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Abstract. Non-Orthogonal Multiple Access (NOMA) tech-
nique is a remarkable component of 5G wireless networks;
since NOMA immensely augments the spectral efficiency and
serves all users fairly. To accomplish these, efficient power
allocation is crucial for improving the NOMA system’s per-
formance. Accordingly, in this article, we formulate a power
allocation optimization issue, which concentrates on enrich-
ing the system sum-throughput, by realizing the transmitted
power constraint and also fulfilling the minimum through-
put for each user. However, to tackle this mentioned opti-
mization problem, a Modified Artificial Bee Colony (MABC)
algorithm is proposed. Besides, the designed MABC algo-
rithm obtains optimal powers among multiplexed users on
every sub-channel. Further, simulation results illustrate that
the presented power allocation scheme-based NOMA sys-
tem’s sum throughput is higher than the original ABC-based
power allocation and other state-of-the-art power allocation
schemes. Moreover, the MABC method swiftly converges to
optimal solutions compared to the original ABC algorithm
under selected control parameters.
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1. Introduction

The ongoing enormous growth in mobile traffic and
ubiquity of smart devices have placed higher demands on
the upcoming (5G) wireless systems [1], [2]. In order to
meet these emerging cellular industry challenges, the 5G
networks need to enhance system capacity further. To this
end, Non-Orthogonal Multiple Access (NOMA) has evolved
as one of the essential technologies for 5G systems due to its
high bandwidth utilization, user fairness, and massive user
connectivity [3-6]. Further, contrary to the traditional Or-
thogonal Multiple Access (OMA) [7-13]; NOMA breaks the
orthogonality between users by exploiting the power domain
multiplexing, and it serves multiple users simultaneously at
different power levels [14].
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Moreover, in a downlink NOMA framework, the Base
Station (BS) superimposes various users’ data for simulta-
neous transmission over the single radio resource unit [15].
As a result, superimposed data for multiple users can be
separated at the receivers (of the corresponding users) by us-
ing the Successive Interference Cancellation (SIC) method.
However, to ensure successful SIC detection at each user’s re-
ceiver, users having poor channel gains must be assigned with
higher powers than those powers allotted for good channel
gain users [16], [17]. Furthermore, the NOMA system can
control the user multiplexing and transmission throughput by
allocating distinct powers to different users. Therefore, user
power allocation becomes a significant issue in addition to
user scheduling problems [18], [19].

In recent literature, numerous Power Allocation (PA)
techniques for NOMA networks have been investigated to
heighten the sum capacity of the system. In [20], [21];
Fixed Power Allocation (FPA) scheme has been exploited
for power optimization to enhance system capacity. But, due
to fixed power factors between the users, FPA does not pro-
vide an optimal solution. In consequence, Fractional Trans-
mit Power Allotment (FTPA) was investigated in [22-25],
which is a widely used dynamic power allocation algorithm.
Accordingly, FTPA allocates powers to users as per the chan-
nel conditions (of users). However, in order to obtain the
best performance, FTPA requires prior computer simulations
for determining the decay factor of channel gains. Analo-
gously, [26] presents the difference-of-convex programming-
based inter and intra-sub-channel power allocation for opti-
mizing the system’s sum capacity. In any case, the proposed
approach in [26] delivers a sub-optimal solution, even though
it outperforms OMA and FTPA techniques.

Additionally, to achieve user fairness, the fair power al-
location method was proposed in [27], [28]; that delivers the
capacity to every user exceeding the corresponding OMA
capacity by ensuring the overall power constraint. Analo-
gously, in [29], authors explored two power allotment meth-
ods to optimize the ergodic capacity in two-user NOMA
networks with total transmission power and weak user’s min-
imum data throughput constraints. However, in [29], the
proposed method did not guarantee the strong user’s mini-
mal data throughput. Further, in [30], Karush-Kuhn-Tucker
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optimal conditions have been employed to derive the closed-
form results of power allocation factors among multiplexed
users on each sub-channel.

