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Abstract. Massive multi-input multi-output (MIMO) has
attracted significant interest in academia and industry, which
can efficiently increase the transmission rate. However, the
error rate of conventional channel equalizations in massive
MIMO systems may be high owing to the dynamic channel
states in practical conditions. To solve this problem, in this
paper, we propose an improved channel equalization frame-
work based on the deep neural network (DNN). Based on
the analyzed relationship between the input and output of the
DNN, the data can be recovered without the channel state
information. Furthermore, aiming at reducing the conver-
gence time and enhancing the learning ability of the DNN,
a classification weighted algorithm is proposed to optimize
the cost function of the DNN, which is named as classification
weighted deep neural network (CW-DNN). Simulation results
demonstrate that compared to conventional counterparts, the
proposed CW-DNN based equalizer can achieve a better nor-
malized mean square error (NMSE). Upon approximating the
optimal neural network parameters with the significantly im-
proved convergence speed and reduced training time of the
network, under the condition of the fixed learning rate.

Keywords
Channel equalization, classification weighted, deep
neural network,massiveMIMO, optimization algorithm

1. Introduction
Massive multi-input multi-output (MIMO) systems

with tens or hundreds of antennas are one of the most promis-
ing transmission techniques in wireless communication sys-
tems, and they can considerably enhance spatial multiplexing
gain and system capacity [1], [2]. However, due to the dy-
namic characteristics of the channel state information (CSI)

and the user scheduling, limited radio frequency (RF) re-
sources, and the pilot contamination [2–4], efficient channel
equalization is required in wireless communication systems.

Channel equalization strategies for massive MIMO or-
thogonal frequency division multiplexing (OFDM) systems
have been extensively researched in [5–11], with linear and
nonlinear methods being distinguished. The former contains
equalizers with zero forcing (ZF) and minimummean square
error (MMSE) ,while the latter includes the maximum like-
lihood (ML) and lattice reduction-aided (LRA) equalizers.
Compared to the nonlinear methods, the linear equalization
methods have low complexity at the cost of degraded error
performance. Therefore, significant efforts are dedicated to
achieving a reasonable compromise between error perfor-
mance and complexity. To improve the bit error rate (BER)
performance for multi-user (MU) MIMO-OFDM systems,
linear equalizers based on the least mean square (LMS) and
recursive least square (RLS) algorithms were proposed by
the authors of [5]. Besides, low-complexity algorithms for
implementing the ML detector are considered in [6] and [7].

Full noun Abbreviation
channel state information CSI
multi-input multi-output MIMO

normalized mean square eerror NMSE
fast fourier transform FFT
artificial neural network ANN
multilayer perceptron MLP
radial basis function RBF

back propagation neural network BPNN
deep neural network DNN
uniform linear array ULA
base station BS

orthogonal frequency division multiplexing OFDM
least mean square LMS
recursive least square RLS

Tab. 1. Abbreviations used in this article.
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However, for massive MIMO systems, since the number of
antennas is tens or hundreds times of that in MIMO systems,
the above algorithms still have high computation. To improve
the efficiency of channel equalization formassiveMIMO sys-
tems, an adaptive equalizer combined with a channel track-
ing method is proposed for the multi carrier-code division
multiple access (MC-CDMA) system over the rapidly fading
channel under colored noise in [8]. Furthermore, to enhance
the stability of the adaptive channel equalizer, using adap-
tive generalized decision feedback equalization and ordered
consecutive interference cancellation, the authors of [9] sug-
gested an adaptive MIMO channel equalizer. In general, the
above methods are classified as the model-driven channel
equalization [10], which may suffer from severe error per-
formance degradation in practical communication scenarios
with unknown essential parameters, such as CSI, bandwidth,
and pilot information.

To break the model-driven frame, the artificial neural
network (ANN) has been paid significant attention for chan-
nel equalization, owing to its strong capability of nonlin-
ear mapping and the characteristic learning in classification
or recognition [11]. In the ANN, multiple training sets of
data are introduced to optimize the weights and bias un-
til a stable network state [12]. In the last decade, various
neural network models have been developed for machine
learning-aided communication systems. The conventional
multilayer perceptron (MLP) has been used to mitigate the
inter-channel interference in OFDM systems in [13]. A con-
ventional radial basis function (RBF) based neural network
is developed in [14–16] to enhance channel estimation in
pilot-aided OFDM systems. Although the RBF-based neural
network has a stronger learning ability than the MLP based
neural network, the radial base center in RBF needs to be
determined artificially. Furthermore, the back propagation
neural network (BPNN) is adopted in the space-time coded
MIMO-OFDM systems for effectively estimating the channel
correlation coefficients in [17]. Generally, the ANN-based
channel equalization has good performance for systems with
a few antennas. However,with the increase of the number of
antennas, its performance decreases obviously. Therefore,
the ANN-based channel equalization method is not suitable
for massive MIMO systems.

