 − 1)

2ℜ(𝛾𝑇22)
− 𝛾𝑇11, (43)

Γc2 =
𝛾𝑇12 + |𝛾𝑇12 | (𝑘 +

√
𝑘2 − 1)

2ℜ(𝛾𝑇11)
− 𝛾𝑇22 (44)

with

𝛾𝑇11 =
𝑍01
𝑛T

(𝑇11 + 𝑇12 + 𝑇21 + 𝑇22), (45)

𝛾𝑇22 =
𝑍02
𝑛T

(𝑇11 − 𝑇12 − 𝑇21 + 𝑇22), (46)

𝛾𝑇12 = 4
𝑍01𝑍02

𝑛2T
ΔT. (47)

4.4 Unified Expression
In the previous sections, the expression for the conju-

gate image immittances were derived for the different two
port representations. These expressions can be summarized
into the following unified equations, valid for all the given
two-port representations:

Γc1 =
𝜓12 + |𝜓12 | (𝑘 +

√
𝑘2 − 1)

2ℜ(𝜓22)
− 𝜓11

Γc2 =
𝜓12 + |𝜓12 | (𝑘 +

√
𝑘2 − 1)

2ℜ(𝜓11)
− 𝜓22

(48)

(49)

The parameters 𝜓𝑖 𝑗 are given in Tab. 2 for each repre-
sentation. As already mentioned, Tab. 1 gives an overview
of the Rollett stability factor 𝑘 expressed as function of the
different two-port representations.

Equations (48) and (49) provide a general structure for
the conjugate image immittances of two-port networks, valid
for the immittance representations 𝑧, 𝑦, ℎ, 𝑔, the chain repre-
sentations 𝑎 and 𝑏, and the 𝑆 and 𝑇 parameters with different
complex normalization impedances for each port. They are
dependent on the Rollett stability factor 𝑘 . As far as we can
tell, this general structure has not yet been presented.

Since the Rollett stability factor 𝑘 is always real, the first
term of Γc1 and Γc2 is always real for reciprocal systems. As
a result, the imaginary part of the conjugate image immittance
Γc𝑖 for reciprocal systems equals 𝜓𝑖𝑖 , which corresponds to
the self immittance of the corresponding port.

It is worthwhile noting that the unified approach in-
troduces additional divisions due to the transformation into
auxiliary parameters compared to e.g. (3) and (4). For cal-
culations requiring very high precision or extreme outlier
values, attention should be paid to the applied computational
precision.

5. Numerical Examples
Consider the numerical wireless power transfer exam-

ple from the introduction (Fig. 1). We calculate the conjugate
image immittances for different representations from the uni-
fied expression.

5.1 Impedance Representation: z Parameters
The impedance matrix Z is given by (7). From (10), the

Rollett stability factor follows:

𝑘 =
20 −ℜ[(j10.88)2]

| (j10.88)2 |
= 1.17. (50)

From Tab. 2, we find

𝜓11,𝑧 = 𝑧11 = 5.0Ω, (51)

𝜓22,𝑧 = 𝑧22 = 2.0Ω − j33.49Ω, (52)

𝜓12,𝑧 = 𝑧12𝑧21 = −118.37Ω2. (53)

𝜓11 𝜓22 𝜓12
Immittance 𝛾11 𝛾22 𝛾12𝛾21

𝑎 parameters 𝑎11
𝑎21

𝑎22
𝑎21

Δa
𝑎221

𝑏 parameters − 𝑏22
𝑏21

− 𝑏11
𝑏21

Δb
𝑏221

𝑆 parameters 𝑍01
𝑛S

(1 + 𝑆11 − 𝑆22 − ΔS) 𝑍02
𝑛S

(1 − 𝑆11 + 𝑆22 − ΔS) 4 𝑍01𝑍02
𝑛2S

𝑆12𝑆21

𝑇 parameters 𝑍01
𝑛T

(𝑇11 + 𝑇12 + 𝑇21 + 𝑇22)
𝑍02
𝑛T

(𝑇11 − 𝑇12 − 𝑇21 + 𝑇22) 4 𝑍01𝑍02
𝑛2T

ΔT

with 𝑛S = 1 − 𝑆11 − 𝑆22 + ΔS and 𝑛T = −𝑇11 − 𝑇12 + 𝑇21 + 𝑇22

Tab. 2. The parameters 𝜓𝑖 𝑗 for different two-port representations.
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Substitution of the numerical values into (48) and (49)
results into the same values as found in the introduction:

Γc1,𝑧 =
(j10.88)2 + |(j10.88)2 | (𝑘 +

√
𝑘2 − 1)

4
− 5

= 17.91Ω, (54)

Γc2,𝑧 =
(j10.88)2 + |(j10.88)2 | (𝑘 +

√
𝑘2 − 1)

10
− 2+ j33.49

= 7.17Ω + j33.49Ω. (55)

5.2 Hybrid Representation: h Parameters
If we suppose that the above wireless power transfer

example was given via an ℎ parameter representation, the
two-port matrix would be given by:[

ℎ11 ℎ12
ℎ21 ℎ22

]
=

[
5.21Ω + j3.52Ω −0.32 + j0.019
0.32 − j0.019 0.0018 S + j0.030 S

]
.

(56)

The Rollett stability factor, calculated from the above ℎ
parameters, can be found in Tab. 1 and equals 1.17, the same
value as the one calculated via the impedance parameters.
From Tab. 2, we find

𝜓11,ℎ = ℎ11 = 5.21Ω + j3.52Ω, (57)

𝜓22,ℎ = ℎ22 = 0.0018 S + j0.030 S, (58)

𝜓12,ℎ = ℎ12ℎ21 = −0.10 + j0.013. (59)

Substituting these numerical values into the unified expres-
sions for the conjugate image immittances (48) and (49) result
into an impedance at port #1 and an admittance at port #2:

Γc1,ℎ = 17.91Ω, (60)

Γc2,ℎ = 6.1mS − j29mS. (61)

Obviously, Γc1,ℎ = Γc1,𝑧 and Γc2,ℎ = 1/Γc2,𝑧 .

5.3 Chain Representation: a Parameters
If the wireless power transfer example would be rep-

resented by the 𝑎 parameters, the two-port matrix would be
given by:

[
𝑎11 𝑎12
𝑎21 𝑎22

]
=

[
−j0.46 −15.39Ω − j11.80Ω

−j0.092 S −3.08 − j0.18

]
. (62)

The Rollett stability factor, calculated from the above 𝑎
parameters, is given by (11) and again equals 1.17. The auxil-
iary parameters𝜓𝑖 𝑗 can also be easily determined fromTab. 2
and equal the values found for the impedance representation.
Substitution into (48) and (49) results in the same conjugate
impedances.

5.4 S Parameters
Consider the 𝑆 matrix of the wireless power trans-

fer configuration with e.g., normalization impedances
𝑍01 = 50Ω for port #1 and 𝑍02 = 5Ω − j20Ω for port #2:

[
𝑆11 𝑆12
𝑆21 𝑆22

]
=

[
−0.81 + j0.071 −0.47 + j0.080
−0.0087 + j0.11 0.24 − j0.057

]
. (63)

From Tab. 2, we find, with 𝑛S = 1.38 + j0.104, the
same auxiliary parameters 𝜓𝑖 𝑗 (and thus also conjugate im-
age impedances) as for the impedance representation.

6. Conclusion
In order to minimize power reflections, conjugate im-

age immittances Γc1 and Γc2 can be connected to the ports of
a two-port network. However, a network can be character-
ized by different representations. In this work, we expressed
the conjugate image immittances Γc1 and Γc2 as a unified
equation, given by (48) and (49), and valid for the immit-
tance representations 𝑧, 𝑦, ℎ, 𝑔, the chain representations
𝑎 and 𝑏, and the 𝑆 and 𝑇 parameters with different complex
normalization impedances for each port. The Rollett stability
factor 𝑘 and auxiliary parameters 𝜓𝑖 𝑗 for each representation
are listed in Tabs. 1 and 2. In this way, we have provided
a general structure for the conjugate image immittances of
two-port networks.
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Appendix A: Definitions of Two-port
Representations

In this appendix, we recall the different two-port ma-
trix representations, in particular because different definitions
can be found in literature. If other definitions are used, it is
straightforward to adjust our results.