However, most of the works discussed above accom-
plish significant results by either relaxing power allocation
constraints or offering a sub-optimal solution. In contrast,
Evolutionary Algorithms (EA) can prove to be good assets in
handling complex non-linear constrained optimisation prob-
lems because they repeatedly renew an initial solution up
to the result becomes an optimal solution. Nevertheless,
only a very few studies [31-33] have exploited EAs namely:
particle swarm optimization, salp swarm optimization, and
genetic algorithm to improve the performance of NOMA
systems. Hitherto, no study has reported utilizing the Arti-
ficial Bee Colony (ABC) algorithm to the issues related to
power allocation in the NOMA systems. But, the motiva-
tion for adopting ABC (to the NOMA system) is the fact
that it requires limited control parameters, and it provides
the best solution compared to the other meta-heuristic algo-
rithms [34], [35]. Nonetheless, when dealing with complex
problems, ABC algorithm confronts unacceptable exploita-
tion [36]. To overcome this drawback, we developed a Mod-
ified ABC (MABC) method and utilized it to enhance the
NOMA system performance as given in the below paragraph.

In this article, we propose unique solution search equa-
tions by incorporating the best solution in the “employed and
onlooker bees phases”, respectively, to enhance exploitation
and retain exploration. After that, the MABC approach is op-
erated to address the PA problem, thereby increasing the total
throughput of the downlink NOMA system. Ultimately, sim-
ulation findings validate that the projected method for NOMA
system outperforms the original ABC-based PA, FTPA algo-
rithms, and OMA system. Moreover, MABC shows fast
convergence compared to the original ABC method.

The remainder of this article is organized as follows.
Section 2 provides the NOMA conceptual framework and
formulation of the power allotment problem. Then, the pro-
posed MABC-based power allocation strategy is discussed
in Sec. 3. Subsequently, Section 4 validated the proposed
MABC with numerical results based on standard test func-
tions and also provides simulations of MABC-based power
allocation for NOMA system. Eventually, in Sec. 5, the arti-
cle is concluded.

2. Downlink System Design and
Problem Formulation

To provide explicit elucidation, this section is parti-
tioned into two sub-sections. Section 2.1 gives a brief
overview of the downlink NOMA transmission paradigm.
Following that, the power allocation optimization problem
(to improve the sum-rate) is mathematically developed in
Sec. 2.2.

2.1 System Model

Assume a NOMA downlink scenario in which the BS
(Base Station) is at the cell’s center, and N users are de-
ployed randomly across the radius (R) of the cell, as shown
in Fig. 1. Further, BS as well as User Equipments (UE), are
furnished with a single antenna and BS broadcasts informa-
tion to all the users through M orthogonal sub-channels. Let
P; be the overall transmit power of BS. Besides, the available
system bandwidth B at the BS is evenly partitioned to all the
M sub-channels, with By denoting the bandwidth of each
sub-channel.

In this work, we adopt the uniform channel gain differ-
ence user pairing scheme proposed in [37]. According to this
pairing strategy, UEs are arranged as per the descending order
of their channel gains. Then, all these arrayed UEs are por-
tioned into two groups (groupl and group2). Subsequently,
the highest channel gain users from each group form one
NOMA pair (i.e., one user having better channel gain from
groupl and the other user having predominant channel gain
in group2 represent one user pair). Later, users possessing
the second-highest channel gain in each group structure into
the second user pair. In this fashion, user pairs are produced,
one pair after the other pair. Accordingly, each sub-channel
has only two users paired together to simplify receiver SIC
(Successive Interference Cancellation). Moreover, for every
sub-channel, UE with substantial channel gain is denoted as
UE; while weak channel gain UE is represented with UE,,.

For instance; let us suppose that UE1, UE2, UE3, and
UE4 have the average channel gains of —=75.65 dB, -81.94 dB,
—90.64 dB & —67.91 dB respectively. Thereafter, users are or-
dered as: UE4, UEI, UE2 & UES3 as per the sequencing of
their channel gains as: —67.91dB, —-75.65dB, —-81.94dB &
—90.64 dB. At present, the groupl contains UE4 and UEL.
Correspondingly, group2 includes UE2 and UE3. In both the
groups, the highest channel gain users are UE4 & UE2. So,
the first user pair is UE4 & UE2. Further, second-highest
channel gain users in both the groups are UE1 & UE3. So,
the second user pair becomes UE1 & UE3.