The deep neural network (DNN) with more layers and
more neurons is significantly studied based on deep learn-
ing (DL) to obtain better feature extraction and generaliza-
tion from a large amount of data [2, 18–20]. The authors
of [2] proposed a novel channel prediction framework that
integrates the imperfect channel estimation of the massive
MIMO-OFDM into the DNN scheme and proves that DNN
is an effective method. The work of this article is to perform
channel estimation, which uses DNN to directly restore data
without channel state information. Compared with [2], the
number of layers of the DNN used, the number of neurons
and the data processing method are very different. To solve
the problems of channel equalization and signal detection
in wireless communication systems, the DNN is leveraged

in [21–25]. The authors of [21] proposed a nonlinear sig-
nal detector based on a DNN for the OFDM system, which
achieves a good error performance with high complexity.
Then, to reduce the complexity, a DNN based MIMO de-
tector was designed by the gradient descent method in [23].
Furthermore, to obtain the error performance close to theML
detection, the authors of [24] proposed a dense-layerDNN for
a single-path MIMO system. Aiming at improving the high
error performance in aMIMOsystem, the cross-entropymod-
elled loss function of the DNN was optimized for the softly
detectedMIMO signal [26]. It shows that the selection of cost
function has an important effect on DNN training. However,
current signal detection methods cannot be easily adapted to
DNN-based signal detection methods. In addition, there are
also many researches focusing on the combination of DNN
and current signal detection methods to further improve the
error performance. For example, the iterative signal detec-
tion was projected into the DNN structure and realized by
the DL method in [27–29] to improve the MIMO detection
performance and robustness. Besides, an MU-SIMO chan-
nel detection scheme was proposed in [30], which combines
the advantages of the feed-forward DNN and parallel inter-
ference cancellation to effectively eliminate the co-channel
interference. Additionally, according to the idea of Residual
Network (ResNet), a deeper DNNmodel was built to improve
the performance of the channel estimation and equalization
in [31]. Channel equalization first needs to obtain channel
state information through channel estimation. The proposed
CLMMSE algorithm [1] calculates the channel autocorre-
lation matrix by investigating the channel prior information
based on compressive sensing (CS) theory. The channel
state information is estimated by the algorithm, but it brings
high complexity.

Motivated by this problem, an optimized channel equal-
ization method is proposed based on the classification
weighted DNN (CW-DNN). Furthermore, the performance
of the proposed method is verified by using a signal detec-
tion of the minimum distance-based symbolic slicer. We
formulate the equalization of the massive MIMO channel as
a classification problem using the DNN. In this paper, to
solve the above problems, an optimized channel equaliza-
tion method is proposed based on the classification weighted
DNN (CW-DNN). The main contributions are summarized
as follows.

• In a typical massive MIMO-OFDM system, the input
signal is classified into different categories according
to the one-hot mapping for the constellation. We use
a DNN to directly recover the data without channel state
information and then recover the corresponding classes
of transmitted symbols from the received signal.

• Furthermore, in order to improve the performance of
channel equalization, we specially design a new loss
function. The classification weighting is adopted to op-
timize the cost function of the DNN. Without adjusting
the learning rate, the proposed CW-DNN is capable of
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enhancing the training speed of the DNN, while pre-
venting the solutions from falling into the saddle point
or the local minimum point, so as to obtain the optimal
neural network parameters.

• Finally, simulation results show that the proposed
method using the classification weighted optimization
of the cost function is an effective alternative compared
to the methods using the classical cost function.

Notation and symbols: Abbreviations used in this article in
Tab. 1. Notation and symbols used in this article are shown
in Tab. 2.

The following is a summary of the remainder of this pa-
per: Massive MIMO-OFDM system is presented in Sec. 2.
Deep learning and optimization algorithm-based channel
equalizations are analyzed in Sec. 3. Simulation results are
discussed in Sec. 4, and a brief conclusion is summarized
in Sec. 5.