Immittance parameters: Taken into account the volt-
ages and currents as defined in Fig. 3, the four immittance
parameters are defined as:

• Impedance parameters 𝑧[
𝑉1
𝑉2

]
=

[
𝑧11 𝑧12
𝑧21 𝑧22

]
.

[
𝐼1
𝐼2

]
. (A1)

• Admittance parameters 𝑦[
𝐼1
𝐼2

]
=

[
𝑦11 𝑦12
𝑦21 𝑦22

]
.

[
𝑉1
𝑉2

]
. (A2)

• Hybrid parameters ℎ[
𝑉1
𝐼2

]
=

[
ℎ11 ℎ12
ℎ21 ℎ22

]
.

[
𝐼1
𝑉2

]
. (A3)

• Inverse hybrid parameters 𝑔[
𝐼1
𝑉2

]
=

[
𝑔11 𝑔12
𝑔21 𝑔22

]
.

[
𝑉1
𝐼2

]
. (A4)

Chain parameters: We will apply the following def-
initions for the chain parameters (sometimes also referred
to as transmission or ABCD parameters). These parameters
simplify a.o. the cascading of two-ports.

• 𝑎 parameters [
𝑉1
𝐼1

]
=

[
𝑎11 𝑎12
𝑎21 𝑎22

]
.

[
𝑉2
−𝐼2

]
. (A5)

• 𝑏 parameters [
𝑉2
−𝐼2

]
=

[
𝑏11 𝑏12
𝑏21 𝑏22

]
.

[
𝑉1
𝐼1

]
. (A6)

S and T parameters: Whereas the immittance and
chain parameters are only dependent on the characteristics
of the two-port itself, the 𝑆 (scattering) and 𝑇 (chain scat-
tering or scattering transfer) parameters are dependent on
chosen normalization impedances 𝑍01 and 𝑍02. Common
practical values are equal normalization impedances (resis-
tances) of 1Ω, 50Ω or 75Ω. However, different normal-
ization impedances can be chosen for each port. Moreover,
these normalization impedances can be complex values (with
positive real parts) [6], [10].

Two distinct definitions are found in literature for the 𝑆
and 𝑇 parameters with complex reference impedances. They
are incompatible with each other, and each serve a different
purpose, depending on the application. We refer to [6,20–23]
for an in depth overview.
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The first definition relates the 𝑆 and 𝑇 parameters to the
normalized wave amplitudes of the voltage waves 𝑎𝑖 and 𝑏𝑖
at each port (𝑖 = 1, 2):

𝑎𝑖 = 𝑝𝑖 (𝑉𝑖 + 𝑍0𝑖 𝐼𝑖), (A7)

𝑏𝑖 = 𝑝𝑖 (𝑉𝑖 − 𝑍0𝑖 𝐼𝑖) (A8)

with
𝑝𝑖 =

√︁
ℜ(𝑍0𝑖)
2|𝑍0𝑖 |

. (A9)

The other definition relates to the power waves 𝑎p,𝑖 and 𝑏p,𝑖
by (𝑖 = 1, 2):

𝑎p,𝑖 = 𝑝p,𝑖 (𝑉𝑖 + 𝑍0𝑖 𝐼𝑖), (A10)

𝑏p,𝑖 = 𝑝p,𝑖 (𝑉𝑖 − 𝑍∗
0𝑖 𝐼𝑖) (A11)

with
𝑝p,𝑖 =

1
2
√︁
ℜ(𝑍0𝑖)

. (A12)

In this work, equations (A7) and (A8) are used for the 𝑆
and 𝑇 parameters, since this definition is essential for certain
applications, which is not the case for (A10) and (A11) [21].