The above-given approach of user pairing improves the
data rate of weak channel gain users as well.
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Fig. 1. NOMA system model for multiple users.
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Consider that BS has precisely known Channel State
Information (CSI). Consequently, according to this identified
CSI, BS delivers the multiplexed coded symbols to all users.
For each sub-channel; sy, ,, and s; ,, represent the modulation
symbols of UE,, and UE;, respectively and the multiplexed
symbol for the sub-channel m is given as

Xm = VQW,um Sw,m + Va's,um Ss,m (1)

where @y, & as,, represent the power allocation fac-
tors of UE, and UE; in sub-channel m and @y, ;, + @5 m = 1.
Further, P, is the power for sub-channel m, and is identical
over all the sub-channels (i.e., P, = %). The superposed
signal received at arbitrary user n is written as

Yn,m = hn,mxm +Va,m- 2

In the above equation, £, = g,,,mdn_ﬁ gives the com-
plex channel gain in between the BS and n™ UE on sub-
channel m. Further, Rayleigh fading coefficient is indicated
with g, . Besides, d, is the distance from BS to UE n.
Moreover, ¢ gives path loss slope, and v,, ,,, constitutes Gaus-
sian noise. With no loss of generality, all user’s channel qual-
ities are organized as follows: |h|> < |ha|?* < ... < |hn|*.

Further, the main idea of NOMA is to allocate high
power to UE, and less power to UE;. For sub-channel m, if

|hw,m|2 < |hs’m|2 then corresponding power allocation fac-
tors are @y, > @s,,n. Moreover, weak user signal is directly
decodable due to high power allocation. Thus, sy, is first
decoded and removed from superimposed received signal,
then UE, decodes ss,,. Therefore, UE, extracts its signal
without multi user distortion with the assumption of perfect
SIC. However, UE,, is not able to decode s; ,,, and remove it
from multiplexed signal due to low power assigned to UE.
For this reason, UE,, treats ss, as noise and detects its
own signal sy ;. In other words, UE,, does not perform SIC.
Hence, users’ data rates in m™ sub-channel are represented as

a’w,um|hw,m|2

2), 3)
No + a’s,um|hw,m|

Ry .m = Bgclog, (1 +

as,umihs,mF) )

R = Byl 1+
s, scogz( N,

In (3) and (4), N, is noise power and it is given by
N, = kT By.. Here, k, T are Boltzmann’s constant, temper-
ature in degree Kelvin respectively. Hence, the achievable
sum rate is obtained by summing all the sub-channel’s total
rate, which is given as

Ryum = (Rs,m + Rw,m) . (5)

M=

3
X

2.2 Problem Formulation

The ultimate goal of power assignment problem is
to enhance the system’s sum throughput while preserving
the total transmit power and each user’s required rate con-
straints [38], [39]. Therefore, the sum rate optimization prob-
lem is formulated as:

M, R ©®

subject to: @, + @w,m = 1, (6a)
Ay m > As s (6b)

Rym > R™™, (6¢)

Rym > RY™ (6d)

and 0 < @y, m, @s,m < 1 (6e)

where (6a) represents the sum of the m™ sub channel user’s
powers which is equal to P, (i.e., @s,mPm + @w,mPm = Pm).
Besides, (6b) indicates the basic NOMA principle that more
power is allocated UE,, than UE,. Moreover, (6¢) and (6d)
represents minimum data rate requirement of UE and UE,,
respectively. Subsequently, (6e) gives bounds of the power
allocation factors of each sub-channel user.

3. Standard ABC Algorithm and its
Modified Version for Optimal Power
Allocation

3.1 Standard ABC Algorithm

The ABC algorithm is a swarm-pertained optimization
scheme that resembles the intelligent foraging demeanor of
honey bees and has been used extensively for several practi-
cal problems. It was developed by Karaboga as part of the
swarm intelligence algorithms family [40]. In the ABC, three
kinds of honey bees are involved in the optimization process:
employed, onlooker (observer), and scout bees. First, the em-
ployed bees search for food near the food source preserved
in their memory; in the meantime, they communicate this
knowledge about these food sources with the observer bees.
Then, observer bees calculate fitness (nectar amount) and
choose the best food sources discovered by employed bees.
After that, the food source which has not improved the fitness
is abandoned by scout bees and replaced that solution with
a random food source to enrich the exploration.