Symbol Definition/Explanation
𝑁t Number of transmit antennas
𝑁r Number of receive antennas
( ·)T Transpose operator
( ·)H Hermitian operator
‖ · ‖ Frobenius norm operator
E[ ·] Expectation operator
( ·)−1 Inverse operator
⊗ Kronecker product
Vec Vectorization operator

Tab. 2. Notation and symbols used in this article

2. Massive MIMO-OFDM System
As shown in Fig. 1, the transmitter sends an information

bit stream. The number of sub-carriers is 𝑁 , after serial-to-
parallel conversion, it becomes a group of 𝑁 parallel data.
And then IFFT is performed, cyclic prefix is added, after
quadrature amplitudemodulation (16/32QAM) a set of paral-
lel data after constellation mapping, modulate 𝑁 subcarriers
to obtain OFDM symbols. Then mix white Gaussian noise to
the receiving end for demodulation. The model of a massive
MIMO-OFDM system with 𝑁t transmit antennas and 𝑁r re-
ceive antennas. The frequency-domain symbols 𝑋𝑖 (𝑘) on the
subcarrier 𝑘 at the 𝑖-th transmit antenna are modulated on 𝑁
subcarriers with 𝑘 = 0, 1, . . . , 𝑁 − 1. Thus, the time-domain
signal at the 𝑖-th transmit antenna in time 𝑛 is represented as

𝑥𝑖 (𝑛) =
𝑁−1∑︁
𝑘=0

𝑋𝑖 (𝑘)ej(2𝜋𝑘𝑛/𝑁 ) , 𝑛 = 0, 1, . . . , 𝑁 − 1. (1)

A uniform linear array (ULA) of 𝑁t antennas is as-
sumed to be installed on base station (BS). The Rayleigh
channel fading model can be given as

ℎ(𝑡) =
∑︁
𝐿

𝑎𝐿 exp [j (𝜙𝐿 + 2𝜋 𝑓 cos (𝛽𝐿) 𝑡)] (2)

where 𝑎𝐿 is the amplitude of the 𝐿-th propagation path from
the BS to the receivers. 𝜙𝐿 and 𝛽𝐿 are, respectively, the angle
of arrival and random phase of the 𝐿-th path.

The data stream at each transmit antenna can be ex-
pressed as 𝑥 (𝑁𝑖). At the receiving end, the data stream of
the massive MIMO-OFDM system can be expressed as

𝑦 𝑗 (𝑛) =
𝑁t∑︁

𝑁𝑖=1

𝐿−1∑︁
𝑙=0

ℎ 𝑗𝑁𝑖
(𝑛, 𝑙)𝑥𝑁𝑖

(𝑛 − 𝑙) + 𝑤 𝑗 (𝑛). (3)

Converting the signals from time domain to frequency
domain by fast Fourier transform (FFT) operations, and then
the obtained signals can be expressed as

𝑌 𝑗 (𝑘) =
𝑁t∑︁

𝑁𝑖=1

𝐿−1∑︁
𝑙=0

𝐻 𝑗𝑁𝑖 (𝑛, 𝑙)𝑋𝑁𝑖
(𝑛 − 𝑙) +𝑊 𝑗 (𝑛). (4)

We assume that in a time-invariant MIMO channel, the
channel impulse response remains constant over the coher-
ence time. Therefore, the received frequency-domain signal
Y(𝑘) = [𝑌1 (𝑘), 𝑌2 (𝑘), . . . , 𝑌𝑁r (𝑘)]T at the 𝑘-th subcarrier is
expressed as

Y(𝑘) = H(𝑘)X(𝑘) + W(𝑘) (5)

whereW(𝑘) is the additive white Gaussian noise (AWGN).

In most scenarios, H(𝑘) is often an underdetermined
factor and X(𝑘) can be set as certain sequence which is
known at both transmitting and receiving sides. Thus, when
apply channel estimation algorithms to get the channel state
information, (5) can be rewritten as

Y(𝑘) =
(
X(𝑘)T ⊗ 𝐼

)
Vec(H(𝑘)) + W(𝑘). (6)

Here, ⊗ represents Kronecker product, Vec is the vectoriza-
tion operation which stacks the column vector by column of
the matrix.

In (6), we assume that the channel gain H(𝑘) and the
constellation of the data X(𝑘) are unknown. Thus, the chan-
nel equalization aims at recovering X(𝑘) from the received
signal Y(𝑘) at the receiver. Additionally, convert this system
equation into a matrix form, the matrix form of (4) can be
expressed as

y = Hx + n (7)

with the transmit data vector x, the massive MIMO chan-
nel impulse matrix H, the additive white Gaussian noise
(AWGN) n, and the received signal vector y.
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Fig. 1. The block diagram of the massive MIMO-OFDM system.