The 𝑆 and 𝑇 matrices express the relations between the
wave-based parameters:

• 𝑆 parameters [
𝑏1
𝑏2

]
=

[
𝑆11 𝑆12
𝑆21 𝑆22

]
.

[
𝑎1
𝑎2

]
. (A13)

• 𝑇 parameters [
𝑏1
𝑎1

]
=

[
𝑇11 𝑇12
𝑇21 𝑇22

]
.

[
𝑎2
𝑏2

]
. (A14)

Note that sometimes the 𝑇 parameters are defined as
𝑎1 = 𝑇11𝑏2 + 𝑇12𝑎2 and 𝑏1 = 𝑇21𝑏2 + 𝑇22𝑎2. In this case,
adaptation of our results is straightforward: one can simply
interchange 𝑇11 for 𝑇22, and 𝑇11 for 𝑇22.

Appendix B: S and T Parameter
Transformation

Transformation from one representation to another can
easily be performed by matrix calculations. We recall the
procedure set-up in [11], and apply it to transform 𝑆 and 𝑇
parameters to 𝑧 parameters. We explicitly perform the deriva-
tion, since many sources (e.g., [11], [20]) assume the same
reference impedance for each port, whereas we generalize to
different reference impedances for each port.

In general, a representation R converts the input U to
the output O

O = RU, (B1)

e.g., equation (A13) for 𝑆 parameters. We wish to perform
a transformation to another representation 𝑹𝑁 with inputU𝑁

and output O𝑁 :

O𝑁 = R𝑁U𝑁 , (B2)

e.g., equation (A1) for 𝑧 parameters. This transformation can
be described by an (at this point unknown) transformation
matrix P connecting the stacked input and output matrices[

O𝑁

U𝑁

]
=

[
P11 P12
P21 P22

]
.

[
O
U

]
(B3)

where we have divided the matrix P into submatrices P𝑖 𝑗 .
Solving for O𝑁 results into:

O𝑁 = (P11R + P12) (P21R + P22)−1U𝑁 (B4)

and thus from (B2)

R𝑁 = (P11R + P12) (P21R + P22)−1. (B5)

If we know the transformation matrix P, this expres-
sion allows us to transform any representation to another.
Expression (B3) can be written as[

P11 P12
P21 P22

]−1
.

[
O𝑁

U𝑁

]
=

[
O
U

]
(B6)

and equals for the 𝑆 parameters, based on (A7) and (A8):
𝑝1 0 −𝑝1𝑍01 0
0 𝑝2 0 −𝑝2𝑍02
𝑝1 0 𝑝1𝑍01 0
0 𝑝2 0 𝑝2𝑍02

 .

𝑉1
𝑉2
𝐼1
𝐼2

 =

𝑏1
𝑏2
𝑎1
𝑎2

 . (B7)

Inverting the first matrix results into the transformation
matrix P𝑆→𝑧 for the conversion from 𝑆 to 𝑧 parameters:

P𝑆→𝑧 =
1
2


1
𝑝1

0 1
𝑝1

0
0 1

𝑝2
0 1

𝑝2

− 1
𝑝1𝑍01

0 1
𝑝1𝑍01

0
0 − 1

𝑝2𝑍02
0 − 1

𝑝2𝑍02


. (B8)

Applying this transformation matrix P𝑆→𝑧 into (B5) results
into (28), (29), (30) and (31) that express the 𝑧 parameters as
function of the 𝑆 parameters for different complex normal-
ization impedances.

Note that the derivation for 𝑆 to 𝑧 parameters reduces
to the results from [11], [20] for equal reference impedances.

Analogous, we obtain for the 𝑇 parameters

P𝑇→𝑧 =
1
2


1
𝑝1

1
𝑝1

0 0
0 0 1

𝑝2
1
𝑝2

− 1
𝑝1𝑍01

1
𝑝1𝑍01

0 0
0 0 1

𝑝2𝑍02
− 1

𝑝2𝑍02


(B9)

resulting into (38), (39), (40) and (41).