The standard ABC algorithm solves any optimization
problem in four phases:

1. Initialization
2. Employed Bees
3. Onlooker Bees
4. Scout Bees

The steps required for all the phases are outlined below:
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1. Initialization:

In this phase, ABC produces a random number of
NP food sources (solutions). Here, NP indicates
size of bees, which is same for both employed and
onlooker bees. Let’s take i food source as @; =
{a@;1, @2, ...,a;p}, where D is the optimization vari-
ables’ dimension. Each solution is obtained with in
the range of ;™ index by

@i j= ajmin + l/l(a,jmax _ a,jmaX). (7)

Here, ;™" and a;™* denotes minimum and maxi-

mum limits for index j, respectively. Besides, i repre-
sents randomly generated value which lies in the range
[0,1], i={1,2,...,NP}, and j ={1,2,3,...,D}.
Then every solution is evaluated by

1
PR L/O
Jit; = 1+fif> ¥
L+|fil, fi <0

where fit;, f; indicates the fitness and objective func-
tions of food source i respectively. The cost function
can be utilized directly as a fitness function for maxi-
mizing problems.

2. Employed Bees:

Employed bees produce the neighborhood solution for
every initial solution. The position of new solution can
be computed as

,Bi,j =cx,»,]-+/l,-,j(ai,j —O,’k,j). (9)

In (9), j is a random integer and j € {1,2,3,...,D};
k is selected partner solution & k € {1,2,...,NP},
k #i. A; ; represents randomly generated parameter,
which is lies between —1 and 1. Note that 8; is differ-
ent from a; only at the j component. Then, fitness
value of the updated solution is evaluated, and com-
pares with the previous solution a;. If the updated
fitness is greater as compared with old solution fitness,
a; is replaced with the ;. Otherwise, the previous
solution would be carried on.

3. Onlooker Bees:

After employed bees have completed their quests, they
communicate knowledge about fitness and food source
locations with onlooker bees. Then, each onlooker bee
chooses a solution according to the probability P; and
it is determined by

Jit;
NP
Zlﬁfi
Once the onlookers select the food source position, it
produces a new solution and corresponding fitness by
utilizing (9) and (8) respectively. Subsequently, the

greedy mechanism is performed between new and old
food sources similar to the employed bees.

P =

(10)

Initialize Random Population
and set trail counter equal to zero

| Employed Bee Phase |4—

Evaluate Probability for Onlooker
Bees

]

| Onlooker Bee Phase |

v

Memorize the best solution |

Is trail of any
solution = limit ?

Is termination

Scout Bee Phase criteria met?

| Report best solution so far |

Fig. 2. Flow chart of ABC Algorithm.

4. Scout Bees:

If a solution has not been updated within a given num-
ber of trials, it is exited, and the related bee evolves
into a scout bee. Then, it generates a random solu-
tion by using (7). Finally, evaluate the better solution
apest and objective function fyes and repeat the phases:
(2)—(4) until the total number of iterations. For eas-
ier comprehension, the ABC flow diagram is depicted
in Fig. 2.

3.2 Proposed Modified ABC Algorithm

As previously stated, the ABC algorithm faces some dif-
ficulties in balancing exploration and exploitation and also
the slow convergence when solving complex constrained op-
timization problems. To overcome the slow convergence rate
and improve the performance, the current position of “em-
ployed and onlooker bees” is updated by incorporating the
best solution position in the modified ABC algorithm. Hence,
MABC produces the new solution nearer to the best solution
in both bee phases (employed and onlooker) for every iter-
ation. Therefore, the modified solution search equation for
the “employed and onlooker bees phase” is represented as

Bi,j = Qest,j + i j(@ij — ak ;). (11)

In (11), apest is the best solution before finding the
new solution of each phase (both employed and onlookers
bees). Moreover, food sources and the objective function of
the algorithm represent the power allocation factors and sum
throughput, respectively.
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After all the users are paired to each sub-channel accord-
ing to user pairing scheme. The propounded MABC-based
Power Allocation (MABC-PA) assigns optimized powers to
each paired user of the sub-channel to maximize sum through-
put. The steps required for MABC-PA method for downlink
NOMA system are detailed below.

Step 1: Set the initial parameters of the MABC-PA scheme
such as paired users channel gain values of m™ sub-
channel, BS total power (P;), number of users (N),
system bandwidth (B), population size (NP), dimen-
sion of NP (D), number iterations (7) and limit.

Step 2: Randomly generate the population matrix with in
the bounds (i.e power allocation factors matrix) us-
ing o j = a'jmin + lﬁ(a/jmax - O!jmax), i € NP and
JE€D.