3. Deep Learning and Optimization
Algorithm Based Channel Equaliza-
tions
The massive MIMO channel equalization based on

DNN can be formulated as a classification problem, where
the transmitted signal is classified into different groups ac-
cording to the constellation. TheDNNbased equalizer solves
the classification problem to recover the transmitted signal.
The pilot symbols are used to train the DNN, and the varia-
tion of the pilot value is used to reflect the variation of the
channel.

3.1 Algorithmically for Deep Learning
DNN has the same structure as a traditional neural net-

work, including hidden layers and neurons. Furthermore,
its deep design facilitates the establishment of models, par-
ticularly in highly nonlinear contexts where processing is
challenging. DNN learning is divided into two phases: train-
ing and testing. The network model is initially trained using
the gradient descent approach to minimize the error between
the output value and the real value before implementing the
effective channel parameter estimation. Afterwards when,
using partial derivatives of the cost function, the network
weights and biases are maintained in real time.

The proposed DNN-based equalizer uses a fully con-
nectedDNNwith 𝐿 layers, comprising one input layer, (𝐿−2)
hidden layers, and one output layer, as illustrated in Fig. 2. Let
𝑤𝑙
𝑖 𝑗
represent the weight from the 𝑖-th neuron of the (𝑙 − 1)-th

layer to the 𝑗-th neuron to the 𝑙-th layer, and 𝑏𝑙
𝑖
represent the

bias unit. Thus, the layer pre-activation is delivered by

𝑧𝑙𝑖 =
∑︁
𝑗

𝑤𝑙
𝑖 𝑗𝑎

𝑙−1
𝑗 + 𝑏𝑙𝑖 . (8)

The activation of neuron outputmay then be rewritten as

𝑎𝑙𝑖 = 𝑓 (𝑧𝑙𝑖) = 𝑓

(∑︁
𝑗

𝑤𝑙
𝑖 𝑗𝑎

𝑙−1
𝑗 + 𝑏𝑙𝑖

)
. (9)

… … …

…

… …

Hidden layers

Output layersInput layers

…

…

…

…

Xi Oi

X1

X2
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O2

Fig. 2. The illustration of the DNN model.

3.2 DNN Based Channel Equalization
Framework
This subsection introduces the massive MIMO chan-

nel equalization based on the DNN, where the non-sparse
Rayleigh channel is considered. As shown in Fig. 3, differ-
ent from the CSI requirement in conventional equalizer, the
DNN equalizer removes the channel estimation and directly
recovers the transmitted data.

In the DNN model, for the transmitted data X =[
𝑋1, . . . , 𝑋𝑁t

]T and the received data Y =
[
𝑌1, . . . , 𝑌𝑁r

]T,
we can rewrite them as

X Δ
=

[
<(X̃)
=(X̃)

]
Y Δ
=

[
<(Ỹ)
=(Ỹ)

] (10)

where <(·) and =(·) denote the real and imaginary parts,
respectively, therefore, X ∈ 𝑅2𝑁t , and Y ∈ 𝑅2𝑁r . In this
paper, we adopt the one-hot mapping to Re-parameterize the
discrete constellations S = {𝑠1, 𝑠2, . . . , 𝑠𝑀 }, where 𝑀 de-
notes digital modulation order. Corresponding to each 𝑠𝑚
for 𝑚 = 1, . . . , 𝑀 , we define a unit vector u𝑖 ∈ 𝑅𝑀 . The
four-dimensional one-hot mapping of the actual component
of 16-QAM constellations, is depicted as
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Fig. 3. Block diagram of the CW-DNN based receiver in the massive MIMO system.

S1 = −3↔ u1 = [1, 0, 0, 0],
S2 = −1↔ u2 = [0, 1, 0, 0],
S3 = 1↔ u3 = [0, 0, 1, 0],
S4 = 3↔ u4 = [0, 0, 0, 1] .

(11)

Then, we define thismapping as the function 𝑠 = 𝑓oh (u),
so that 𝑠𝑖 = 𝑓oh (u𝑖) for 𝑖 = 1, . . . , 𝑀 . Especially, when the
inputs are not unit vectors, the function is defined as

𝑥 = 𝑓oh (𝑥oh) =
𝑀∑︁
𝑖=1

𝑠𝑖 [𝑥oh]𝑖 . (12)

The MIMO model involves a vector of 2𝑁t symbols
which is handled by stacking the one-hot mapping of each el-
ements. In other words, a vector 𝑥oh ∈ {0, 1}2𝑁t𝑀 is mapped
to 𝑥 ∈ 𝑀2𝑁t .

In the training samples, the training set, the test set,
and the validation set occupy 70%, 15%, and 15%, re-
spectively. The input of the DNN based equalizer is
Yint = [𝑦1,1, . . . , 𝑦𝑘,𝑛r ]T, where 𝑦𝑘,𝑛r represents the data
on the 𝑘-th subcarrier at the 𝑛r-th transmit antenna. The out-
put of the DNN based equalizer is

⌢

Xout = [⌢𝑥1,1, . . . ,⌢𝑥 𝑘,𝑛t ]T,
where ⌢

𝑥 𝑘,𝑛t represents the estimated data on the 𝑘-th subcar-
rier from the 𝑛r-th transmit antenna.

First, the DNN is trained with the known 𝑌 and 𝑋 to
minimize the error between the input and output data. After
the DNN based equalizer is trained, this paper uses the gra-
dient descent algorithm to update the weight values and the
hidden layer bais values. The symbolic slicer is a signal
detection method based on minimum distance, divides the
network output data through the DNN based equalizer into
the correct class, and then restore the original signal.

Let the output signal vector of the 𝑗-th estimation be �̂� 𝑗

and the transmit signal vector of the 𝑗-th sample be 𝑥 𝑗 , the
cost function of (20) is expressed as

𝐸 =
1
2

𝑃∑︁
𝑗=1

(
𝑥 𝑗 − �̂� 𝑗

)2 (13)

where 𝑃 denotes the total number of samples.

The goal of the proposed DNN based estimation model
is computing and updating the partial derivatives of weights
and bias in DNN. In this paper, mini-Batch Gradient Descent
(MBGD) is used, taking 𝑁 (1 ≤ 𝑁 ≤ 𝑃) samples in each
training batch, the cost function can be approximated as

𝐸 =
1
𝑁

𝑁∑︁
𝑗=1

(
𝑥 𝑗 − �̂� 𝑗

)2
. (14)

The DNN updates the parameters from the output of
each mini-batch, which can be expressed as

𝑊 𝑙 = 𝑊 𝑙 − 𝑢

𝑁∑︁
𝑖=1

𝜕𝐸𝑖

𝜕𝑊 𝑙
, (15)

𝑏𝑙 = 𝑏𝑙 − 𝑢

𝑁∑︁
𝑖=1

𝜕𝐸𝑖

𝜕𝑏𝑙
(16)

where 𝑢 denotes the learning rate of the DNN.

The corresponding input and output training data of
the DNN based channel equalization is indexed by received
data (include data symbols and pilot symbols) at the receiver
and one-hot mapping of the original constellation symbols
at the BS, respectively. The pilot symbols are uniformly dis-
tributed on the subcarrier of each OFDM symbol, and the
pilot positions are fixed. The input of the DNN includes
the received data symbols and the received pilot symbols.
Since the change of the received pilot symbols value reflects
the time-varying characteristics of the channel, the implicit
estimation of the channel can be taken.

3.3 CW-DNN Based Channel Equalization and
Signal Dection

Due to the diversity and complexity of the antenna array,
the DNN based equalizer requires the longer processing time.
Furthermore, the convergence rate during the initial training
process is slow. During the training of the DNN, it is diffi-
cult to find an appropriate learning rate, and the parameters
of the weight and bias always approach to a local optimum
instead of a global optimum. To solve the problem, this sec-
tion analyzes the relationship between the input pattern sent
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by the known pilot and the network output. Then, aiming
at reducing the convergence time and enhacing the learning
ability of the neural network, a classification weighted al-
gorithm is proposed by optimizing the cost function of the
DNN, referred to as CW-DNN. The CW-DNN based equal-
izer is shown in Fig. 3. The new cost function by using
classification weighted is proposed in this part. Finally, at
a fixed learning rate, the original gradient is increased or de-
creased by changing the cost function to obtain better neural
network parameters.

In multipath channels, the transmitted signal reaches
the receiver through different paths, which may enhance or
attenuate. When the signal bandwidth is larger than the co-
herent bandwidth of the channel, the signal will be severely
distorted. On the contrary, the distortion of the signal is
very small. The purpose of equalization is to eliminate
the distortion caused by the channel, and the elimination
of inter-symbol interference is the result of equalization. The
received signal in the frequency domain is the product of
the transmitted signal and the frequency domain response of
the channel. The frequency domain response of the channel
can be directly obtained by the pilot inserted in each sym-
bol, so that the equalization of the multi-carrier signal can be
completed by a simple single-point equalizer.