Step 3: Evaluate the objective function of each solution by
using R,,; = (Rs; + Ry,;). If any solution do not
satisfy the constraints (mentioned in (6a)—(6d)) then
the penalty is added to the corresponding objective

function [41].

Step 4: Memorize the best objective function and best solu-

tion.
Step 5: ‘Employed Bees’ update the every solution by using
modified solution search equation B; ; = Qpest,j +

Aij(aij —agj).

Step 6: Find the objective function for the updated solution
and and compare with the older solution. If the up-
dated solution sum rate (objective function) is better
than older solution. Then replace older solution with
updated solution and memorize the best objective

function and solution.

Step 7: ‘Onlooker Bees’ select solution based on the proba-

bility (P;), which can be obtained by using formula

P' _ Rm,i
L™ NP .
Rm,i

=1

i

Step 8: Once the onlooker bee identifies the solution po-
sition, it produces the new solution similar to the
‘Employed Bees’. Then, find the objective function
(Rpm.i)- Subsequently, perform greedy selection pro-
cedure and then replace the older solution with the

better solution.

Step 9: If any solution not updated in Employed and On-
looker Bees Phases for a particular limit. Then,
Scout Bees replace that solution with random so-
lution which can be computed by using «;; =
ajmm + w(a]max _ a,jmax).

Step 10: Finally, compute the better objective function and
corresponding solution. This process (steps: 5 to 9)

repeated for given number of iterations.

Step 11: Furthermore, entire process is repeated for all the
M sub channels. Then, system’s total throughput is
obtained by combining the sum rate of all the sub-

M
channels (i.e., Reum = 2, Rn).
m=1

The summary of the presented power allocation algo-
rithm is described in Algorithm 1 is in accordance with the
presented sum-throughput maximization problem.

Algorithm 1. Proposed MABC-based Power Allocation
Algorithm

Require: Control Parameters: Population size (N P), Num-
ber of iterations (7T'), limit.
System Parameters: N, M, Bsc, No, P, 8s,m> and gy m.
Ensure: Optimal power allocation factors and Sum rate.
1: fori=1:NPdo
: Generate random solution by using (7);
: Evaluate the objective function by (6);
. end for
. iteration = 1;
. while (iteration < T) do
//Employed Bee Phase:
fori=1:NPdo
Produce new solution B3; of the solution «; for em-
ployed bees using (11);
Compute objective function (sum rate) and fitness
function fit;;
11:  Perform greedy selection procedure among 8; and «;,
then retain with best solution;
12:  If solution is not updated trail; —trail;+1,
13:  else trail; « 0;
14:  end for
15:  Memorize the best solution;
16:  Evaluate probability P; by (10) for fitness functions of
employed bee solutions;
17:  //Onlooker Bee Phase:

=R - NV N

._
4

18: n=0i=1;

19:  while ( < NP) do

20: if rand < P; then

21: Generate new S3; by (11) for onlooker bee;

22: Perform greedy selection approach between f;
and «; and then select best solution;

23: If solution is not updated trail; «trail;+1,

24: else trail; « 0;

25: nen+1;

26: end if

27:  end while
28:  //Scout Bee Phase:
29:  if max(trail;) > limit then

30: Update the @; with new solution obtained solution
by (7);
31:  endif

32:  Store better solution obtained so far;
33: end while
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Besides, Theorem 1 shows that optimal powers are pro-
vided by the MABC algorithm.

Theorem 1 Proposed MABC algorithm induces optimal
powers for each sub channel’s users to maximize the system
sum throughput.

Proof. To solve the sum-rate maximization problem
given in (6); MABC is employed in this work. However, in
order to optimize the system’s sum throughput, MABC finds
the optimal powers for all users in the following way:

* The users are paired to every sub-channel (for receiver
simplicity, two users are paired in each sub-channel).
For the given control and system parameters, Algorithm
1 produces the appropriate power factors @ ., @y, for
the sub-channel m by satisfying all the constraints.

* Algorithm 1 renews the power factors in every iteration
and stores the better result. Hence, it provides optimal
power to every user on each sub-channel at the end of
the 7 iterations.

Hence, it is proved.

4. Numerical Results and Discussion

4.1 Experimental Validation of Proposed
MABC Algorithm

In order to corroborate the MABC algorithm’s perfor-
mance, we took the eight distinct benchmark test functions
consisting of four Uni-Modal (UM) and four Multi-Modal
(MM) functions as displayed in Tab. 1. The uni-modal func-
tions are mainly used to analyze the convergence performance

rate of any algorithm. On the other hand, multi-modal
functions play a vital role in testing whether the proposed
algorithm is escaping from the local optimum solution ef-
ficiently. Besides, in Tab. 1, the parameter D denotes the
dimensionality of solution search space.

The significance of the proposed MABC method is de-
termined by comparing its results to the classic ABC [40]. In
order to make an accurate comparison with the original ABC,
both algorithms were studied utilizing the identical control
parameters: the size of population NP = 30, limit = NP X D,
number of iterations 7' = 1000.

To ensure that the experimental results are consistent,
we performed each algorithm 30 times and averaged the re-
sults. We evaluated the five statistical parameters such as
Best, Average, Median, Standard Deviation (SD), and Worst
solutions for comparing the performance of ABC and MABC
algorithms. Table 2 and Table 3, respectively, illustrate the
experimental results produced by each algorithm for D = 10
and D = 30 dimensions. As a result of the numerical find-
ings, the MABC performs admirably on almost all of the
benchmark functions except f,. Since, the second part

100 (x;41 —xiz)2 in f> (Rosenbroack function) significantly
impacts the value of the function.

Furthermore, the solution accuracy of MABC and the
ABC algorithm are identical for functions fs5 (Rastrigen) and
f6 (Schwefel) with D = 10. When the dimension is smaller,
the multi-modal functions f5 and fg easily obtain the optimal
solutions. The complexity of achieving the optimal solution
gradually increases as the dimension grows larger. However,
even with larger dimensions (D = 30), MABC provides bet-
ter solution accuracy for the functions f5, fs. In addition,
Figure 3 demonstrates how the average of the Best Fitness
Value of both the schemes (i.e., MABC and ABC) varies

Function Name Mathematical Expression Type Search Range Smin
D
Sphere fi@) =Y x? UM [-100, 100] 0
i=1
- 2
Rosenbrock £(F) = z (xi—1)%+ 100(x,+1 - xﬂ) } UM [-30,30] 0
Sum Squares X)) = z ix;2 UM [-10,10]p 0
i=1
b 2
Step fi(R) = z (x; +0.5) UM [-100, 1001 0
D
Rastrigin f5(X) =100 + Z ( — 10cos (27rxl)) MM [-5.12,5.12]p 0
Schwefel fo(R) = - (x, sin ( ) 418.9829 x D) MM (=500, 500] 0
! D
f1(X) =e+20-20exp |- 52
Ackley b i=1 MM [-32,32]p 0
exp (% > cos (27rx,~))
i=
D
Griewank fs(R) = g5 % X2 n cos ( f) +1 MM (600, 600] 0
i=1

Tab. 1. Standard optimization test functions [42], [43].
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Benchmark

Standard

Functions Algorithm Best Average Median Deviation Worst
P ABC 2.4937x 10717 | 7.2440%x 10717 | 7.3362x 10717 | 1.8895x107'7 | 1.0211x 10710
1
MABC 1.9596 x 10717 | 5.3625x 10717 | 5.2804 x 10717 | 1.6420x 10~'7 | 8.0280 x 10~17
P ABC 2.7867 x 10™* 1.5300 x 1072 9.6000 x 1073 1.7100 x 102 6.4100 x 1072
2
MABC 1.2757 x 1074 3.4100 x 1072 1.3700 x 102 5.1000 x 1072 2.3430 x 107!
P ABC 1.2757 x 1074 3.4100 x 1072 1.3700 x 1072 5.1000 x 1072 2.3430 x 107!
3
MABC 2.5746 x 10717 | 5.3061 x 10717 | 5.3406 x 10717 | 1.1987 x 10717 | 7.7252x 10717
P ABC 5.1404 x 10717 | 9.6161 x 10717 | 9.1912x 10717 | 3.2381x10"17 | 1.8299 x 10716
4
MABC 2.3582x 10717 | 6.5347x 10717 | 6.7802x 10717 | 1.9038 x 10~17 | 1.0276 x 10716
ABC 0.0000 x 10° 0.0000 x 10° 0.0000 x 10° 0.0000 x 10° 0.0000 x 10°
bE
5
MABC 0.0000 x 10° 0.0000 x 10° 0.0000 x 10° 0.0000 x 10° 0.0000 x 10°
ABC 1.2830 x 1074 1.2830 x 1074 1.2830x 10~ | 0.0000 x 10° 1.2830 x 1074
Je
6
MABC 1.2830 x 1074 1.2830 x 1074 1.2830x 10~* | 0.0000 x 10° 1.2830 x 1074
P ABC 4.3899 x 10713 | 6.8094 x 1071 | 7.8894x 10715 | 1.7034 x 1015 | 7.8894 x 10715
7
MABC 4.4389 x 10715 | 5.6251 x 1071% | 4.4409x 10715 | 1.7034 x 10715 | 7.9936 x 10715
P ABC 0.0000 x 10° 2.4654 x 10~ | 0.0000 x 10° 1.4000 x 1073 0.0074 x 10°
8
MABC 0.0000 x 10° 3.7007 x 10°17 | 0.0000 x 10° 8.9073 x 10717 | 4.4409 x 10716