In this paper, DNN-based channel equalization is
frequency-domain equalization. 𝑥 𝑗 and �̂� 𝑗 are mapped to −1
and 1. The scaling factor 𝑐 is set by judging the positive
or negative of the product of the transmitted data and the
received data, and the cost function is improved to ensure the
gradient of the cost function. It must be large enough and
predictable enough to provide good guidance for the learn-
ing algorithm, maintain convergence and continue to search
for the global optimum.The neural network can increase the
training speed of theDNN,while preventing the solution from
falling into a saddle point or a local minimum, so as to obtain
the optimal neural network parameters. Then use the symbol
limiter to restore the equalized signal to the corresponding
constellation point.

The output layer of the CW-DNN uses the tanh func-
tion instead of the traditional linear function. The output
of the network is a one-dimensional real array distributed in
[−1, 1]. The output sample �̂� 𝑗 need to be transformed to
�̂� 𝑗/𝑐, where �̂� 𝑗 denotes the target data that the network tries
to approximate. 𝑐 (𝑐 > 0) is a scaling constant to make the
range of all target data match the tanh activation function of
the output layer. According to the characteristics of the pilot
symbols combined with the network output, when the output
value is positive, it is regarded as a mapping of 1. On the
contrary, when the output data is negative, the approximated
value is mapped to −1.

If the digital modulation at the pilot frequency is BPSK,
the input value of the CW-DNN will be a sequence of ±1.
CW-DNN determines whether the received data is same as
the original data by judging the 𝑥 𝑗 �̂� 𝑗 . The CW-DNN uses the
characteristics of the symbolic function sign (𝑥): if 𝑥 ≥ 0,
returns 1; if 𝑥 < 0, returns −1. Set two adjustable weight

values 𝑐1 and 𝑐2 respectively. When 𝑥 𝑗 �̂� 𝑗 ≥ 0, it indicates
that the estimated data symbol is the same as the real sample
symbol. For example, if the transmitted data is 1, the received
data is also 1, or the transmitted data is −1, and the received
data is also −1. At this time sign

(
𝑥 𝑗 �̂� 𝑗

)
= 1, setting 𝑐2 is rel-

atively small, and the convergence can be maintained when
the known pilot symbols and the output data through the CW-
DNN are the same, and continue to search for the global best.
When 𝑥 𝑗 �̂� 𝑗 < 0, it indicates the symbols are different. At
this time sign

(
𝑥 𝑗 �̂� 𝑗

)
= −1, setting 𝑐1 is relatively large, the

penalty can be increased when the known pilot symbols and
the output data through the CW-DNN are different.

The CW-DNN based equalization can improve the con-
vergence speed in the early stage of network training and
continue to converge in the later stage of training, greatly
reducing the training time of network parameters and im-
proving learning efficiency. The original cost function of the
DNN changes to (18) of the CW-DNN, the gradient descent
algorithm is used to obtain partial derivatives of weights and
offset values, the formula can be written as

𝐸∗ (
𝑥 𝑗 , �̂� 𝑗

)
=
1
𝑁

𝑁∑︁
𝑗=1

[
𝑐 𝑗

(
𝑥 𝑗 − �̂� 𝑗

)2]
, (17)

𝑐 𝑗 =

{
𝑐1, sign

(
𝑥 𝑗 �̂� 𝑗

)
= −1,

𝑐2, sign
(
𝑥 𝑗 �̂� 𝑗

)
= 1. (18)

Then use the symbol limiter to restore the equalized
signal to the corresponding constellation point. Minimum-
distance based signal detection is used to find the symbol
having the minimum Euclidean distance between the con-
stellation alphabet and the equalized symbol 𝑌 𝑗 . The cor-
responding symbol is taken as the hard detection result �̃� 𝑗 ,
which can be expressed as

�̃� 𝑗 = argmin
𝑋 ∈𝐴

��𝑌 𝑗 − 𝑋
�� (19)

where 𝐴 is the constellation set, such as the 4-QAM modu-
lation.

In order to evaluate the performance of the proposed
CW-DNN based channel equalization scheme, the normal-
ized mean square error (NMSE) performance is used, which
is defined as

NMSE = 𝐸


𝑁∑︁
𝑘=1

‖𝑥(𝑘) − 𝑥(𝑘)‖22
𝑁∑
𝑘=1

‖𝑥 (𝑘)‖22

 (20)

where 𝑁 is the total number of the transmit data bits, 𝑥(𝑘)
and 𝑥(𝑘) are the transmit signal and the recovery signal,
respectively.

The proposed channel equalization method based on
CW-DNN collects pilot position data through the massive
MIMO channel and adopts offline model training to provide
the better NMSE performance. Besides, the proposed CW-
DNN algorithm contains more hidden layers and the number
of neurons, which can adjust the cost function adaptively, so
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as to learn channel data information better. Via combining
the characteristics of the pilot signal and the output data, the
DNN based on the optimization of the classification weight-
ing method is used. The specific process of the algorithm is
shown in Apendix A.