Tab. 2. The best, average, median, SD, and worst values obtained by ABC and MABC on benchmark test functions at D = 10.

B;:;lclg:;rsk Algorithm Best Average Median St;ril:g;g Worst
f ABC 1.1409 x 10713 | 1.4039x 1072 | 1.1574x 1072 | 1.0900 x 1072 | 5.5826 x 10~'2
MABC 3.1151x 107160 | 4.4983x 10710 | 4.6959 x 10716 | 7.0653 x 1077 | 5.3091 x 10716
P ABC 1.8400 x 1072 | 4.5720x 1071 | 2.7740x 1071 | 4.8610 x 107! 2.3057 x 10°
MABC 6.7875x 10™* | 6.1876 x 10° 5.2060 x 107! 1.4642 x 10! 7.3902 x 10!
f3 ABC 3.1631 x 10714 | 2.0529x 10713 | 1.5573x 10713 | 1.4625x 10713 | 6.8523 x 10713
MABC 2.9023 x 10710 | 4.4656 x 10710 | 4.7004 x 10716 | 7.0883 x 10~7 | 5.3520 x 107'6
f ABC 4.9412x 10713 | 8.8238x 10712 | 3.8833x 10712 | 9.4115x 10712 | 3.5768 x 10711
MABC 5.0766 x 10716 | 6.4164 x 1071 | 6.6189x 10716 | 9.4713x 10717 | 8.7348 x 10716
£ ABC 2.3010 x 10710 | 2.3740 x 1076 1.4206 x 1070 1.2891 x 107> | 7.0630 x 1073
MABC 0.0000 x 10° 0.0000 x 10° 0.0000 x 10° 0.0000 x 10° 0.0000 x 10°
fi ABC 3.8185x 10™* | 1.5394 x 102 1.1846 x 107 8.3483 x 10! 3.5536 x 107
MABC 3.8183x 10™* | 3.8183x107* | 3.8183x10™* | 3.3210x 10713 | 3.8183x 107*
P ABC 9.3781 x 1077 | 3.8397x 1070 | 4.0328 x 107 | 3.4970x 10°® | 9.1354 x 107¢
MABC 1.2195 x 10712 | 2.4306 x 1072 | 2.3705x 1072 | 8.0011 x 10~13 | 4.2251 x 10~'2
P ABC 1.3687 x 10711 | 8.2836x 10710 | 2.9129 x 10710 | 1.3363 x 107 | 5.8847 x 10~
MABC 0.0000 x 10° 4.1117x 107 1.1102 x 10716 | 2.2000 x 1073 1.2300 x 1072

Tab. 3. The best, average, median, SD, and worst values obtained by ABC and MABC on benchmark test functions at D = 30.
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Fig. 3. Convergence performance (best solution in each iteration) comparison between MABC and ABC algorithms for eight benchmark test
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with the total iterations for D = 10 and D = 30 dimensions.
Here, the “Average of the Best Fitness Value” is obtained
by computing the mean of the best fitness values of all the
runs (i.e each algorithm repeated for 30 independent runs)
in each iteration. The lines in Fig. 3(a)—(h), which do not
reach the end of the iterations indicate that the next compu-
tation has acquired a zero value. As exhibited in the Fig. 3,
except for function f, with D = 10, 30 and function fg with
D = 30, MABC has a swifter convergence speed than the
ABC algorithm.