4. Simulation Results
In this section, the performance of the proposed CW-

DNN based channel equalization algorithm is simulated by
the Monte Carlo method. For comparison, the ZF and BPNN
based equalization algorithms are also simulated. System pa-
rameters are listed in Tab. 3.

The channel adopts a Rayleigh distribution channel.
The transmitted signal is multiplied by the Rayleigh fading
coefficient, and then a Gaussian white noise signal with a dif-
ferent signal-to-noise ratio power is added to the signal. The
multipath amplitude follows the Rayleigh distribution and
the multipath follows a random distribution. Pilot insertion
method is comb pilot insertion. In the process of channel data
generation, the original channel data is updated by multiply-
ing time expansion andmultipath fading to obtain the original
channel data at the current moment. The transmission and
reception antenna expansion is used to convert the original
channel data into a channel matrix. Then, the channel matri-
ces on the path are combined to form a channel matrix on the
distinguishable delay path. The simulation data is generated
inMATLABR2019B. Trainings are performed using Tensor-
Flow 2.0, Keras and Pyhton. The experiments are performed
on a computer with Intel Core i7 CPU (1.5GHz).

The CW-DNN pilot insertion rate of the CW-DNN
channel equalization is set to 20% and the training rate is
set to 0.001. In addition, 500000 data sample sets are ran-
domly allocated through the massive MIMO channel, 70%
of which are considered as the training set, 15% of which
are considered as the test set, and 15% of which are as the
verification set for training the neural network. To optimize
the cost function, the weighted factor 𝑐1 and 𝑐2 are defined
as 2 and 0.5, respectively. In addition, the entire CW-DNN
is composed of 5 layers, including an input layer, 3 hidden
layers and an output layer, where the hidden layer activation
function is defined as the ReLU function, and the output layer
activation function is the tanh function.

Parameters Values
Channel type AWGN, multi-path fading channels

Number of transmit antennas 64
Number of receive antennas 64
Number of subcarriers 256

FFT size 256
Modulation 16, 32QAM
Length of CP 64

Subcarrier spacing 15KHz

Tab. 3. Simulation parameters of the massive MIMO-OFDM
system.

The performance of BER under various modulation
schemes is compared in Fig. 4. As predicted, the BER curve
in Fig. 4 continues to have a clear declining trend as the SNR
increases. In the simulated massive MIMO system, there
is no FEC under the Rayleigh channel and multipath fading
channels. The data transmission is directly resumed without
channel state information obtained. As shown in figure 4, the
system BER performance is affected.

In Fig. 5, with various SNR levels, the relationship
between the number of hidden layer neurons and BER per-
formance in the massiveMIMO-OFDM system is given. The
SNR levels have been set at 15 dB, 20 dB, and 25 dB, respec-
tively. The number of neurons in the hidden layer grows by
150 in each step, starting with 100.

It can be seen in Fig. 5, the BER performance is not
directly proportional to the number of neurons in the hidden
layers. When the number of neurons in the hidden layers in-
creases to 850, the BER performance improvement becomes
small. While, the complexity of the algorithm also increases.
Furthermore, when the number of neurons in the hidden layer
increases to 1150, the BER performance is degraded, due to
the phenomenon of “Overfitting”.
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Fig. 4. BER performance of the CW-DNN under different mod-
ulation methods.
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Fig. 5. BER performance versus the number of hidden neurons
with varying transmitted SNRs.
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Figure 6 provides the NMSE comparison of the pro-
posed CW-DNN based scheme with batch size = 10, 30, and
50. It can be observed from Fig. 6 that as the SNR increases,
the result of the NMSE value decreases. Furthermore, the
NMSE performance is severely degraded by the small batch
size. For example, when SNR = 25 dB, the NMSEs are
0.5 × 10−3, 1.1 × 10−3, 1.5 × 10−3 and 2.5 × 10−3 for batch
size = 10, 30, 50, and 100, respectively. Besides, combined
with the results in Fig. 7, it can be inferred that the small
batch size can effectively alleviate the problem of the gradi-
ent dispersion.

Figure 7 shows the NMSE of the DNN using the MSE
cost function and the proposed classification weighted opti-
mized cost function with the varying number of the training
iterations. It can be seen from Fig. 7 that the proposed sys-
tem using the CW-DNN converges faster at the initial stage of
training, compared to conventional DNN. As the number of
the training iterations increases, the NMSE of the proposed
method will converge to a fixed value.

We compared the DNN structure used in the litera-
ture [32]. Figure 8 and Figure 9 are the NMSE performance
of the conventional ZF, BPNN, DNN [32], and the proposed
CW-DNN based channel equalizations, with 16QAM and
32QAM, respectively. The number of the DNN training it-
erations is 1000, the number of hidden layer neurons is 850,
and the batch size is 10. It can be seen from the Fig. 8
and Fig. 9 that with the increased value of the SNR, the
NMSE performance of all equalization algorithms will be
improved, where the performance of the proposed CW-DNN
method is the best.

Figure 10 shows the effect of different numbers of chan-
nel paths on BER performance. We used 16QAM modula-
tion. It can be seen from Fig. 10 that as the number of channel
paths increases, the BER performance does not improve sig-
nificantly. Thus, the performance of the proposed method is
independent of the number of paths in the multipath channel.
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Fig. 6. The CW-DNN based scheme’s NMSE performance with
batch sizes of 10, 30, and 50.
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Fig. 7. Performance of a DNN-based equalizer in terms of con-
vergence under various cost functions.
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Fig. 8. NMSE performance when digital modulation is 16 QAM
under different equalizers.

0 5 10 15 20 25 30

SNR(dB)

10
-3

10
-2

10
-1

10
0

N
o

rm
a

liz
e

d
 M

e
a

n
 S

q
u

a
re

 E
rr

o
r

ZF

BP

DNN

CW-DNN

Fig. 9. NMSE performance when digital modulation is 32 QAM
under different equalizers.
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Fig. 10. The BER performance of the CW-DNN based channel
equalization in different channel paths.

Operation Complexity
MMSE O(𝑁 3r )
ML O(𝑀𝑁t)

CW-DNN O(3𝑀𝑁t)

Tab. 4. Computational complexity of schemes.

We compare the computation complexities of the pro-
posed DNN-based channel Equalizations scheme and the
conventional channel Equalizations scheme in Tab. 4. As-
suming that the modulation method used in communication
is M-QAM, the modulated signal reaches the receiving end
through the channel, and the constellation diagram of the
modulated signal is divided into M types. Note that, in our
proposed scheme, we train a neural network offline using
channel simulation values generated from specific channel
scenarios. In the case of offline learning, computational com-
plexity is a lesser concern, as the time required is usually not
strictly limited. The computational complexity of the scheme
in the test phase includes three fully connected operations.

5. Conclusions
In this paper, we propose a DNN based improved chan-

nel equalization framework, which is formulated as a classi-
fication problem. Aiming at reducing the convergence time
and enhacing the learning ability of the neural network, we
also propose a classification weighted algorithm to optimize
the cost function of the DNN. Simulation results demonstrate
that under the condition of the fixed learning rate, the pro-
posedCW-DNNbased equalizer can obtain the approximated
optimal neural network parameters with the significantly im-
proved convergence speed and reduced training time. Com-
pared to the conventional channel equalization methods of
ZF and BPNN, the CW-DNN based channel equalization
algorithm can provide better NMSE performance.
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Appendix A: Algorithm 1

Algorithm 1. CW-DNN Based Algorithm for Channel
Equalization and Signal Detection.

Input: The pilot subcarriers 𝑥
(
𝑘 𝑝

)
and data subcarriers

𝑥 (𝑘𝑑) of the received signal in the training set and testing
set.
Output: The equalized signal 𝑥 (𝑘𝑑

)
.

Initialization: The weights𝑊 and bias 𝑏 of the hidden layers
and the output layer are randomly initialized.
Training:
1: Input the massive MIMO frequency domain data sets{(

𝑥1, 𝑥2 . . . , 𝑥𝑘𝑝+𝑘𝑑

)
,
(
𝑜1, 𝑜2 . . . , 𝑜𝑘𝑑

)}
into the CW-

DNN.
2: Calculate the outputs of the CW-DNN.
3: Calculate the value of the cost function 𝐸∗ according to
(17) and (18).

4: Calculate and update the weights and biases according
to (15) and (16).

5: Repeat steps 1-4, until the stopping criterion is satisfied
(the error difference between adjacent two times is very
small or limit the number of iterations directly).

6: Return trained CW-DNN models with optimal weights
and bias.

Testing:
7: Input the testing set into the CW-DNN, and calculate the
outputs of the CW-DNN, get the equalized signal.

8: Using the signal detection method based on symbolic
slicer , restore the equalized signal to the corresponding
constellation point, get the detection signal.

9: Calculate the NMSE to evaluate the performance of the
proposed CW-DNN based algorithm.

End