4.2 Performance Evaluation of MABC-based
Power Allocation

The MATLAB simulations are shown in this part to as-
sess the effectiveness of the presented MABC-PA algorithm.
A single cell with N = 20 randomly distributed users is
considered in the simulations. Moreover, each sub-channel
is paired with the two users based on the adopted pairing
scheme. The Rayleigh fading wireless channel model is
presumed between BS and users. Further, the BS total trans-
mission power (P; = 30dBm) is partitioned to all the sub-
channels equally. Finally, the proposed MABC-PA is em-
ployed to allocate power to paired users of each sub-channel
optimally by satisfying all the constraints. We consider the
average results based on 10* channel accomplishments. Be-
sides, the parameter values taken for simulation are detailed
in Tab. 4. The parameters of the algorithm have been deter-
mined after thorough simulations and performance evalua-
tions. We compared the proposed power allocation strategy
with ABC-PA, FTPA [25] methods, and OMA scheme.

Figure 4 displays the comparison between the sum
throughput and transmit power at the BS for N = 20 users.
Accordingly, it is clear from Fig. 4 that the sum throughput
rises as the transmission power varies. Moreover, at the low
transmit powers, the sum rate of MABC-PA is much greater
than the FTPA. On the other hand, MABC-PA, ABC-PA, and
FTPA methods’ performance are nearer at the higher trans-
mit powers because the power allocation factor for a strong
user is saturated for higher values of P;. In other words, the
channel gain will become a less significant aspect when the
BS transmitted power is more. Further, it can be heeded that
due to the modified solution search equation, the proposed
MABC-PA exceeds the ABC-PA in terms of achievable sum
rate. Besides, we set the minimum capacity for strong and
weak users to be 200 kbps and 20 kbps, respectively.

Figure 5 shows the influence of the various users on
the total throughput of the system. Here, the transmission
power is fixed to 30 dBm. Further, it demonstrates that the
system’s total throughput augments as the number of user
equipments per BS increases, which signifies that multi-user
diversity gain. We can also see that the sum throughput of all
NOMA schemes is superior to the OMA due to multiplexing
gain when NOMA is used. As a result, Figures 4 and 5 re-
vealed that the propounded MABC-PA is outperformed the
ABC-PA, FTPA algorithms, and traditional OMA.

Figure 6 depicts the convergence plot of the MABC-PA
and ABC-PA algorithms for NOMA system. From Fig. 6, it
is clearly explicit that MABC-PA delivers better performance
than the ABC-PA algorithm. Here, the sum rate is averaged
over 30 independent runs at Py = 30 dBm for N = 20 users.
Furthermore, MABC-PA is rapidly converged to an optimal
solution compared to the ABC-PA scheme.

Parameters Values
Cell radius (R) 500 m
Transmission power (Py) 30dBm
Overall bandwidth (B) 5MHz
Noise density (N,) —174 dBm/Hz
Number of users (N) 20
Number of sub-channels (M) 10
Path loss exponent () 4
Min. data rate for UE; (R;nin ) 200 kbps
Min. data rate for UE, (Rwi“) 20 kbps
Size of the population (NP) 50
Limit NP x D
Termination criteria (7°) 100

Tab. 4. Parameters chosen for simulations.
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5. Conclusion

This article studied the unprecedented power alloca-
tion approach to enhance the sum throughput for downlink
NOMA system, considering BS transmit power and the user’s
minimum rate constraints. First, we proposed the Modified
ABC approach by improving the solution search equation of
“employed and onlooker bees”, thereby enhancing the ex-
ploitation in the ABC algorithm. Then, we evaluated every
sub-channel user’s optimal powers by employing the pro-
posed MABC optimization method to improve the system’s
total throughput. Further, presented MABC-PA algorithm
validated with standard benchmark test functions. Moreover,
the simulation findings revealed that the MABC-based PA is
superior concerning the system’s sumrate to ABC-PA, FTPA,
and traditional OMA. In addition, the proposed MABC algo-
rithm has converged faster than the standard ABC algorithm.

In the future, we plan to implement the multi-user down-
link NOMA system with the proposed MABC-based power
allocation strategy utilizing the software-defined radio plat-
form. Moreover, this work could be expanded to include addi-
tional performance metrics for the problem mentioned above,
as well as the implementation of the MIMO-NOMA scenario
in order to improve the system’s performance further.
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